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Abstract

Cardinality estimation is a fundamental problem that has been studied for sev-
eral decades in database community. It has wide applications in many database
management issues such as query optimization, query monitoring, query progress
indicator, query execution time prediction, and approximate query answering. Ex-
isting cardinality estimation techniques can generally fall into two categories: i)
methods based on histograms, and ii) methods based on sampling. Methods based
on one-dimensional histograms currently dominate in the implementation of mod-
ern database systems (specifically, query optimizers), due to their simplicity and
light overhead. However, they have inherent difficulty in estimating queries over
more than one columns/tables, especially when data correlation exists. Sampling-
based techniques, on the other hand, do not have such limitations. While they
are not used in implementing query optimizers because of the high efficiency re-
quired by query optimization, they do find their ways in many other applications.
In this paper, we give a survey of existing sampling-based algorithms proposed in
the literature. We focus our discussion on important milestones along the timeline
of history. In addition to the description and analysis of the algorithms, we also
present our experimental evaluation results for several state-of-the-art methods on
the TPC-H benchmark.

1 Introduction

Relational database management systems have achieved great success in the past forty years. One
important reason for its success is the revolutionary notion of data independence, which completely
separates the logical and physical view of the underlying data. The system is then allowed to man-
age the physical data in whatever ways it wishes, as long as the logical view of the data remains
unchanged. This abstraction significantly reduces the burden of data management for application
developers. They now only need to understand the logical view of the data without knowledge of
how the data is actually stored and manipulated inside the database. Currently, the logical view of
the data is defined and manipulated by the SQL query language. Database users can only access the
data by issuing SQL queries.

SQL is a declarative language that only describes what the query is supposed to do without speci-
fying how the query should be executed. This gives the system great flexibility to choose different
plans for a given query. A plan is a tree-like structure that encodes the execution details of the query.
Each node of the tree is some operator, such as sequential scan, sort, hash join, and so on. As in-
dicated by its name, an operator executes certain functionality built inside the system. Since the
execution cost of different plans can be dramatically different, a critical task of the database system
is then to pick a good (i.e., low-cost) plan before the query is run. For this purpose, every existing
database system contains such a module called query optimizer, and the procedure of seeking a good
query plan is thus called query optimization.
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As a result, the basic effort involved in query optimization is to estimate the cost of a plan. Query
optimizers usually define effective cost models considering the CPU and I/O overhead of the query.
To estimate these quantities, the key knowledge is the input/output cardinality of each operator in
the plan. For example, to estimate the CPU cost of a sort operator, we need the number of tuples it is
going to sort. This problem is termed cardinality estimation in database literature, and database com-
munity has spent several decades in studying it. Besides its usage in query optimization, cardinality
estimation also has wide applications in many other areas, including approximate query answering
(e.g., [1, 2]), query monitoring (e.g., [3]), progress indicator (e.g. [4, 5]), and query execution time
prediction (e.g., [6, 7]).

Existing methods on cardinality estimation can generally fall into two categories: i) methods based
on histograms, and ii) methods based on sampling. Histograms [8] maintain certain statistics of the
underlying database tables, which try to capture the important statistical characteristics of the data
distribution. One-dimensional histogram, which summarizes the data distribution over a single col-
umn of a table, currently dominates in the implementation of query optimizers, for its simplicity and
light overhead. However, one-dimensional histogram cannot work well for many queries. Query
optimizers have to rely on unrealistic assumptions such as independence and uniformity for queries
involving data over more than one columns. A natural extension for one-dimensional histogram
is multi-dimensional histogram, which captures the joint data distribution over multiple columns.
However, multi-dimensional histograms are rarely used in practice due to their huge storage cost
as the number of dimensions (i.e., columns) grows. Meanwhile, they still can only work well for
queries over a single table. Sampling-based algorithms, on the other hand, generally do not have
such limitations. A number of interesting algorithms have been proposed throughout the years
(e.g. [9, 10, 11]). Sampling-based algorithms usually perform much better than histogram-based
approaches by giving much more accurate estimations with theoretical guarantees. These algo-
rithms, however, have not been implemented in existing query optimizers yet, due to their additional
runtime overhead compared with histogram-based approaches. Cardinality estimation in query op-
timization needs to be very efficient since it is invoked for every plan considered by the optimizer,
while the search space for possible query plans is usually quite big. Nonetheless, sampling-based al-
gorithms have found their way in various other applications where cardinality estimation is required
(e.g. [1, 2, 3]).

In this paper, we give a survey of existing sampling-based algorithms proposed in the database liter-
ature for cardinality estimation. While good surveys for histogram-based approaches already exist
(e.g., [8]), we are not aware of any counterpart for sampling-based algorithms. This is partially due
to the ignorance in current database systems for these algorithms, and sampling-based algorithms
were scattered in the literature without being stitched together. We organize this survey along the
timeline of history, and focus our discussion on important milestones. In addition to the description
and theoretical analysis that may have been presented in original papers, we also evaluate the per-
formance of several state-of-the-art approaches on a modern database system for typical SQL query
workloads nowadays, in terms of both efficiency (i.e., runtime overhead) and effectiveness (i.e. esti-
mation accuracy), with histogram-based approaches as baselines. To the best of our knowledge, this
kind of benchmark study seems never to be done before.

The rest of the paper is organized as follows. Section 2 covers basic preliminary knowledge that
is necessary for in-depth discussion of sampling-based cardinality estimation. Section 3 and 4 then
introduce two basic estimation problems, namely, estimating the size of selection/join queries, and
estimating the size of projection queries, respectively. As we will see, these two problems are inher-
ently different and should be treated separately. We will describe important algorithms proposed in
the literature as well as their analysis. In Section 5, we present our results from an experimental eval-
uation of several state-of-the-art algorithms on the TPC-H benchmark queries. Section 6 concludes
the paper.

2 Preliminaries

In this section, we go over basic concepts in relational database theory and probability theory that
will be frequently referred to in the subsequent sections of this survey. Meanwhile, we also introduce
necessary notations that will be used throughout this paper. Readers that are already familiar with
these concepts can safely skip this section.
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2.1 Basic Relational Database Theory

We focus our discussion on the relational model and relational algebra. A comprehensive introduc-
tion to relational database theory is given in [12].

2.1.1 The Relational Model

A relation schema is represented as R(a1, a2, ..., ak), where R is the name and (a1, a2, ..., ak) is
an ordered tuple. Each ai is called an attribute, associated with a name and a type (e.g., integers,
strings, ...). The number k is called the arity of R. A relation instance of R is a set of tuples
〈u1, u2, ..., uk〉 conforming to R, i.e., ui is of the type associated with ai. In the rest of this survey,
we simply use “relation R” to stand for a relation instance with the relation schema R. A relational
database D is then defined as a collection of relations.

2.1.2 The Relational Algebra

Relational algebra is a formal query language that can be used to construct queries over relational
databases1. It defines a set of operators that can manipulate relations. The result returned by any
operator is still a relation. Hence it is easy to compose these operators to form a complex query,
which is basically a relational algebra expression. The set of relational algebra expressions Q is
recursively defined as follows:

1. Let R be a relation. Then R ∈ Q.

2. LetR be a relation, and ou be a unary operator. Suppose that the result relation by applying
ou to R is ou(R). Then ou(R) ∈ Q.

