
Suppression Strikes Back: On the Interaction of
Thresholding and Differential Privacy

Xi Wu† Wentao Wu† Chen Zeng‡ Jeffrey F. Naughton†
†University of Wisconsin-Madison

‡Google, Inc.
{xiwu, wentaowu, naughton}@cs.wisc.edu, zengc@google.com

ABSTRACT
Thresholding is a ubiquitous privacy technique that is based on sup-
pression. Differential privacy, on the other hand, is a recent prob-
abilistic privacy notion that relies on perturbation. Given the vast
difference between the ideas and approaches underlying these two,
it is interesting to ask if each has anything to contribute to the other,
or if they are in fact orthogonal and separate. In this paper, we con-
sider two challenges: (1) ensuring data fidelity and (2) privacy in
the presence of a dynamic universe that arise in the context of dif-
ferential privacy over evolving data sets. We find that, for both
problems, thresholding is crucial for achieving the desired privacy-
utility tradeoff. Perhaps more importantly, for the “dynamic uni-
verse” problem where one considers an open world of an evolv-
ing data universe, we show that thresholding is indeed integral for
achieving differential privacy. Motivated by these observations, we
extend previous work by establishing a more general framework
within which to study the effectiveness of suppression in achieving
desired privacy-utility tradeoff. Our results suggest that threshold-
ing and differential privacy do interact in a meaningful way, and
that perhaps further study of this interaction is warranted.

1. INTRODUCTION
Thresholding is an old but ubiquitous privacy technique that is

still used by many data publishers [11, 21]. Specifically, threshold-
ing publishes a value only if it is above certain predefined threshold.
Differential privacy [3, 4], on the other hand, is a recent, probabilis-
tic privacy notion currently studied by the data management and
theoretical research community almost to the exclusion of all oth-
ers. Due to the vast difference between them, one might reasonably
ask if thresholding is even useful at all given the current move to
differential privacy.

In this paper we study this question. Our answer is that, not
only is thresholding a useful tool for improving data utility given
differential privacy, but sometimes it can also be integral in achiev-
ing differential privacy. We start with two observations on using
thresholding to improve data utility. Both observations exploit the
fact that the magnitude of noise for differential privacy only de-
pends on the sensitivity of the query.

• Maintaining data sparsity. Suppose we want to publish a
high dimensional vector where most values are zero. If we
inject noise to achieve differential privacy, the vector will no
longer be sparse. This is unsatisfactory because the resulting
private vector will require much more storage than the origi-
nal vector. Thresholding can eliminate this problem, because
with high probability, the values that were formerly zero will
be small after perturbation, so suppressing values that are be-
low some low threshold will keep the vector sparse.

• Reducing relative error. Relative error is a natural measure
for the precision of a perturbed value. Given an original
value, say v, and some noise to be added, say κ, the rela-
tive error will be |κ/v|. Because κ does not depend on v,
suppressing small values in the perturbed vector means that
all the remaining values have small relative error with high
probability.

Note that differential privacy is trivially retained in the above two
scenarios. This is because thresholding is a post-processing step
in both cases, and it is well known that differential privacy is pre-
served by post-processing.

We now turn to cases where thresholding has a deeper effect
on the privacy-utility tradeoff. Specifically, we examine two chal-
lenges: (1) ensuring data fidelity and (2) privacy in the presence of
a dynamic universe. Both show up as important concerns when we
consider differential privacy in a dynamic data environment.

Data Fidelity. While differential privacy is powerful for encour-
aging participation, a problem arises when we try to convince data
consumers of the fidelity of the data. Using standard differential
privacy mechanisms, the guarantee on noisy data is essentially the
following: it is likely to be only somewhat perturbed from the true
value, but it could be arbitrarily far from the true value with posi-
tive probability. Data consumers sometimes consider such data to
be unreliable.

There are a couple of reasons behind this view. For a static data
set, the fidelity problem might not be a significant concern, be-
cause the randomness is effectively injected only once. However,
when one turns to a dynamic data set, the problem of “bad random-
ness” will almost surely happen. Moreover, from the view point of
data users, beyond knowing that the noise is probably small, they
have no idea about how much a value has actually been perturbed.
Finally, the data fidelity problem is made worse due to the long-
tail property of many real data sets. Because standard differential-
privacy mechanisms add noise independent of the magnitude of the
original data values, data values at the tail may suffer from higher
relative errors.

1

Dynamic Universe with Multiple Releases of Data. The stan-
dard computation model of differential privacy, namely the cen-
tralized model [8], assumes a trusted data curator who holds a static
dataset. As a result of this assumption, one can always assume that
databases are drawn from a fixed universe U . The privacy guar-
antee is thus defined for any two databases D,D′ drawn from U
which differ by one element. This model applies in many cases,
e.g., when publishing the results of a completed medical study.

However, this model can break down if data is collected and pub-
lished at multiple points in time, so the universe can change be-
tween D and D′. In effect, universe change is common in practice.
For example, consider a company that wishes to publish keyword
search frequencies. At time t let S be the set of keywords already
searched for, and suppose that at time t + 1 someone searches for
w /∈ S. Then, comparing the published results at t and t + 1 im-
mediately breaks differential privacy, because the latter contains a
new entry labeled by w.

We now give an overview of our results. We first give a range-
based mechanism for the data fidelity problem. Given a histogram,
instead of presenting users with a noisy value for each point in the
universe, we report a range that is guaranteed to enclose the ac-
tual value. A natural idea to achieve this is using thresholding
with respect to the noise of the perturbed value. In other words,
we suppress a perturbed value if its injected noise is above certain
threshold T . Then, for any noisy value v that survives, a range
[v − T, v + T] is guaranteed to include the original value. Un-
fortunately, we show that one has to sacrifice ε-differential privacy
in order to publish non-trivial ranges. Nevertheless, we show that
one can still achieve strong (ε, δ)-differential privacy with a small
threshold on noise.

Next, we show how to ensure differential privacy under a differ-
ent model of neighboring databases that captures an evolving uni-
verse. More specifically, we consider a model where neighboring
databases can have different universes, and queries over neighbor-
ing databases may have different ranges. To this end, we first show
that nontrivial (ε, δ)-differential privacy is not achievable unless
we suppress some query results. Indeed, in this case one can prove
something akin to “thresholding is essential for achieving differ-
ential privacy” (see Theorem 4 in Section 4.1). We then consider
a simple mechanism that works as follows. It first injects Lapla-
cian or geometric noise into the data as usual, and then suppresses
dimensions with respect to the threshold based on the perturbed
values. We prove that this simple strategy can ensure strong (ε, δ)-
differential privacy in the case of a dynamic universe.