3. Let R and S be two relations, and ob be a binary operator. Suppose that the result relation
by applying ob to R and S is ob(R,S). Then ob(R,S) ∈ Q.

Let t ∈ R be any tuple of the relation R(a1, ..., ak). We use t(i) to denote the value of t on attribute
ai. The relational algebra specifies five basic operators:

• Selection σF (R): This is a unary operator which returns a relation consisting of tuples
from the relation R that pass the selection condition F . Here F is a Boolean combination
(i.e., an expression using the logical connectives ∧ and ∨) of terms with the form ai op c
or ai op aj , where ai and aj are attributes, c is some constant, and op is one of the
comparison operators <, ≤, >, ≥, =, or 6=. Formally, we have

σF (R) = {t|t ∈ R, and F (t) is true}.

• Projection πaj1 ,aj2 ,...,ajm (R): This is a unary operator which returns a relation consist-
ing of tuples from relation R by restricting the tuples on the attributes aj1 , aj2 , ..., ajm .
Formally, we have

πaj1 ,aj2 ,...,ajm (R) = {〈t(j1), t(j2), ..., t(jm)〉|t ∈ R}.

• Cross-Product R× S: This is a binary operator that provides the capability for combining
relations. It takes as input two relationsR and S with aritiesm and n, and returns a relation
with arity m+ n. Formally, we have

R× S = {〈t(1), ..., t(m), s(1), ..., s(n)〉|t ∈ R and s ∈ S}.

• Union R ∪ S: This is a binary operator that returns the union of the tuples in R and S.
R and S must be union-compatible, which means they should have the same arity and the
corresponding attributes must be of the same type. Formally, we have

R ∪ S = {t|t ∈ R or t ∈ S, R and S are union-compatible}.
1SQL is a more powerful query language that contains relational algebra as a subset. In this survey, we

focus on queries that can be expressed by relational algebra. Most of the real-world SQL queries fall into this
subset.
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• Difference R − S: This is a binary operator that returns the difference of the tuples in R
and S. R and S must be union-compatible. Formally, we have

R− S = {t|t ∈ R and t 6∈ S, R and S are union-compatible}.

We introduce one more operator, i.e., the join operator, which can be expressed with the selection
and cross-product operators:

• Join R ./F S: This is a binary operator defined as R ./F S = σF (R× S).

It is easy to see that the expressive power of the algebra with the operators {σ, π,×,∪,−} and the
algebra with the operators {σ, π, ./,∪,−} are equivalent, which means they can compose exactly
the same set of queries [12]. However, since the join operator is used very frequently, all database
systems have several implementations of it. In fact, no database system implements the cross-
product operator.

While relational algebra contains five operators, most of the existing work is about cardinality esti-
mation of the three operators σ, π and ./ (or equivalently, ×). There are several reasons. First, the
operators ∪ and − appear much less frequently in real-world queries than the other three queries.
For example, none of the 22 queries in the TPC-H benchmark involves the operators ∪ and −. Sec-
ond, even if the operators ∪ and − present in the query, they are usually the operators executed at
the end of the query plan. Therefore, the accuracy of their cardinality estimation is not important
in query optimization, since they will always be performed in the same way no matter which query
plan is considered. This is quite different from the join operator, where different join orders may
lead to several magnitudes of overhead difference in executing the query. Third, the major errors
in cardinality estimation usually come from the operators σ, π and ./ (or equivalently, ×). As a
result, for the purpose of this survey, we will focus our discussions on selection, projection, and join
queries in the following sections.

2.2 Basic Probability Theory

We assume that the readers are familiar with basic concepts from probability theory, such as sample
space, event, probability measure, conditional probability, random variable, expectation (or mean),
variance, and so on. In the following, we list several important facts that will be used in the rest of
this survey. They can be found in any standard textbook on probability theory (e.g., [13]). Through-
out this survey, we use Pr

[
E
]

to denote the probability of an event E , and use E
[
X
]

and V ar
[
X
]

to denote the expectation and variance of a random variable X , respectively.

Proposition 1 (Linearity of Expectation). Let X1, ..., Xn be arbitrary random variables. If X =∑n
i=1 aiXi, namely, X is a linear combination of X1, ..., Xn, then

E
[
X
]

= E
[ n∑
i=1

aiXi

]
=

n∑
i=1

aiE
[
Xi

]
.

Proposition 2. Let X1, ..., Xn be independent variables. If X =
∑n
i=1 aiXi, then

V ar
[
X
]

= V ar
[ n∑
i=1

aiXi

]
=

n∑
i=1

aiV ar
[
Xi

]
.

Proposition 3 (Chebyshev’s Inequality). Let X be a random variable with finite mean µ and vari-
ance σ2. Then, for any k > 0,

Pr
[∣∣X − µ∣∣] ≤ σ2

k2
.

Proposition 4 (The Central Limit Theorem). Let X1, ..., Xn be a sequence of independent and
identically distributed random variables, each having mean µ and variance σ2. Then, for −∞ <
a <∞,

lim
n→∞

Pr
[∑n

i=1Xi − nµ
σ
√
n

≤ a
]

=
1√
2π

∫ a

−∞
e−

x2

2 dx = Φ(a),

where Φ is the cumulative distribution function of the standard normal distribution.
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3 Selection and Join Queries

Selection and join are the two “work-horse” operators of relational systems. In this section, we de-
scribe algorithms dedicated to estimating the cardinality for selection and join queries. We focus our
discussion on two sampling-based techniques. One is the so-called adaptive sampling, as proposed
in [14, 9]. The other is the so-called sequential sampling, as proposed in [15, 10].

3.1 Adaptive Sampling

Adaptive sampling, as indicated by its name, has the nice adaptive nature in practice. Briefly speak-
ing, the number of samples we need to estimate the query size within the desired error rate depends
on the size of the samples. The bigger the sizes of the samples are, the smaller number of samples
we need. Therefore, if the cost of a sample is some function of its size (as is commonly the case),
then adaptive sampling can keep the running time constant rather than growing with the number of
samples. We next describe the details of this idea.

3.1.1 The Urn Model

In [14], Lipton et al. presented the following urn model as the basis for adaptive sampling:
Definition 1 (Urn Model). Let U be an urn that contains n balls, where each ball i is associated
with some number ai such that 1 ≤ ai ≤ b, for 1 ≤ i ≤ n. Here b is the upper bound of ai’s.
Suppose that the quantity to be estimated is A =

∑n
i=1 ai. The urn model then works as follows:

Repeatedly sample with replacement until S, the sum of the costs on the balls sampled, satisfies
S ≥ αb. Let the number of samples taken to be m. Estimate A as Ã = nS/m.

One nice property of this urn model is that it can provide certain probabilistic guarantee to the
estimation error, as stated in Theorem 1.
Theorem 1. For 0 ≤ p < 1 and d > 0, if α = d(d+ 1)/(1−√p), then

Pr
[
|Ã−A| ≤ A

d

]
≥ p.

The proof of Theorem 1 relies on several lemmas stated below. Let Xi be the value of the i-th
sample (1 ≤ i ≤ m) (so Xi is a random variable). Since we sample with replacement, Xi’s are
independent of each other. Further more, Xi’s conform to the same probabilistic distribution F (x)
with (unknown) mean µ and variance σ2.
Lemma 1. b ≥ σ2/µ, where b is the upper bound for X ∼ F (x).