In both of our above mechanisms, one needs to suppress some
data in order to achieve the desired privacy-utility tradeoff. Thus,
it is interesting to study the interaction between suppression and
differential privacy in general. From this perspective, we further
provide two extensions of our basic results. In the setting of a dy-
namic universe, we give a mechanism whose only task is to stabi-
lize the universe based on the utility of universe elements but other-
wise publishes exact data. This allows us to sequentially compose
it with a more advanced mechanism, such as the exponential mech-
anism [17], for scenarios where one can hope for better privacy-
utility tradeoff. We also give a simple framework to study, under
the fixed-universe assumption, the benefits of suppression as well
as more general data transformations. In this vein, we generalize
the results by Zeng et al. [22] and show that differential privacy
is oblivious to a large class of probabilistic transformation mecha-
nisms, including many filter-group-by aggregations.

Because suppression means a loss of data, an important question
is how suppression affects data utility. We present a theoretical

analysis and a calculation hinting that suppression is likely to have
only a small effect on utility when publishing large data sets. In the
spirit of Dwork and Pottenger [7], our observations provide more
evidence that privacy may be “easy” to achieve for large-scale data.
It is important future work to consider medium or small-sized data
sets, or to evaluate the impact of suppression on utility in specific,
concrete settings.

The rest of the paper is organized as follows. We start by pro-
viding necessary background on differential privacy in Section 2.
Then in Section 3 and 4 we present basic results on data fidelity
and dynamic universe, respectively. Extensions of our basic results
are given in Section 5. We present theoretical observations about
our mechanisms in Section 6, summarize related work in Section 7,
and conclude the paper with future directions in Section 8.

2. PRELIMINARIES
We follow Dwork and Roth [8] for standard definitions and no-

tations in differential privacy. Most work on differential privacy
considers the standard model of computation, namely the central-
ized model, where one assumes a trusted data curator who holds a
single and static database. As a result, one can always assume that
the universe U of all possible tuples is fixed. We use a non-negative
integer to encode a distinct tuple, and call it a tuple type.

A database D is encoded as a histogram, that is, a vector in NU .
For example, if U = {2, 4, 6}, then the vector 〈2 : 1000, 4 :
100, 6 : 50〉 represents a database where there are 1000 instances
of tuple 2, 100 instances of tuple 4, and 50 instances of tuple 6.
Because we use non-negative integers to represent tuples, there is
a natural correspondence between the elements of the universe and
the positions in the vector. For example, we will also write the
database as 〈1000, 100, 50〉 for short if there is no ambiguity about
the universe (the first position corresponds to tuple 2, the second to
4, and the third to 6). In this paper, we need to consider databases
where the universe can change. For this purpose, we define a uni-
verse to be any finite subset of non-negative integers. We then de-
fine the universe of a database to be the set of tuple types that ap-
pear in the database. For any given database D, this set is denoted
as univ(D).

Consider the case of a fixed universe. Given two databases D
and D′ in NU , they are neighboring (written as D ∼ D′) if

‖D −D′‖1 ≤ 1,

where ‖ · ‖1 is the `1 norm of a vector. Let D be the collection
of all databases andM be a probabilistic algorithm. We say that
M is (ε, δ)-differentially private if for any S ⊆ Range(M) and
D ∼ D′ we have

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

Moreover, we say thatM is ε-differentially private if it is (ε, 0)-
differentially private. Finally, for a database D ∈ D, the support
ofM(D) is the set of points that receive nonzero probability mass.
Formally, supp(M(D)) =

{
r| Pr[M(D) = r] > 0

}
. We need

the following simple but important fact about ε-differential privacy.

FACT 1. LetM be an ε-differentially private mechanism com-
puting certain query for databases in D. As long as an event E
can happen for some database, M must put nonzero probability
mass on E for any database in the collection. By considering E
for every output of M, this indicates that for any D,D′ ∈ D,
supp(M(D)) = supp(M(D′)).

Indeed, from the definition of ε-differential privacy, we have that,
for any event S, Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S]. This

2

forces that if Pr[M(D′) ∈ S] = 0, then Pr[M(D) ∈ S] = 0.
The other direction follows by symmetry.

Another important property of differential privacy is that it is
preserved by postprocessing.

FACT 2. LetM be an (ε, δ)-differentially private mechanism,
andL be a possibly randomized algorithm with private randomness
that only accesses the output ofM as input. Then L◦M is (ε, δ)-
differentially private. Here, private randomness means that all the
coin tosses used by L are independent from those used inM.

Here is a simple proof when L is deterministic. Suppose thatM :
D 7→ R and L : R 7→ R′. For any r′ ∈ R′, define L−1(r′) =
{r ∈ R : L(r) = r′}. Then, for any D ∼ D′ and S′ ⊆
Range(L), we have

Pr[L(M(D)) ∈ S′] = Pr[M(D) ∈ L−1(S′)]

≤ eε Pr[M(D′) ∈ L−1(S′)] + δ

= eε Pr[L(M(D′)) ∈ S′] + δ.

When L is probabilistic with private randomness, the same proof
works by expanding L by conditioning on each of its coin toss se-
quence and using the independence assumption.

We will use the geometric mechanism. Let q be a query that
maps a database D ∈ D to a vector in Rd, for some constant d.
First, we define the sensitivity of q:

DEFINITION 1 (SENSITIVITY). Let q : D 7→ Rd. The `1
sensitivity of q is defined as

∆q = max
D∼D′

‖q(D)− q(D′)‖1.

Let G(ω) be a two-sided geometric distribution parameterized by
ω > 0 such that, for any integer σ,

Pr[G = σ] =
1− exp(−ω)

1 + exp(−ω)
exp(−ω|σ|).

Then we have the following:

THEOREM 1 (GEOMETRIC MECHANISM [8]). The geometric
mechanismM that adds independent noise fromG(ε/∆q) to each
dimension of q is ε-differentially private.

Finally, we will also use the Laplace distribution, defined below:

DEFINITION 2 (LAPLACE DISTRIBUTION [8]). The Laplace
distribution (centered at 0) parameterized by scale b > 0 is the dis-
tribution with probability density function:

Lap(x|b) =
1

2b
exp

(
− |x|

b

)
.

We need the following fact about Laplace distribution:

FACT 3. If X ∼ Lap(b) then

Pr[|X| ≥ t · b] ≤ exp(−t).