Proof. 2 By definition of σ2, we have
σ2 = E

[
(X − µ)2

]
= E

[
X2
]
− µ2 ≤ E

[
X2
]
.

Since
E
[
X2
]
≤ E

[
Xb
]

= bE
[
X
]

= bµ,

we have σ2 ≤ E
[
X2
]

= bµ, which gives b ≥ σ2/µ.

Lemma 2. Let m = βσ2/µ2. Then

Pr
[ m∑
i=1

Xi ≥
ασ2

µ

]
≤ β

(α− β)2
.

Proof. It is clear that E
[∑m

i=1Xi

]
= mµ, and V ar

[∑m
i=1Xi

]
= mσ2 (ref. Section 2.2). We

hence have

Pr
[ m∑
i=1

Xi ≥
ασ2

µ

]
= Pr

[ m∑
i=1

Xi −
βσ2

µ
≥ (α− β)

σ2

µ

]
= Pr

[ m∑
i=1

Xi −mµ ≥ (α− β)
σ2

µ

]
≤ Pr

[∣∣ m∑
i=1

Xi −mµ
∣∣ ≥ (α− β)

σ2

µ

]
≤ mσ2

σ4

µ2 (α− β)2
=

β

(α− β)2
.

2Proofs without citations are done by the author of this survey. Otherwise a citation to the original source
will be pointed out.
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The last second step follows by applying Chebyshev’s inequality (ref. Section 2.2).

Lemma 3. Let m ≥ βσ2/µ2 and d > 0. Then

Pr
[∣∣ n
m

( m∑
i=1

Xi

)
−A

∣∣ ≥ A/d] ≤ d2

β
.

Proof. Since µ = A
n , we have

Pr
[∣∣ n
m

( m∑
i=1

Xi

)
−A

∣∣ ≥ A

d

]
= Pr

[∣∣ m∑
i=1

Xi −
m

n
A
∣∣ ≥ mA

nd

]
= Pr

[∣∣ m∑
i=1

Xi −mµ
∣∣ ≥ mµ

d

]
≤ mσ2

m2µ2

d2

≤ d2

β
.

Similarly as in the proof of Lemma 2, the last second step follows by applying Chebyshev’s inequal-
ity.

We are now ready to prove Theorem 1.

Proof. (of Theorem 1) Note that

Ã =
nS

m
=

n

m

m∑
i=1

Xi.

By Lemma 1 and 2, the probability that sampling will stop with less than βσ2/µ2 samples is

Pr
[ m∑
i=1

Xi ≥ αb
]
≤ Pr

[ m∑
i=1

Xi ≥
ασ2

µ

]
≤ β

(α− β)2
.

So the probability that sampling will stop with more than βσ2/µ2 samples is at least 1 − β
(α−β)2 .

By Lemma 3, when this happens, the probability that Pr
[∣∣Ã − A

∣∣ ≥ A/d
]
≤ d2

β . Hence, the

probability that Pr
[∣∣Ã − A∣∣ ≥ A/d

]
≥ 1 − d2

β . Therefore the probability that the urn model will

successfully estimate A within A/d is at least (1− β
(α−β)2 )(1− d2

β ). We can bound this product by

setting 1− β
(α−β)2 = 1− d2

β =
√
p, where p is the desired probability. This gives β = d2/(1−√p)

and α = d(d+ 1)/(1−√p), which completes the proof of the theorem.

3.1.2 Query Partitioning

Before discussing the adaptive sampling algorithm, we need one more notion of query partition-
ing [14].
Definition 2 (Query Partitioning). A query q over a database D is n-partitionable if

1. The answer to q can be partitioned into n disjoint subsets qi, for 1 ≤ i ≤ n.

2. The size of qi, written as |qi|, is bounded by some constant b (i.e., |qi| ≤ b), for 1 ≤ i ≤ n.

3. It is possible to randomly select a subset qi and compute its size |qi|.

We next present two examples to illustrate this notion.
Example 1. (Selection Query) Consider a selection query q = σF (R). The answer set can be
partitioned based on the tuples in R. Each tuple of R can be considered as a representative of a
subset of the answer to the query. If the tuple satisfies the selection, then the size of the subset of 1.
If not, the size is then 0. Here, the upper bound b = 1.
Example 2. (Two-way Join Query) Consider a two-way join query q = R ./F S. The answer
set can be partitioned as follows. For each tuple r ∈ R, the partition is all tuples t such that t is
generated by joining r with some tuple of S. The size of the subset is the number of S-tuples that
join with r. Here, the upper bound b = maxr∈R |{r} ./F S|.
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3.1.3 The Algorithm

The basic form of the algorithm is then quite straightforward, as illustrated in Algorithm 1.

Algorithm 1: Adaptive Sampling to Estimate Query Size
Input: q, a query; b, bound of partitions of q; d, error ratio; 0 ≤ p < 1, confidence on the

estimation
Output: Ã, estimated size of q

1 S ← 0;
2 m← 0;
3 while S < bd(d+ 1)/(1−√p) do
4 S ← S + |RandomSample(q)|;
5 m← m+ 1;
6 end
7 return Ã = nS/m;

The procedure RandomSample randomly picks some qi (for 1 ≤ i ≤ n) and returns the size |qi| of
qi after executing it. Based on Theorem 1, with probability p, Ã will be within A/d of A, where
A = |q|.
The bound bd(d + 1)/(1 − √p) in the algorithm can be further lowered if we assume the central

limit approximation (CLA) applies, namely, we assume that
∑m

i Xi−mµ√
mσ2

has the standard normal
distribution (ref. Section 2.2). This is usually true in practice given that m is bigger than several
tens.
Theorem 2. Suppose that the central limit approximation applies. For 0 ≤ p < 1 and d > 0, if
α = d(d+ 1)

[
Φ−1

( 1+√p
2

)]2
, then Pr

[
|Ã−A| ≤ A/d

]
≥ p.

The proof of Theorem 2 is very similar to the proof of Theorem 1 and hence omitted here. Readers
can refer to [9] for the details. Table 1 compares the values of θ when CLA applies.

p θ = 1/(1−√p) θ =
[
Φ−1

( 1+
√
p

2

)]2
0.80 9.5 2.6
0.90 19.5 3.8
0.95 39.5 5.0
0.99 199.5 12.2

Table 1: Comparison of θ when CLA applies or not

The remaining problem for this algorithm (and, in fact, for any sampling-based algorithms) is data
skewness, namely, when b is much bigger than µ. Consider the following example:
Example 3. Suppose that we are estimating a selection on a relation with 1,000,000 tuples, and
there is only one tuple satisfies the selection condition. Then as discussed in Example 1, we will
have 999,999 partitions of size 0, and one partition of size 1. This means that the expected size
of a random sample is 1/1,000,000, and hence sampling until s > θbd(d + 1) (where θ is either
θ = 1−√p or θ =

[
Φ−1

( 1+√p
2

)]2
) requires expected to 1, 000, 000 · θbd(d+ 1) samples.

To address the issue of data skewness, the authors in [9] further proposed a technique called sanity
check. The idea is to bound the number of samples by considering the error within the worst-case
size (i.e., Amax = bn) instead of the actual size. To implement this, we only need to add a sanity
bound m < ηe2 in the while condition of Algorithm 1. The following theorem summarizes the
theoretical guarantee by adding this sanity check.
Theorem 3. Suppose that the while loop terminates because of m ≥ ηe2. For 0 ≤ p < 1 and
e > 0, if η ≥ 1/(1 − p) (or η ≥

[
Φ−1

(
1+p
2

)]2
if central limit approximation applies), then

Pr
[
|Ã−A| ≤ Amax/e

]
≥ p.

Theorem 3 intuitively makes sense. Note that the sanity bound does not depend on the specific
samples taken in each run of Algorithm 1. Instead, it only depends on the two constants p and e.
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Therefore, it puts a uniform upper bound on the samples we shall take no matter which query whose
size we want to estimate. Since it is so general, it is reasonable to see that its theoretical guarantee
on the estimation accuracy is weaker than that was given in Theorem 1. The two while conditions
given by Theorem 1 and 3 can hence be viewed as some trade-off between the estimation accuracy
(i.e., effectiveness) and sampling overhead (i.e., efficiency). The proof of Theorem 3 can be found
in [16].

3.1.4 Remarks

While the theoretical part of adaptive sampling is impressive, there are several issues that prevent
Algorithm 1 to be applied in a real query optimizer. First, the algorithm has significant random I/O
overhead on taking samples and evaluating sample queries. In [9], the authors proposed to use an
index-assistant scheme to alleviate this problem, by assuming that each relation in the database has at
least one available index. The index is usually small and can be cached in memory, although fetching
the samples from the underlying relation via index look up still requires one random disk I/O per
sample. The experimental results reported in [9] show that, for very simple queries (i.e., selection
queries over a single relation, and two-way join queries that join two relations), it usually takes
about 10% to 20% of the execution time of the original query for Algorithm 1 to finish. However,
this is still inefficient compared with histogram-based methods. Second, the algorithm can only
estimate the size of the query as a whole, while in query optimization, we need the cardinality of
all subqueries of the query. Consider, for example, a three-way join query q = R1 ./ R2 ./ R3.
Algorithm 1 can estimate the size of q. But to estimate the subquery q′ = R1 ./ R2, we have to
run the algorithm on q′ again. It is difficult to extend Algorithm 1 to estimate the size of q′ and q
simultaneously, due to the negative result that the join operator is not commutable with the sampling
operator (see Theorem 10 in [17]). Third, the algorithm relies on some a priori upper bound b that
is difficult to determine exactly. This issue is addressed by the so-called sequential sampling, as will
be described next.

3.2 Sequential Sampling

Sequential sampling [15, 10] is a generalization of adaptive sampling. It overcomes the problem of
the dependency on the a priori upper bound as required by adaptive sampling. The key idea is to
use the samples observed so far to decide either to continue taking observations or to stop and return
a final estimate. The most general form of sequential sampling was given in [10]. However, the
authors only discussed its application on join queries. In fact, this framework can be applied to the
more general class of queries involving arbitrary number of selections and joins. In this section, we
describe sequential sampling in this setting.

3.2.1 The Estimator

Let D be a database consisting of K relations R1, ..., RK . Suppose that Ri is partitioned into
mi blocks each with size Ni, namely, |Ri| = miNi. Consider the two basic relational operators:
selection σF , and cross-product ×. For σF , we define the output of an input block B to be σF (B).
For×, we define the output of the two input blocksB andB′ to beB×B′. Instead of estimating the
cardinality of the output relation directly, the estimator will estimate the selectivity of the operator,
which is defined as the output cardinality divided by the input cardinality. Specifically, the selectivity
of the selection operator σF is ρR = |σF (R)|/|R| where R is the input relation. Moreover, the
selectivity of σF on a particular block B of R is ρB = |σF (B)|/|B|. On the other hand, the
selectivity of the cross-product operator× is always 1. It is then straightforward to obtain the output
cardinality once we know the selectivity of the operator (we always assume that the input cardinality
is already known before the estimation procedure runs).

Lemma 4. Consider σF (R), where R ∈ D is a relation partitioned as R = {B1, ..., Bm}. Let
Bs1 , ..., Bsn be a sequence of n blocks randomly picked from R (with replacement). Define ρ̃R =
1
n

∑n
j=1 ρBs

j
, where ρBs

j
= |σF (Bsj )|/|Bsj |, and let b = |Bi|. Then E

[
ρ̃R
]

= ρR.

Proof. We have

ρR =
|σF (R)|
|R|

=

∑m
j=1 |σF (Bj)|

mb
.
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Note that

E
[∣∣σF (Bsj )

∣∣] =

∑m
j=1 |σF (Bj)|

m
.

Thus,

E
[
ρ̃R
]

=
1

nb

n∑
j=1

E
[∣∣σF (Bsj )

∣∣] =
1

nb

n∑
j=1

bρR =
1

nb
· nbρR = ρR.

Lemma 5. Consider σF (Ri1 ×· · ·×Ril), where Rij ∈ D and l ≥ 2. Let Bs
1, ..., Bs

n be a sequence
of n blocks randomly picked from Ri1 × · · · ×Ril , where Bs

j = Bsi1 × · · · ×B
s
il

and each Bsik is a
block randomly picked from the relation Rik (with replacement). Let R = Ri1 × · · · × Ril . Define
ρ̃R = 1

n

∑n
j=1 ρBs

j
, where ρBs

j
= |σF (Bs

j)|/|Bs
j |. Then E

[
ρ̃R
]

= ρR.

Proof. Let B(i, j) be the j-th block of relation i. Then we have

ρR =
|σF (R)|
|R|

=

∑l
k=1

∑mik
j=1 |σF (B(ik, j))|∏l
k=1mikNik

.

On the other hand,

E
[
ρ̃R
]

=
1

n
· 1∏l

k=1Nik

n∑
j=1

E
[
|σF (Bs

j)|
]
.

Since

E
[∣∣σF (Bs

j)
∣∣] = ρR

l∏
k=1

Nik ,

we thus have

E
[
ρ̃R
]

=
1

n
· 1∏l

k=1Nik

n∑
j=1

ρR

l∏
k=1

Nik =
1

n
· 1∏l

k=1Nik
· nρR

l∏
k=1

Nik = ρR.

Lemma 4 and 5 tell us that the estimator ρ̃R so defined is an unbiased estimator of the true selectivity
ρR. This result can be easily extended to the case of queries involving only selections and joins, as
stated in the following theorem:

Theorem 4. Let q be any query involving only selections and joins over R. Then E
[
ρ̃q
]

= ρq .

Proof. The proof is easy by noticing that q can be written as its normal form [12]: σF (R). We then
apply Lemma 4 and 5 to complete the proof.

3.2.2 Properties

We want to estimate the selectivity ρ to within ερ with probability p, for some ε > 0 and 0 < p < 1.

Definition 3 (Asymptotical Consistency). An estimator is asymptotically consistent if it satisfies

lim
ε→0

Pr
[∣∣ρ̃− ρ∣∣ ≤ ερ] = p.