The two-sided Geometric distribution G(ω) has a similar behavior,
if one views 1/ω as the scale parameter.

3. DATA FIDELITY
In this section, we provide a case study of the data fidelity chal-

lenge to exhibit the power of thresholding in boosting utility. As
we discussed in the introduction, in practice it could be unsatisfac-
tory or even unacceptable to release inaccurate data with no hard
quality guarantee. To address this issue, in this section we study a

simple strategy which publishes a range that encloses the original
value for each dimension in the output vector.

In order to do this with differential privacy, a natural idea is to ap-
ply a thresholding with respect to the noise of the perturbed value.
In other words, we suppress a perturbed value if its injected noise
is above certain threshold T . Then, for any noisy value v that sur-
vives, a range [v − T, v + T] is guaranteed to include the original
value. However, ε-differential privacy has to be sacrificed for such
guarantees. To see this, let β be the true value and suppose that
we want to publish a range R = [α, γ] such that β ∈ R. Then
ε-differential privacy cannot be achieved for any non-trivial R.

FACT 4. It is impossible to achieve ε-differential privacy and
β ∈ [α, γ] simultaneously unless [α, γ] = (−∞,∞).

To see this intuitively, let us consider a one-dimensional integral
query of sensitivity one. Let [α, γ] be any range that is an output
of a purported ε-differentially private mechanism M on input β.
BecauseM assigns [α, γ] with non-zero probability on input β, it
must also assign it with non-zero probability on input β − 1, the
neighboring of β. This, however, indicates that β − 1 ∈ [α, γ] by
our range requirement. Now if we repeat the same argument, but
for more “remote” neighbors β − 2, β − 3, . . . , and β + 1, β +
2, . . . , it follows that they must be all in the range [α, γ]. Therefore
[α, γ] = (−∞,∞).

Now we describe a range mechanismM for integral queries of
sensitivity ∆ (that is, each dimension of the result vector is an in-
teger). Its extension to arbitrary numeric queries is trivial by using
Laplacian noise. Let L be the range size parameter. Given the out-
put vector we wish to sanitize,M works as follows. We first inject
independent geometric noise G(ε/∆) into each dimension. Then
for each dimension with original value v and perturbed value v′,
we publish R = [v′ − L, v′ + L] if v ∈ R and ⊥ otherwise. In
the following we show that strong (ε, δ)-differential privacy can be
achieved with small L. We start with queries of sensitivity one, and
then generalize to arbitrary sensitivity.

The Case of Sensitivity One. Consider the case of a one di-
mensional query q of sensitivity one, let D,D′ be two neighbor-
ing databases, where q(D) = β and q(D′) = β − 1. Consider
supp(M(D)) and supp(M(D′)), which consist of ranges that
contain β and β − 1, respectively. We say that a range R is bad
if it is one of the following two types:

type-(1) R ∈ supp(M(D)) but R /∈ supp(M(D′));

type-(2) R /∈ supp(M(D)) but R ∈ supp(M(D′)).

Basically, the bad ranges are points where one cannot ensure ε-
differential privacy. Our goal is to bound the probability that these
bad points appear and thus the additive loss in differential privacy.
Now observe that the only type-(1) bad range is R1 = [β, β+ 2L].
In this case, the perturbed value is β+L, which happens with small
probability for sufficiently large L. The same argument applies to
the type-(2) bad range. Combining these two, we have:

LEMMA 1. For one-dimensional integral queries of sensitivity
one, the mechanismM is (ε, δ)-differentially private for counting
queries, where

δ =
1− e−ε

1 + e−ε
e−Lε.

By a simple union bound, we have the following lemma for d-
dimensional integral query of sensitivity one:

3

LEMMA 2. The mechanism M is (ε, δ)-differentially private
for d-dimensional integral queries of sensitivity one, where

δ = d · 1− e−ε

1 + e−ε
e−Lε.

By Lemma 2, to ensure (ε, δ)-differential privacy, one can set
L =

(
ln d+ ln(1/δ)

)
/ε. If δ = 1/n2 (a common setting in prac-

tice) where n is the size of the database, thenL = (ln d+2 lnn)/ε,
which is relatively small even when n is huge.

Arbitrary Sensitivity. More generally, let us further consider d-
dimensional integral queries with arbitrary sensitivity ∆ (not nec-
essarily ∆ = 1). Let ω = ε/∆. Without loss of generality, suppose
that q(D) = β and q(D′) = β −∆. Then type-(1) bad ranges are
now not unique. Rather, there are ∆ of them:

[β −∆ + 1, β −∆ + 2L+ 1], . . . , [β, β + 2L].

As before, the probability of generating each range is equal to the
probability of generating the center of that range. Given that these
ranges are disjoint, the probability of generating at least one of
them is therefore

1− e−ω

1 + e−ω

∆∑
i=1

e−ω(−∆+L+i).

By a union bound across all dimensions, and using the fact that we
have ensured ε-differential privacy for all other points, we have the
following theorem:

THEOREM 2. The mechanismM is (ε, δ)-differentially private
for d-dimensional integral queries with sensitivity ∆, where δ ≤
de−ω(L+∆−1) with ω = ε/∆.

Readers may notice that our range mechanism seems to be a
“postprocessing” of the differentially private output after inject-
ing geometric noise. However, after this “postprocessing” an ε-
differentially private mechanism becomes (ε′, δ′)-differentially pri-
vate for some δ′ > 0. Given the well-known fact (see Fact 2) that
“differential privacy is preserved by postprocessing,” is there any
contradiction here? The answer is no. The reason is that, for Fact 2
to hold, the postprocessing can only access the noisy output and
must use private randomness. However, the “postprocessing” here
needs to access the original value before perturbation. Therefore,
it implicitly accesses the noise (i.e., the randomness) used by the
perturbation phase — it does not use private randomness! Hence,
it is not surprising that this will change the privacy guarantee.