Our next goal is to develop an approximate formula for the number of samples N(ε) we need to
take to guarantee Pr

[∣∣ρ̃ − ρ∣∣ ≤ ερ
]

= p, for some ε > 0. To do this, we need some conditions.
First, we assume that the distribution of the selectivity estimator is approximately normal after a
large number of sampling steps. Second, we assume that the sample mean ρ̃n and sample variance
S2
n are strongly consistent for the actual mean ρ and actual variance σ2, namely limn→∞ ρ̃n = ρ

a.s. and limn→∞ S2
n = σ2 a.s. Based on these two assumptions, we can develop an explicit formula

for N(ε) (i.e., an explicit stopping rule for the sampling procedure) as follows:
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Let Φ be the cumulative distribution function for the standard normal distribution. Assume that
central limit theorem applies, namely, ρ̃n−ρ

σ/
√
n
→ N(0, 1) as n→∞. Then we have

Pr
[∣∣ρ̃n − ρ∣∣ ≤ ερ] = Pr

[∣∣√n
σ

(ρ̃n − ρ)
∣∣ ≤ ερ

√
n

σ

]
≈ 2Φ

(ερ√n
σ

)
− 1,

when n is large and ε is small enough so that ε
√
n is not too large. Let zp be the unique constant

such that Φ(zp) = 1+p
2 . Set 2Φ

( ερ√n
σ

)
− 1 = p, we get

n∗ =
z2pσ

2

ε2ρ2
, (1)

which means that by taking n∗ samples, the estimator ρn∗ can estimate ρ within ερ with probability
p. However, Equation (1) cannot be directly used in practice to determine the required number of
samples in ahead, since both ρ and σ2 are unknown. Nonetheless, since we assume that ρ̃n and S2

n
are strongly consistent for ρ and σ2, it is reasonable to use ρ̃n and S2

n to approximate ρ and σ2 in
Equation 1. This leads to the stopping rule

N(ε) = inf{n ≥ 1 : S2
n > 0 and ερ̃n ≥ zpSn/

√
n}.

Definition 4 (Asymptotical Efficiency). An estimator is asymptotically efficient if its expected num-
ber of sampling steps E

[
N(ε)

]
satisfies

lim
ε→0

ε2E
[
N(ε)

]
= z2pσ

2/ρ2.

In other words, an estimator is asymptotically efficient if the expected number of sampling steps
when ε is small is approximately equal to the optimal number of sampling steps n∗ given by Equa-
tion (1).

A nice property of the estimator ρ̃q is that, under certain assumptions (such as the strong consistency
of ρ̃n and S2

n), it is both asymptotically consistent and efficient (see Theorem 3 in [10]). The
estimator is asymptotically consistent, so the confidence is close to p when the estimation error ε
is small. The estimator is asymptotically efficient, so on average the estimator will stop with the
theoretically minimum number of required samples.

3.2.3 The Algorithm

Based on the previous discussion, the sequential sampling algorithm is then straightforward, as
described in Algorithm 2.

Algorithm 2: Sequential Sampling to Estimate Query Size
Input: q, a query; 0 ≤ p < 1, confidence on the estimation
Output: ρn, estimated size of q

1 M ← 0;
2 S2 ← 0;
3 n← 1;
4 repeat
5 S2 ← S2 + (M − (n− 1)ρn)2/(n(n− 1));
6 M ←M + ρn;
7 ρn ←M/n;
8 S2

n ← S2/(n− 1);
9 until S2

n > 0 and ερn ≥ zpSn/
√
n;

10 return ρn;

Here, we use the numerically stable recurrence formula to compute S2
n:

(n− 1)S2
n = (n− 2)S2

n−1 +

(∑n−1
i=1 ρi − (n− 1)ρn

)2
n(n− 1)

.
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3.2.4 Remarks

The sequential sampling procedure shown in Algorithm 2 takes samples from each relation uni-
formly and independently (called independent sampling). Therefore, after n steps, we have n obser-
vations in total, with each observation containing one block from each underlying relation. In [10],
the authors further discussed another alternative called cross-product sampling. The idea is that, at
the i-the step, assuming the K blocks taken from the K relations are Bi1 , ..., BiK , we can actually
join each Bij with each Blj′ such that 1 ≤ l ≤ i and j 6= j′ (note that in the case of independent
sampling, we only join among the blocks with l = i). In this way, we can obtain nK observations
after n steps, and the estimator by averaging the selectivity over these nK samples is still unbiased.
However, since these samples are no longer independent, we need more sophisticated techniques
to estimate the sample variance S2

n. It is also shown that cross-product sampling is always better
than independent sampling due to its lower sample variance. Interested readers can see [10] for
more details. For a query plan with a fixed join order, the size of each subquery can be estimated
simultaneously based on the samples taken so far. This is better than the case of adaptive sampling,
where the size of each subquery has to be estimated by calling the sampling procedure again.

4 Projection Queries

Estimating the cardinality of projection queries is very different from that for selection and join
queries discussed in the previous section. Projection will remove duplicates from the results, and
hence the problem is equivalent to estimating the number of distinct values in the answer. This is a
well-studied problem called estimating the number of species in statistical literature (see [18] for a
survey).

Suppose that a population is partitioned into C classes. Unlike most of the estimation problems
whose focus is the relative sizes of the classes (including the problem of cardinality estimation for
selection and join queries, as mentioned in the previous section), the estimation here is on the C
itself. This problem is quite difficult, in the sense that it is quite resistant to statistical solution,
essentially because no matter how many classes have been observed, there may still be a large
number of very small unobserved classes.

There is only limited work on sampling-based distinct-values estimation in database literature [19,
11]. In this section, we focus our discussion on the state-of-the-art Guaranteed-Error Estimator
(GEE) as introduced in [11].

4.1 The Estimator

Let n be the number of rows in the relation R. Consider a specific column of R. Suppose there are
D distinct values in this column, w.l.o.g. say, {1, 2, ..., D}. The estimator is based on examining
a random sample of r tuples chosen uniformly at random from the relation. Let d be the number
of distinct values in the sample, and let fi be the number of values that occur exactly i times in the
sample. Then d =

∑r
i=1 fi. The Guaranteed-Error Estimator is defined as:

D̂ =

√
n

r
f1 +

r∑
i=2

fi. (2)

The intuition behind GEE is as follows. The set from which the samples come consists of high
frequency and low frequency values. When the sample size is reasonable, high frequency values
will be picked up almost surely. Although high and low here are relative terms, we can think of
the values that appear more than once in the random sample as being the values of high frequency,
and think of the singleton values in the sample as the low frequency values. For high frequency
values, we need to count them only once. This interprets the

∑r
i=2 fi part of Equation (2). For

low frequency values, since the random sample contains only some of them, we need to scale up
the count we observed. It is easy to see that the actual number of low frequency values should be
expected between f1 and n

r f1. GEE then chooses to use the geometric mean of these two bounds as
the scaling factor, which interprets the

√
n
r f1 part of Equation (2).

11



4.2 Properties

We use the ratio error defined as

err(D̂) = max(
D

D̂
,
D̂

D
) (3)

as our error metric. We first show an upper bound of the estimation error of GEE. We then show
that it is actually the best we can do in the worst case. Therefore, GEE has the optimality in terms
of worst-case estimation errors.

Theorem 5. The expected ratio error of GEE isO
(√

n
r

)
when it samples r values from any possible

input of size n.