4. DYNAMIC UNIVERSE
Perhaps surprisingly, not only is thresholding useful for improv-

ing utility, in certain context it is also indispensable for the purpose
of achieving differential privacy. In this section we provide such a
case study by considering a different data collecting and publish-
ing model where the universe of data may change. Universe change
may break differential privacy and cause privacy leakage. Consider
the following example:

EXAMPLE 1. Suppose that we have a recommendation system
which recommends videos to customers. For simplicity, suppose
that the system maintains a list of video pairs 〈v1, v2〉 such that
there is some user who watches v2 after v1. One day, Alice shares
a link to her family-friendly video v∗1 to Bob and requires him not to
redistribute. Bob, on the other hand, watches v∗2 after v∗1 , where v∗2
is not nearly as family-friendly. However, now in the recommenda-
tion system there is a new pattern 〈v∗1 , v∗2〉. When Alice re-watches

v∗1 , the recommendation system tells her “people who watched v∗1
also watched v∗2 .” Upon seeing this recommendation, Alice soon
realizes that it is Bob who watches v∗2 .

The key problem here is that Bob’s participation breaks his dif-
ferential privacy. That is, before he participates, there is no pattern
〈v∗1 , v∗2〉 in the database of the recommendation system, while there
is one after his participation. A careless recommendation system
that directly utilizes the new universe element thus causes a signif-
icant privacy loss.

The rest of this section is organized as follows. We present our
modeling of a dynamic universe and prove negative results in Sec-
tion 4.1. Then, in Section 4.2, we consider a natural mechanism for
integral queries. Specifically, it first injects geometric noise into
the data and then applies thresholding with respect to the perturbed
values. We show that this mechanism can ensure strong (ε, δ)-
differential privacy with a small threshold. Finally, we close this
section with a discussion of non-integral queries.

4.1 Modeling and Negative Results
Because the universe of the data set can change in our case,

we now have an issue in defining the `1 distance between two
databases of different universes. To tackle this issue, we represent
each database as a vector in (N ∪ {⊥})N, with the understanding
that only a finite number of dimensions have non-⊥ counts1. We
stress that one cannot simply take the union of the universes of D
and D′ and then assume a fixed universe. This is because we are
considering a dynamic data set with multiple collections and pub-
lishing, and the universe cannot be fixed a priori.

Using this representation, we can now define the `1 distance be-
tween two databases with different universes. Given two databases
D,D′ ∈ (N ∪ {⊥})N, their `1 distance is the normal `1 distance
between these two by just treating ⊥ to be 0. Clearly, this is a fi-
nite number because both D and D′ have finite universes. Finally,
we define that two databases are neighboring if their `1 distance is
bounded by one. In the following, we still use the familiar notation
D ∼ D′ if D and D′ are neighboring.

Now, we say that a query is universe sensitive if its range changes
as the universe of the underlying database changes. It then imme-
diately follows that for such queries, ε-differential privacy is not
achievable. Specifically, letM be a mechanism computing a cer-
tain query q,D andD′ be two databases so that Range(M(D)) 6=
Range(M(D′)). Then Fact 1 is violated and thusM cannot be ε-
differentially private.

Indeed, a stronger negative result holds. Consider a case where
the query computes a vector of numeric values. Furthermore, with
universe change of the underlying database, the dimensions of the
vector change. We model this by a query that maps a database to
a vector in RS , where S is some finite subset of N. Then, with a
dynamic universe, the set S also evolves. We call such queries un-
bounded dimensional queries. Such queries are fairly general. For
example, it captures publishing histograms where the universe of
the histogram can change. We next show that, if one always pub-
lishes all the dimensions of the vector, then even (ε, δ)-differential
privacy is not achievable.

THEOREM 3. Let q be an unbounded dimensional query. If
one always publishes all the dimensions of the query result, (ε, δ)-
differential privacy is not achievable for q unless δ ≥ 1.

1We note that this “infinity” only happens in our modeling as a way
of viewing a database. When used in an algorithm, a database D is
still a finite vector in Nuniv(D).

4

The reason here is that, if q(D′) has a dimension that is not in q(D)
for some D ∼ D′, then insisting that a mechanismM must pub-
lish all dimensions forces that supp(M(D))∩supp(M(D′)) = ∅.
This theorem indicates that suppression of some information is nec-
essary if we want to achieve non-trivial differential privacy for pub-
lishing new dimensions. Next we show that thresholding is neces-
sary in the sense that, if a dimension gets published with high prob-
ability, the statistic it is associated with must be significant. Let us
consider a single dimension (w.l.o.g. suppose this is dimension 0)
where its statistic is ⊥ initially. The following theorem holds.

THEOREM 4. Let v be a positive numeric statistic to publish
and suppose that the sensitivity of computing the statistic is ∆. If
M is (ε, δ)-differentially private and it publishes dimension 0 with
probability at least p, then

v ≥ ∆(ln(p/δ + 1)/ε− 1).

4.2 Thresholding Mechanism
Let q be an unbounded dimensional query. In this section, for

integral q, we give a differentially private mechanism, which is a
combination of noise injection and thresholding, to compute q. In
the following, let the sensitivity of q be ∆. Without loss of gener-
ality, suppose that

q(D) = (a1, . . . , ad)

and

q(D′) = (a′1, . . . , a
′
d, a
′
d+1, . . . , a

′
d′)

where ‖q(D)− q(D′)‖1 ≤ ∆. Furthermore, d′ − d ≤ ∆ because
q is integral. The mechanism is as follows:

DEFINITION 3 (THRESHOLDING MECHANISM). Let T be the
threshold and ω be the parameter of the geometric mechanism.

(1) Perturbation (P): Add independent geometric noise drawn
from G(ω) to each dimension of q(D);

(2) Thresholding (T): Let P(D) be the output of P on D. For
each v ∈ P(D), publish v if v ≥ T ; publish ⊥ otherwise.

We now prove that this mechanism is (ε, δ)-differentially private
for appropriate T and ω. Our goal is that, for any S ⊆ (R∪{⊥})d

′
,

Pr[T (P(D)) ∈ S] ≤ eε Pr[T (P(D′)) ∈ S] + δ,

Pr[T (P(D′)) ∈ S] ≤ eε Pr[T (P(D)) ∈ S] + δ.

Before moving to the formal justification, let us first give an in-
formal description. We will use a hybrid argument by considering a
hybrid query output q(D̃) = (a′1, . . . , a

′
d). q(D̃) is “hybrid” in the

sense that it resembles q(D) since they have the same number of
dimensions, and it resembles q(D′) since they have the same data
in the first d dimensions. At the highest level, when we apply the
thresholding mechanism A to D, D′, and D̃, the following hold:

(i) A(D) andA(D̃) should be close because they have the same
number of dimensions and ‖q(D)− q(D̃)‖1 is small;

(ii) A(D̃) and A(D′) should also be close. First, their first d
dimensions have the same values. Second, the extra dimen-
sions in D′ have insignificant values as ‖q(D)− q(D′)‖1 is
small. Therefore, they will be suppressed by a sufficiently
large threshold T with high probability.

Combining (i) and (ii), it follows that A(D) and A(D′) are close
to each other as well. We now carry out this argument formally. (i)
follows from the standard argument of injecting Geometric noise.

LEMMA 3. For any S ⊆ (R ∪ {⊥})d
′
,

Pr[A(D) ∈ S] ≤ eδ∆ Pr[A(D̃) ∈ S], (1)

Pr[A(D̃) ∈ S] ≤ eδ∆ Pr[A(D) ∈ S]. (2)

We next formalize (ii) in two steps: we show that Pr[A(D̃) ∈ S]
can be upper bounded by Pr[A(D′) ∈ S] and vice versa. The
following lemma provides an upper bound for Pr[A(D̃) ∈ S] by
using Pr[A(D′) ∈ S].

LEMMA 4. For any S ⊆ (R ∪ {⊥})d
′
,

Pr[A(D̃) ∈ S] ≤
(

1− e−ω(T−∆)

1 + e−ω

)−∆

Pr[A(D′) ∈ S]. (3)

Similarly, we can upper bound Pr[A(D′) ∈ S] using Pr[A(D̃) ∈
S], as indicated by the following lemma.

LEMMA 5. Let γ be defined as

γ =
∆ · e−ω(T−∆)

(1 + e−ω)
.

Then for any S ⊆ (R ∪ {⊥})d
′
,

Pr[A(D′) ∈ S] ≤ Pr[A(D̃) ∈ S] + γ. (4)

We are ready to prove our main theorem of this section:

THEOREM 5. Let ε > 0, γ > 0 be some constants, n be the
database size such that n ≥ (1 + γ)/γε, and δ = o(1/n). Let q
be an integral query of sensitivity ∆, P be a geometric mechanism
computing q with parameter ω, and T be a thresholding mecha-
nism with parameter T . If ω ≤ ε/(1 + γ)∆ and

T ≥ ∆
(
1 + (1 + γ) ln(∆/δ)/ε

)
,

then T (P(·)) is (ε, δ)-differentially private.

On Non-Integral Queries. For Theorem 5 to hold for non-integral
queries, we need an additional assumption that the participation of
any single individual can only introduce a small number of new di-
mensions. The proof is essentially the same, with geometric noise
replaced by Laplacian noise. However, if an individual is allowed
to introduce an unbounded number of dimensions (unbounded in
the sense that there is no a priori bound), then the probability that
at least one of the perturbed dimensions exceeds the threshold can
asymptotically converge to 1. More formally, suppose the proba-
bility that an arbitrary dimension exceeds the threshold after per-
turbation is p and there are N dimensions. Since the noise in each
dimension is independent, the probability that at least one of them
can exceed the threshold is 1 − (1 − p)N , which goes to 1 as N
goes to infinity. As a result, we can only set δ = 1.

5. EXTENSIONS
In this section we provide extensions of our basic results from

the last two sections. Section 5.1 proposes a mechanism whose
only task is to stabilize the universe. This extends the threshold-
ing mechanism to queries with arbitrary ranges and allows us to
sequentially compose with a more advanced mechanism, such as
the exponential mechanism, for scenarios where one can hope for a
better privacy-utility tradeoff. Then, in Section 5.2, under the usual
assumption of a fixed universe, we give a framework to study the
usefulness of data transformation for the privacy-utility tradeoff.

5

5.1 Stabilizing Universe
Most differential privacy mechanisms work under the assump-

tion that the universe is fixed. In this section we consider an ex-
tension of our results from the last section in which we first sta-
bilize the universe of a dataset, and then apply other mechanisms
under the fixed universe assumption. Specifically, we consider a
sequential composition where in the first step we only stabilize the
universe of the data and publish a dataset restricted to the stabi-
lized universe with exact values, then in the second step we apply
another more specialized mechanism over the data.

5.1.1 Sequential Composition
We note that, compositions considered in traditional differen-

tial privacy are usually parallel compositions. Specifically, given
mechanisms Mi : D 7→ Ri, one considers a composed mecha-
nismM : D 7→

∏
iRi. For example, a basic result in differential

privacy [8] says that ifMi is (εi, δi)-differentially private, thenM
is (
∑
i εi,

∑
i δi)-differentially private. Indeed, sequentially com-

posing mechanisms usually does not make too much sense, because
if we have achieved differential privacy in the first step, then the
second step in the composition will not affect differential privacy
(due to Fact 2).

There are two reasons why we consider sequential composition
and do not aim for differential privacy in the first step. First, sta-
bilizing the universe will be a common component in the pres-
ence of dynamic universes so we may want to do it early in the
data processing pipeline. Second, perhaps more importantly, there
are situations, like scenarios considered in the exponential mecha-
nism [17], in which adding noise directly to the quantity may com-
pletely destroy utility. Thus in such cases, we might want to invoke
an advanced mechanism (such as the exponential mechanism men-
tioned above) on the exact data. In view of this, it is better that
we first combine perturbation and thresholding to stabilize the uni-
verse, but then publish exact (rather than perturbed) data restricted
to the stabilized universe.

5.1.2 A Utility based Formulation
Instead of sticking to queries that are numeric vectors, we now

consider a query q that maps a database to some arbitrary and
evolving rangeR (that is, the ranges can be different for two differ-
ent databases). More specifically, for any database D, letR(D) be
the range of the query over D. Compared to the case of an output
numeric vector where one can suppress some dimensions, a diffi-
culty we now have is that it is unclear how to “stabilize” an element
r ∈ R. However, observe that the range evolves only if the under-
lying database histogram changes, so one can instead stabilize the
universe of the underlying database histogram.

In this case, an immediate approach is to invoke our thresholding
mechanism on the database histogram to produce a noisy database
histogram, and then publish a database histogram with the same
universe as the noisy one but with exact counts. However, such a
mechanism ignores the potential relationship between a database
tuple t ∈ D and a query result r ∈ R, and thus may incur a loss
of utility. In general, we have the following utility notion which
assigns a utility score to each universe element.

DEFINITION 4 (LOCAL UTILITY FUNCTION). Let D be the
collection of all databases in NN with finite universe, and let R
be some arbitrary range that may depend on the universe of the
database. A local utility function u is a mapping from D × N×R
to R+ 2. Moreover, a local utility function is called natural if it

2R+ = {x ≥ 0 | x ∈ R}.

satisfies one more condition: for any D ∈ D, i /∈ univ(D) and
r ∈ R, u(D, i, r) = 0.