Proof. 3 Let ni be the number of times value i occurs in the column where we sample from, and
let pi = ni

n . We then have
∑D
i=1 ni = n and

∑D
i=1 pi = 1. The probability xi that a particular

value i does not appear in the r samples is then xi = 1− (1− pi)r. In particular, the probability yi
that i appears exactly once in the r samples is yi = rpi(1 − pi)r−1. The number of distinct values
d in a random sample of size r is then a random variable with expectation E

[
d
]

=
∑D
i=1 xi · 1 =∑D

i=1 xi. In particular, the number of singleton values f1 is a random variable with expectation
E
[
f1
]

=
∑D
i=1 yi · 1 =

∑D
i=1 yi. Therefore, the expected value returned by GEE is

E
[
GEE

]
= E

[
d+

(√n

r
− 1
)
f1
]

= E
[
d
]

+
(√n

r
− 1
)
E
[
f1
]

=

D∑
i=1

(
xi +

(√n

r
− 1
)
yi
)
.

Our next goal is to show that xi +
(√

n
r − 1

)
yi is between c1

√
r
n and c2

√
n
r for some constants c1

and c2. If this holds, then E
[
GEE

]
is between D · c1

√
r
n and D · c2

√
n
r , which results in

err(GEE) = max(
E[GEE]

D
,

D

E[GEE]
) = O(

√
n

r
),

and the theorem is proved.

To show that xi +
(√

n
r − 1

)
yi is between c1

√
r
n and c2

√
n
r , consider two cases:

1. pi ≥ 1
r . In this case,

xi = 1− (1− pi)r ≥ 1− (1− 1

r
)r.

Since (1 − 1
r )r ≤ e−1 (note that 1 + x ≤ ex for x ∈ R), we have xi ≥ 1 − e−1. Clearly

xi ≥ 1, so 1− e−1 ≤ xi ≤ 1. On the other hand, we have 0 ≤ yi ≤ 1. Hence, we have

1− e−1 ≤ xi +
(√n

r
− 1
)
yi ≤

√
n

r
.

We can further pick c(1)1 = 1− e−1 ( we have c(1)1

√
r
n ≤ c

(1)
1 = 1− e−1 since r ≤ n) and

c
(1)
2 = 1 so that

c
(1)
1

√
r

n
≤ xi +

(√n

r
− 1
)
yi ≤ c(1)2

√
n

r
.

2. pi < 1
r . In this case, we have 0 ≤ xi ≤ 1. On the other hand, note that pi ≥ 1

n . Hence

yi = rpi(1− pi)r−1 ≥
r

n
(1− 1

r
)r−1.

3This is adapted from the proof of Theorem 2 in [11] with some revisions. The original proof has some
flaws in its Case 1 for pi ≥ 1

r
and Case 2 for pi < 1

r
.
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Let f(r) = (1− 1
r )r−1. We have

f ′(r) =
r − 1

r2
(
1− 1

r

)r−2 ≥ 0

given that r ≥ 1. Hence f(r) is nondecreasing, and

yi ≥
r

n
f(r) ≥ r

n
f(2)

when r ≥ 2. Thus yi ≥ r
2n when r ≥ 2. Since yi ≤ 1, we obtain

r

2n
≤ yi ≤ 1

when r ≥ 2. Therefore

r

2n

(√n

r
− 1
)
≤ xi +

(√n

r
− 1
)
yi ≤

√
n

r

when r ≥ 2, which gives

1

2

√
r

n

(
1−

√
r

n

)
≤ xi +

(√n

r
− 1
)
yi ≤

√
n

r
.

We can then pick c(2)1 = 1
2

(
1−

√
r
n

)
and c(2)2 = 1 so that

c
(2)
1

√
r

n
≤ xi +

(√n

r
− 1
)
yi ≤ c(2)2

√
n

r
.

When r = 1, we have xi = yi = pi, and hence

xi +
(√n

r
− 1
)
yi = pi

√
n

r
.

Since 1
n ≤ pi ≤ 1, we obtain

1

r

√
r

n
≤ xi +

(√n

r
− 1
)
yi ≤

√
n

r
.

Therefore, we can pick c(3)1 = 1
r and c(3)2 = 1 so that

c
(3)
1

√
r

n
≤ xi +

(√n

r
− 1
)
yi ≤ c(3)2

√
n

r

when r = 1.

Picking c1 = min(c
(1)
1 , c

(2)
1 , c

(3)
1 ) and c2 = max(c

(1)
2 , c

(2)
2 , c

(3)
2 ) then completes the proof.

Theorem 6. Consider any estimator that examines at most r values from any possible input of size
n. For any γ > e−r, there is a choice of input data such that with probability at least γ,

err(D̂) ≥
√
n− r

2r
ln

1

γ
.

Proof. (Sketch) The proof is constructive. We consider two scenarios:

1. The column contains only one distinct value x.

2. The column contains k+1 distinct values {x, y1, ..., yk} of which x appears n−k times and
each yi appears only once. What’s more, the yi’s are placed in k rows that are uniformly
chosen at random.
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Let X be the random variable that denotes the value sampled from the column. Now suppose that
in the second scenario, we take r samples X1, X2, ..., Xr. If X1 = X2 = · · ·Xr = x, then the
estimator has no idea whether it is in the first or second scenario. Let this event be E . Our goal is to
bound the probability Pr

[
E
]
:

Pr
[
E
]

= Pr
[
X1 = x,X2 = x, · · · , Xr = x

]
=

r∏
i=1

Pr
[
Xi = x|X1 = x, ... · · ·Xi−1 = x

]
=

r∏
i=1

[n− (i− 1)]− k
n− (i− 1)

≥
(n− r − k

n− r
)r

=
(
1− k

n− r
)r ≥ e− 2kr

n−r . (4)

The last step follows from the fact that 1 − z ≥ e−2z for 0 ≤ z ≤ 1
2 , which is easy to verify. Now

for γ ≥ e−r, we pick

k =
n− r

2r
ln

1

γ
.

Since

k ≤ n− r
2r
· ln er =

n− r
2

,

this choice of k satisfies both k
n−r ≤

1
2 (as required by the last inequality in Equation (4)) and

k + 1 ≤ n (as required by the second scenario).

This means, with the particular choice of k, in the second scenario, the probability that E occurs
can be at least γ, for which the estimator cannot distinguish the two scenarios. Now let the value
returned by the estimator be v (1 ≤ v ≤ k). Then the error w.r.t. the first scenario is v, while the
error w.r.t. the second scenario is k

v . If v ≥
√
k, then the error w.r.t. the first scenario is at least

√
k,

while if v ≤
√
k, then the error w.r.t. the second scenario is at least

√
k. Therefore, no matter which

case the estimator is in, it incurs an estimation error at least
√
k. This completes the proof of the

theorem (see Theorem 1 of [11] if more details are desired).

4.3 Remarks

Different from the estimators for selection and join queries as discussed in Section 3, where those
estimators have nice properties such as asymptotical consistency and efficiency, the GEE estimator
introduced in this section for projection queries is rather frustrating. The fact that GEE is worst-
case optimal provides no optimistic reason for practitioners, since the worst-case error given by
Theorem 6 is quite big unless the number of samples r is proportional to the number of rows n in
the table. This is prohibitively expensive for a sampling-based algorithm to be useful in practice.
Modern query optimizers hence use simple heuristics instead of sampling when they need to estimate
the number of distinct values as in projection queries. The GEE estimator, however, has been used in
recent work of query progress monitoring [3]. The overhead in this scenario is not important since
the samples are taken online when the query is running.

5 Experimental Evaluation

In this section, we evaluate the estimators discussed in previous sections on the standard TPC-
H benchmark4. The TPC-H benchmark is dedicated to testing the performance of a DBMS by
simulating OLAP (short for Online Analytical Processing) workloads. OLAP queries are usually
quite complicated in syntax and long-running, so it is important to find good query plans, for which
cardinality estimation is the key. We report our results from this empirical study, with a focus on
two aspects: 1) the effectiveness of the estimator, in terms of the estimation accuracy; and 2) the
efficiency of the estimator, in terms of the time spent on estimation compared with the time if the
query is actually run. To the best of our knowledge, such evaluation on a modern benchmark for
sampling-based cardinality estimation algorithms is never done before.

4http://www.tpc.org/tpch/
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5.1 Experimental Settings

We use the 1GB TPC-H database in our experiments. The experiments are conducted on a PC
with 2.27GHz Intel CPU and 2GB memory, and we run PostgreSQL 9.0.4 on Linux Kernel 2.6.18.
The samples are taken offline and materialized as additional relations. Since the original TPC-H
database generator uses uniform distributions, to test the robustness of the estimators, we also use
a skewed TPC-H database generator5. This database generator populates a TPC-H database using a
Zipf distribution. This distribution has a parameter z that controls the degree of skewness. z = 0
generates a uniform distribution, and as z increases, the data becomes more and more skewed. We
create a skewed 1GB database generated using z = 1. We also test the efficiency and effectiveness of
the algorithms with different number of samples. In the results reported following, we use the ratio
error defined in Equation (3) as the accuracy metric. Currently, all the algorithms are implemented
outside the database system with pure SQL queries. Hence the efficiency results reported can be
treated as the worst-case performance, since an inside-DBMS implementation will be more efficient.

5.2 Results for Selection/Join Estimators

We test the selection/join estimators with 7 queries containing only selection and join operators (see
Appendix A for the list of queries written in SQL). These queries are subqueries from the standard
TPC-H queries.

5.2.1 Results of Adaptive Sampling

Table 2 and 3 show the results of the adaptive sampling algorithm (Algorithm 1). Here, erro is
the ratio error of the estimation given by the PostgreSQL optimizer, based on one-dimensional his-
tograms; errs is the ratio error of the estimation given by the adaptive sampling algorithm; Ts is the
time spent on sampling; and T is the time of running the query itself. To test the the effect of the
number of samples taken, we vary p in 0.8, 0.9, 0.95, and 0.99, for which the sampling algorithm
will take 170, 270, 380, and 670 samples, respectively.

p = 0.8 p = 0.9 p = 0.95 p = 0.99
Q erro errs Ts/T errs Ts/T errs Ts/T errs Ts/T

SJ1 1.02 1.08 0.14 1.16 0.05 1.10 0.06 1.05 0.08
SJ2 1.74 1.04 1.10 1.02 0.83 1.11 0.68 1.21 0.65
SJ3 1.01 1.00 8.96 1.26 4.13 1.07 4.21 1.25 8.43
SJ4 2067.41 1.51 0.06 1.22 0.14 1.16 0.18 1.01 0.20
SJ5 1.70 1.14 0.13 1.13 0.26 1.02 0.21 1.03 0.21
SJ6 1.04 1.03 2.40 1.01 1.76 1.06 1.14 1.05 1.19
SJ7 2.08 1.12 0.61 1.10 0.61 1.30 0.66 1.11 0.61

Table 2: Adaptive sampling on uniform data

p = 0.8 p = 0.9 p = 0.95 p = 0.99
Q erro errs Ts/T errs Ts/T errs Ts/T errs Ts/T

SJ1 1.17 1.17 0.14 1.02 0.09 1.09 0.10 1.03 0.17
SJ2 1.71 1.25 6.58 1.12 0.96 1.08 0.71 1.02 0.63
SJ3 1.28 1.05 12.75 1.43 4.18 1.42 4.92 1.20 8.50
SJ4 237.55 1.59 0.07 1.64 0.25 1.10 0.29 1.32 0.37
SJ5 1.71 1.02 0.13 1.18 0.24 1.04 0.19 1.07 0.19
SJ6 1.06 1.04 3.74 2.36 3.83 1.56 2.59 2.31 1.66
SJ7 2.15 1.17 0.61 1.14 0.54 1.01 0.54 1.07 0.52

Table 3: Adaptive sampling on skewed data

We have several observations. First, in the case of uniform data, the estimations based on sampling
are consistently good for all the queries tested, while the estimations based on histograms are good
for some queries but bad for the others (this is also true in the skewed case). Second, in the case

5ftp://ftp.research.microsoft.com/users/viveknar/TPCDSkew/
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of skewed data, the estimation based on sampling is worse than that on the uniform data, which
is consistent with our discussion in Section 3.1 that data skewness is a general problem for any
sampling-based estimators (ref. Example 3). Third, the efficiency based on the current implemen-
tation is not so good. For some queries, it takes even longer for sampling than running the original
query.

5.2.2 Results of Sequential Sampling

Table 4 and 5 summarize the results of the sequential sampling algorithm (Algorithm 2). However,
instead of sampling enough until the specified estimation confidence is reached, in this experiment,
we simply vary the number of the samples taken to see how accurate the estimation can be based
on a certain amount of samples. The rational is that, in practice we have limited budget on the time
that can be spent on sampling. Due to the nice property of asymptotical consistency of sequential
sampling, we are able to make a tradeoff between the number of samples we can afford and the
estimation accuracy we can achieve. In the results shown below, f stands for the percentage of
samples we take from each relation in the database.

f = 0.05 f = 0.1 f = 0.2 f = 0.3 f = 0.4
Q erro errs Ts/T errs Ts/T errs Ts/T errs Ts/T errs Ts/T

SJ1 1.02 0.99 0.01 1.01 0.01 1.04 0.04 1.06 0.07 1.02 0.12
SJ2 1.76 0.97 0.06 0.97 0.11 0.99 0.20 1.01 0.31 0.99 0.39
SJ3 1.01 1.01 0.05 1.00 0.11 1.00 0.21 0.99 0.29 0.99 0.37
SJ4 2677.46 9.80 0.00 1.84 0.00 0.85 0.01 1.06 0.03 1.02 0.04
SJ5 1.92 1.39 0.01 0.92 0.03 0.98 0.06 1.05 0.12 1.02 0.17
SJ6 1.03 0.98 0.16 1.05 0.19 0.97 0.24 1.03 0.29 1.00 0.39
SJ7 2.23 0.98 0.05 0.98 0.09 1.00 0.20 1.02 0.26 0.99 0.40

Table 4: Sequential sampling on uniform data

f = 0.05 f = 0.1 f = 0.2 f = 0.3 f = 0.4
Q erro errs Ts/T errs Ts/T errs Ts/T errs Ts/T errs Ts/T

SJ1 1.17 1.00 0.01 1.07 0.03 1.03 0.07 1.00 0.11 1.03 0.17
SJ2 1.70 1.02 0.07 1.05 0.12 1.04 0.21 1.02 0.31 1.01 0.39
SJ3 1.28 1.01 0.06 1.01 0.12 1.02 0.22 1.00 0.33 1.00 0.43
SJ4 180.68 N/A N/A N/A N/A 1.49 0.02 1.44 0.03 1.48 0.05
SJ5 1.68 1.04 0.02 1.09 0.04 1.01 0.08 1.01 0.13 1.06 0.19
SJ6 1.09 1.02 0.06 1.30 0.13 1.09 0.23 1.09 0.33 1.14 0.42
SJ7 2.20 1.04 0.05 1.02 0.11 1.04 0.21 1.02 0.30 1.03 0.40

Table 5: Sequential sampling on skewed data

Not surprisingly, usually the more samples we take, the better the estimation is, and the more time
we need to spend on sampling. This is true for both the uniform and the skewed case. However,
an advantage of sequential sampling over adaptive sampling is that we can control the number of
samples to take. For the particular setting here, taking 20% samples from each relation is sufficient
to give very accurate estimation to all the queries. This usually incurs less than 20% additional time
attributing to sampling, which is much better than that in adaptive sampling and may be affordable
in practice. We also notice that skewness remains an issue. As denoted in Table 3, the estimator fails
to give reasonable estimation6 on the query SJ4 in the skewed case when less than 20% samples are
available.