In other words, a utility function u assigns a score to each element
i in the universe with respect to a particular database D ∈ D and
a particular outcome r ∈ R(D). Intuitively, a natural local utility
function means that an element provides no utility at all if it is not
in the database. Our discussion above indicates that a good local
utility function should take two aspects into consideration: (1) how
important an element is for the utility of the result, and (2) how
much privacy concern it might incur by including an element in
the published universe. In the following, we present an example of
local utility function.

EXAMPLE 2. In a slightly more general setting, let us consider
a local utility function where one can force the inclusion of some
universe element by assigning it a utility score ∞. Consider two
functions ur, us from D × N×R to R+ ∪ {∞}. ur is the “result
utility function” which assigns a high score to i if i is important
to the utility of the query result. us is the “safety utility function”
which assigns a high score to i if including i into the published
universe causes little privacy concern. Then we can define a local
utility function u = ur · us with the understanding that, if some
element i has local utility∞, then it will never be suppressed unless
us = 0. We define that∞·0 = 0. This is to capture that, if we have
ur(D, i, r) =∞ while us(D, i, r) = 0, then we still suppress i.

Now we define the sensitivity of a local utility function.

DEFINITION 5. Consider the same setting as in Definition 4.
Let u be a local utility function. The sensitivity of u is defined as

max
D∼D′

max
i∈univ(D)∪univ(D′)

max
r∈R(D)∪R(D′)

∣∣u(D, i, r)− u(D′, i, r)
∣∣.

In the following, we denote this quantity by ∆u.

Intuitively, sensitivity captures how significant the change could be
when introducing a new element into the universe. If this quantity
is really large for a privacy-sensitive element (e.g., a new pattern in
Example 1), then there is no hope of designing a mechanism with
good privacy-utility tradeoff.

DEFINITION 6. Let D be a database, and u be a natural local
utility function. For any i ∈ N, its maximal utility with respect to u
and databaseD, written as uD(i), is defined as maxr∈R u(D, i, r).

LEMMA 6. In the same setting as above, letD′ be any database
such that D ∼ D′. Then for any element i ∈ univ(D′) such that
i /∈ univ(D), we have that

(a) uD(i) = 0;

(b) uD′(i) ≤ ∆u.

We are now ready to describe our transformation mechanism for
stabilizing universe.

DEFINITION 7 (LOCAL TRANSFORMATION MECHANISM).
Given a database D, a natural local utility function u, a scale pa-
rameter b, and a utility bound κ, the local transformation mecha-
nism P works as follows:

(1) It constructs a set I by including each tuple type i ∈ univ(D)
into the output if uD(i) + Lap(b) ≥ κ.

(2) After that, it outputs the database D restricted to I , denoted
as D|I . That is, it simply shrinks the universe of D to I .

6

In the following let P denote the local transformation mechanism.
We next argue that, by picking appropriate b and κ, P(D) and
P(D′) can be very close to each other. Therefore, one can ap-
ply an (ε, δ)-differentially private mechanism (which works under
the usual fixed-universe assumption) to the restricted database to
obtain differential privacy in the presence of universe change. We
first observe that, if D ∼ D′ are two nontrivial (namely it is not
that D = D′) neighboring databases, then there are two cases:

Case (1) There is a unique i such that univ(D) and univ(D′) only
differ on i and either Di = 1 or D′i = 1. By symmetry, we
will only consider that i ∈ univ(D′) and i /∈ univ(D).

Case (2) univ(D) = univ(D′) and there is a unique i such that
|Di −D′i| = 1.

Now letM be any (ε, δ)-differentially private mechanism mapping
from Nuniv(D′) to some dynamic range R. We have the following
two lemmas.

LEMMA 7. For case (1), the composition mechanismM◦P is
(ε′, δ′)-differentially private where

ε′ = − ln
(
1− exp(−κ−∆u

b
)
)
, and

δ′ = exp(−κ−∆u

b
).

COROLLARY 1. In the setting above, let ε = O(1) and δ =
o(1/n) where n is the database size. Then, in order to achieve
(ε, δ)-differential privacy, it suffices to set

κ ≥ ∆u+ b ln(1/δ)

LEMMA 8. For case (2), the composition mechanismM◦P is
(∆u
b

+ ε, exp(∆u
b

)δ)-differentially private.

Combining these two, we have the following theorem which says
thatM◦P is differentially private.

THEOREM 6. Let ε = O(1) and δ = o(1/n) where n is the
database size. Set b = ∆u/ε, and κ ≥ ∆u+b ln(1/δ) = ∆u(1+
ln(1/δ)/ε). Then, for any (ε, δ)-differentially private mechanism
M,M◦P is (2ε, eεδ)-differentially private.

We remark that our analysis of differential privacy for the com-
posed mechanism here, and later in Section 5.2, treats the com-
posed mechanism as a whole. That is, unlike typical analysis of
compositions in differential privacy, we do not allow a potential
adversary to examine intermediate results produced by mechanisms
in the composition. Indeed, if an adversary can examine the query
result produced by our universe stabilizing mechanism, differential
privacy is broken as we output exact data. On the other hand, the
message we want to deliver here is that, in the setting of an evolv-
ing universe, one shall always consider stabilizing universe as the
first step towards differential privacy. In this sense, we are treat-
ing universe stabilizing as the first step of any differentially private
mechanism. Therefore, it is reasonable to analyze differential pri-
vacy with respect to the whole composed mechanism.

5.2 Suppression and Privacy-Utility Tradeoff
Interestingly, even under the fixed-universe assumption, previous

work [6, 22] has found that suppression could be useful for achiev-
ing the desired privacy-utility tradeoff. We next give a framework
to study the benefits of suppression, and more generally, data trans-
formation, in terms of the tradeoff between privacy and utility. We
begin by defining what we mean by “data transformation” and data
transformations that are “oblivious to differential privacy.”

DEFINITION 8 (DATA TRANSFORMATION). Let U and U ′ be
two finite sets in N. A transformation mechanism is any probabilis-
tic algorithm that maps a database in NU to a database in NU

′
.

DEFINITION 9 (DIFFERENTIAL PRIVACY OBLIVIOUSNESS).
Let q : NU 7→ R and q′ : NU

′
7→ R. We say that P : NU 7→ NU

′

is a differential-privacy oblivious transformation if for any (ε, δ)-
differentially private mechanism M for computing q′, M ◦ P is
(ε, δ)-differentially private for computing q.

The motivation here is that, because the guarantee ofM for q′ is
over neighboring databases,P shall not map neighboring databases
to non-neighboring ones. As a result, if P is differential-privacy
oblivious, then for the purpose of ensuring differential privacy for
computing q, one only needs to consider q′. We remark that one
can easily generalize this definition to the case where we can map
neighboring databases to databases of bounded distance. A system-
atic exploration of this generalization is left for future research.

Clearly, because our goal is to compute q, one needs to relate
q′ ◦P to q. However, enforcing q(D) = q′(P(D)) is meaningless:
data transformation will not improve privacy-utility tradeoff at all.
This is because, if q and q′ ◦ P are equivalent, the lower bound on
noise for computing q privately transfers automatically to comput-
ing q′ ◦ P privately. Therefore, our goal is to say that q′ ◦ P is a
good approximation of q. This motivates the following definition.

DEFINITION 10 (APPROXIMATE PROJECTION). In the same
setting as above, let u : R 7→ R be a utility function and β, γ ∈
(0, 1) be two constants. Then q admits a (β, γ)-approximation if
there exists a q′ such that, for any D ∈ NU :

exp(−γ)u((q′ ◦ P)(D)) ≤ u(q(D)) ≤ exp(γ)u((q′ ◦ P)(D))

with probability at least (1 − β) over the coin tosses of P . In this
case, we say that q admits a (β, γ)-approximation q′ with respect
to u and P .

Readers may wonder why we need all these definitions. Sup-
pose that q admits a (β, γ)-approximation q′ with respect to u and
P . First, let us observe that while q′ ◦ P does not compute q ex-
actly, they are close in terms of utility. However, to compute q′

privately, a transformation might make it much easier to construct
a mechanismM with small noise. This is because the sensitivity
of q′ over P(D) may be significantly smaller than that of q overD.
In other words, the potentially large error due to the noise injected
for computing q privately is now reduced by combining a small ap-
proximation error due to q′ ◦ P and a small noise for computing q′

privately. Therefore, one might expect thatM◦P achieves a better
privacy-utility tradeoff than a direct mechanism for q could do.

We remark that, in order to instantiate this paradigm, even if
one cannot formally guarantee that q′ is a (β, γ)-approximation,
some good heuristics with insights for a particular data set may
be fruitful in improving privacy-utility tradeoff as well. Indeed,
the work [22] gives one such example. In that paper, the authors
considered the frequent itemset mining problem and identified a
key barrier towards a good privacy-utility tradeoff: large transac-
tions, which introduce significant sensitivity. They then proposed a
transformation that basically truncates large transactions. That is,
it probabilistically maps a large transaction to a small one. On one
hand, this transformation greatly reduces the sensitivity: all trans-
actions are now small, so the noise needed for privacy is reduced.
On the other hand, in practice usually very few transactions are
large because of data skew. Suppressing large transactions is then
unlikely to change the output of frequent itemset mining. There-
fore, after suppression, good approximation to the optimal solution
is maintained while much smaller noise for privacy is needed.

7

In the following we generalize the results in [22] and show that a
large class of data transformations, including many aggregation al-
gorithms, are oblivious to differential privacy. First of all, we have
the observation that any deterministic `1-norm preserving transfor-
mation is differential-privacy oblivious.

LEMMA 9. Any deterministic `1-norm preserving algorithm that
maps from NU to NU

′
is differential-privacy oblivious.

By expanding P by conditioning on each sequence of its random
coin tosses, we immediately have the following result.

THEOREM 7. LetP be a data transformation such that, for any
sequence σ of its coin tosses, P|σ is an `1-norm preserving algo-
rithm. Then P is differential-privacy oblivious.

We mention, in particular, the following special case.

COROLLARY 2. Let f be any probabilistic algorithm from U to
U ′. Then the transformation F defined by mapping each element
in i ∈ univ(D) to f(i) is differential-privacy oblivious.

We note that this class already includes many natural aggrega-
tions. For example, let U ′ be a set of buckets. Then all natural
filter-group-by aggregations fall into this class. Therefore, they are
differential-privacy oblivious. As a final remark for this section,
we note that it is an interesting future direction to investigate under
what circumstances approximate projections exist.

6. ON THE EFFECT OF SUPPRESSION ON
DATA UTILITY

All the mechanisms proposed in this paper will suppress some
data. Specifically, (i) our range-based mechanism needs to sup-
press ranges with too much noise, and (ii) our thresholding mech-
anism needs to suppress small perturbed values. Therefore, a key
question here is how suppression may affect data utility. In this sec-
tion we give some theoretical observations regarding this question.

On one hand, note that, in Theorem 2 and 5, the thresholds are
proportional to the sensitivity ∆. This indicates that our mech-
anisms may suppress much data when ∆ is large. This may give
poor data utility for small or medium-sized data. On the other hand,
there might be some hope when turning to large-scale data sets.
Especially, we are interested in the case of publishing a histogram
because a key goal of our mechanisms is for an internal data san-
itization in an early stage of the data processing pipeline. In such
cases, the sensitivity is one. One can then have, simultaneously, a
small amount of noise injected to the data, and a small threshold
for suppression. Thus, one might expect a small loss of data utility.

To this end, we note that publishing histograms in a differentially
private way is studied extensively in the literature. Thus, one might
naturally ask to empirically compare our methods with previous
work on differentially private histograms (e.g., [13]). However, we
note that most of this work considers different tradeoffs3 and thus
are incomparable to our mechanisms here. Moreover, as we men-
tioned Section 5.1.1, when a different utility notion is considered,
one might want to sequentially compose the transformation of sta-
bilizing universe with a mechanism optimized for that utility.

In the following, we quantify the magnitude of thresholds for
sanitizing histograms. As we will see, the thresholds are indeed
small when large-scale data is considered. For example, for the
dynamic universe problem, our threshold for achieving strong dif-
ferential privacy is only several hundreds, which is much smaller
3For example, a key tradeoff considered in [13] is how to keep an-
swers to a set of histogram queries as consistent as possible, while
maintaining differential privacy.

compared to that currently adopted in practice (e.g., [21], which
uses thresholds at the scale of 104).