5.3 Results for Projection Estimators

We test the GEE estimator with 7 queries that merely count the number of distinct values in a
specific column (see Appendix B for the list of queries written in SQL). Table 6 and 7 present our
results of the GEE estimator in the case of uniform and skewed data, respectively. Here, we directly
compare the estimation from GEE with the actual size of the query, without comparing it with other
approaches.

6It estimates the size to be 0 so that the ratio error goes to infinity.
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f = 0.05 f = 0.1 f = 0.2 f = 0.3 f = 0.4
Q errs Ts/T errs Ts/T errs Ts/T errs Ts/T errs Ts/T

P1 1.92 0.09 1.28 0.21 1.02 0.44 1.00 0.69 1.00 0.83
P2 1.00 0.02 1.00 0.04 1.00 0.06 1.00 0.09 1.00 0.12
P3 1.62 0.18 1.40 0.31 1.13 0.41 1.03 0.80 1.00 1.15
P4 1.00 0.04 1.00 0.07 1.00 0.14 1.00 0.20 1.00 0.27
P5 4.40 0.17 3.25 0.28 2.49 0.64 2.27 0.93 2.17 1.07
P6 4.62 0.72 3.58 2.74 2.58 0.83 2.35 1.13 2.24 1.49
P7 1.00 0.03 1.00 0.05 1.00 0.09 1.00 0.13 1.00 0.16

Table 6: GEE on uniform data

f = 0.05 f = 0.1 f = 0.2 f = 0.3 f = 0.4
Q errs Ts/T errs Ts/T errs Ts/T errs Ts/T errs Ts/T

P1 1.39 0.14 1.29 0.12 1.12 0.27 1.03 0.36 1.01 0.46
P2 1.00 0.02 1.00 0.04 1.00 0.06 1.00 0.09 1.00 0.12
P3 1.67 0.18 1.46 0.31 1.14 0.39 1.03 0.77 1.01 1.12
P4 1.00 0.04 1.00 0.07 1.00 0.14 1.00 0.20 1.00 0.28
P5 3.27 0.18 2.68 0.14 2.18 0.27 2.07 0.33 1.99 0.40
P6 3.42 0.63 2.69 0.80 2.15 2.80 2.12 1.56 2.10 1.02
P7 1.00 0.03 1.00 0.05 1.00 0.09 1.00 0.13 1.00 0.17

Table 7: GEE on skewed data

While the estimation accuracy improves as more samples are taken, it seems that there are some
queries whose sizes are inherently difficult to estimate. For instance, the ratio error is still around
2 for the queries P5 and P6 even if the estimator has already examined 40% of the data. On the
other hand, skewness does not affect the performance much. In fact, for the particular case here,
the estimation is even better on the skewed data. This may be explained as follows. Suppose we
have two distributions with the same support. Then skewness only changes the probability mass
associated with each sample point, which may not significantly change the proportion of frequent
and infrequent (or, singleton) values observed in a random sample. Since the accuracy of the GEE
estimator heavily relies on the frequency of singleton values, the accuracy may not vary much as
long as this proportion remains similar when data becomes skewed. Nonetheless, a formal analysis
on the impact of data skewness seems to be an interesting future work.

6 Conclusion

In this survey, we studied several important sampling-based cardinality estimation algorithms in
database literature. Due to different nature of the estimation problems, these estimation algorithms
can fall into two categories. One is for estimating the size of selection/join queries, and sampling
is an effective technique for this purpose. The other is for estimating the size of projection queries,
or more basically, estimating the number of distinct values in a set, and sampling has inherent dif-
ficulty to make accurate estimations in this case, unless a significant number of samples are taken.
We described the details of each algorithm covered in this survey, with an focus on their theoret-
ical properties. We also provided an empirical study of their performance on a modern database
benchmark, in terms of both effectiveness and efficiency. To the best of our knowledge, this kind of
evaluation is never done before. We hence hope that the results reported in this paper can provide
further insight motivating future research in this old but still active field.
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A SQL Queries for Testing Selection/Join Estimators

(SJ1) SELECT *
FROM supplier, partsupp, nation, region
WHERE s_suppkey = ps_suppkey

AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = ’AFRICA’;

(SJ2) SELECT *
FROM customer, orders
WHERE c_custkey = o_custkey

AND c_mktsegment = ’BUILDING’
AND o_orderdate < date ’1995-03-01’;

(SJ3) SELECT *
FROM customer, nation, region
WHERE c_nationkey = n_nationkey

AND n_regionkey = r_regionkey
AND r_name = ’EUROPE’;

(SJ4) SELECT *
FROM part, supplier, lineitem, partsupp, orders, nation
WHERE s_suppkey = l_suppkey

AND ps_suppkey = l_suppkey
AND ps_partkey = l_partkey
AND p_partkey = l_partkey
AND o_orderkey = l_orderkey
AND s_nationkey = n_nationkey
AND p_name like ’%lime%’;

(SJ5) SELECT *
FROM customer, orders, lineitem, nation
WHERE c_custkey = o_custkey

AND l_orderkey = o_orderkey
AND o_orderdate >= date ’1993-07-01’
AND o_orderdate < date ’1993-07-01’ + interval ’3 month’
AND l_returnflag = ’R’
AND c_nationkey = n_nationkey;

(SJ6) SELECT *
FROM lineitem, part
WHERE l_partkey = p_partkey

AND l_shipdate >= date ’1993-10-01’
AND l_shipdate < date ’1993-10-01’ + interval ’1 month’;

(SJ7) SELECT *
FROM partsupp, part
WHERE p_partkey = ps_partkey

AND p_brand <> ’Brand#51’
AND p_type NOT LIKE ’SMALL BURNISHED%’
AND p_size IN (9, 37, 1, 31, 6, 19, 45, 29)
AND ps_suppkey NOT IN (

SELECT s_suppkey
FROM supplier
WHERE s_comment LIKE ’%Customer%Complaints%’);
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B SQL Queries for Testing Projection Estimators

(P1) SELECT COUNT(DISTINCT l_partkey) FROM lineitem;

(P2) SELECT COUNT(DISTINCT l_shipdate) FROM lineitem;

(P3) SELECT COUNT(DISTINCT o_custkey) FROM orders;

(P4) SELECT COUNT(DISTINCT o_shippriority) FROM orders;

(P5) SELECT COUNT(DISTINCT c_acctbal) FROM customer;

(P6) SELECT COUNT(DISTINCT s_acctbal) FROM supplier;

(P7) SELECT COUNT(DISTINCT p_size) FROM part;
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