6.1 On Thresholding and Data Sparsity
In this section we discuss thresholding and data sparsity. Sup-

pose we want to publish a high-dimensional vector of non-negative
counts. Without loss of generality, suppose dimensions 1, 2, . . . , n
of the vector are 0. We inject independent geometric noise Gi(ε)
into dimension i in order to achieve ε-differential privacy. Let
Xi(i ∈ [n]) be an indicator random variable such that Xi = 1
if dimension i becomes non-zero after perturbation. Then 4

Pr[Xi = 1] =

{
1 w.p. e−ε/(1 + e−ε),

0 w.p. 1/(1 + e−ε).

Therefore, the expected number of non-zero dimensions is

E[

n∑
i=1

Xi] = ne−ε/(1 + e−ε).

Further, by applying the Chernoff bound, the number of non-zero
dimensions will be highly concentrated around the expectation. This
means that, with high probability, most of the zero dimensions are
now non-zero, and thus a sparse vector now becomes dense.

On the other hand, suppose we do thresholding with T = t/ε
for some t to be determined later. Let β ∈ (0, 1) be a confidence
parameter, then

Pr[∪ni=1Gi(ε) > T] ≤ nPr[Gi(ε) > T] ≤ ne−t,

where the first inequality is from union bound and the second in-
equality is by concentration of Geometric noise. Therefore, to
bound this by β, it suffices to set t ≥ ln(n/β), which implies
T ≥ ln(n/β)/ε. This guarantees that, with probability at least
1 − β, all these perturbed dimensions will be suppressed by T .
T could be quite small even for very large n. For example, for
ε = .1, β = .01, and n = 1012 (1 trillion), T is only roughly 320.

6.2 Thresholding Mechanism
Theorem 5 implies the threshold in this case is

1 + (1 + γ) ln(1/δ)/ε.

Figure 1 shows the magnitude of threshold for ε = .2, .1, and .05,
with δ ranging from 1/104 to 1/1019. For this test, we consider
three possible values, 1, .1, and .01, for γ in Theorem 5. For the
strongest setting of parameters (i.e., ε = .05 and δ = 1/1019), the
magnitude of threshold is roughly 1800, 963, and 885 for γ = 1,
.1, and .01, respectively. In such a case, let n be the total popula-
tion of the histogram and suppose δ = 1/n2. Then one can ensure
(.05, 1/1019)-differential privacy for a histogram with total popu-
lation 109.5. For histograms of such scale in practice, the effect of
our thresholding is likely to be insignificant compared to current
practice of thresholding (which uses thresholds at the scale of 104),
while our method ensures differential privacy.

6.3 Range-Based Mechanism
Intuitively, the larger the range is, the more likely the original

value will fall into this range. However, the guarantee for the con-
sumers is weaker. Theorem 2 gives the range size L = ln(d/δ)/ε,
where d is the number of dimensions in the published vector for the

4We adopt the following natural strategy for publishing a non-
negative count: if the noise is negative, then we round it to 0.

8

3 5 7 9 11 13 15 17 19

 50

 100

 200

 300

 400
 500

M
a

g
n

it
u

d
e

 o
f

T
h

re
s
h

o
ld

γ = 1
γ = .1

γ = .01

(a) ε = .2

3 5 7 9 11 13 15 17 19

 100

 200

 400

 600

 1000

M
a

g
n

it
u

d
e

 o
f

T
h

re
s
h

o
ld

γ = 1
γ = .1

γ = .01

(b) ε = .1

3 5 7 9 11 13 15 17 19

 150

 250

 400

 600

 800

 1200

 1800

M
a

g
n

it
u

d
e

 o
f

T
h

re
s
h

o
ld

γ = 1
γ = .1

γ = .01

(c) ε = .05

Figure 1: Magnitude of threshold for a given δ. The x axis is drawn in 1/δ with log scale, and tic k represents 10k. Three settings of
γ is depicted: 1, .1 and .01, and sensitivity is one.

histogram. If G = G(ε) is the noise random variable, then using
Fact 3, one can bound the probability that we fall out of the range:

Pr[|G| > L] = Pr[|G| > εL

ε
] ≤ e−εL =

δ

d
,

where the approximation holds for small ε. By a union bound
across all dimensions, it follows that, with probability at least 1 −
δ, all dimensions will be enclosed by their corresponding ranges.
Moreover, the range sizes are pretty small for large-scale data. For
example, in our strongest parameter setting ε = .05 and δ =
1/1019 mentioned above, the range size is roughly 20 ln d + 876.
Then, the range size is roughly 1290 for a histogram with a billion
(109) dimensions. For common histograms gathered in practice,
most counts are at least at the scale of 105. These counts thus bear
small relative errors if we publish ranges with the above size.

7. RELATED WORK
Differential privacy [3, 4] has been attracting ever-growing inter-

est in the research community (see, for example, [1, 2, 5, 6, 9, 10,
12, 18, 20]). Unlike previous proposals that define privacy as prop-
erties of the sanitized data (e.g., k-anonymity [19], `-diversity [16],
and t-closeness [14]), differential privacy is a definition on the
query answering algorithm. Perhaps due to this, very different
mathematical techniques have been developed for achieving dif-
ferential privacy. The recent monograph by Dwork and Roth [8]
provides a thorough treatment for differential privacy.

To the best of our knowledge, there have been rare connections
between old privacy techniques and differential privacy. One no-
table line (as studied in [15]) shows that old privacy notions, such
as k-anonymity, does give (ε, δ)-differential privacy “when done
appropriately.” However, it is still not very clear whether old pri-
vacy techniques and differential privacy could interact in a mean-
ingful way. One reason, we conjecture, is that old techniques are
mostly suppression-based, while differential privacy fundamentally
relies on perturbation. Indeed, it is often considered an advantage
of differential privacy that it does not alter the data set, but only
needs to inject somewhat mild noises.

Nevertheless, some previous work has observed that information
suppression can be useful for differential privacy. One example
towards this end is truncating large transactions for frequent itemset
mining as we mentioned earlier. As another example, suppose we
want to publish a high dimensional vector. Then intuitively, if we
apply thresholding with a large enough threshold, the sensitivity
will only depend on the number of dimensions with values above
the threshold (in the extreme case, if all dimensions are suppressed,
no noise is needed). This significantly reduces sensitivity and thus

magnitude of noise. Indeed, this intuition leads to the sparse vector
technique [6, 8].

However, for both cases, suppression is still irrelevant for privacy
in the sense that perturbation itself can already ensure differential
privacy. By contrast, thresholding is necessary for differential pri-
vacy in the case of a dynamic universe. Another difference is that
the sparse vector technique expects larger thresholds hence smaller
noise, while we want to keep the threshold as small as possible so
that information loss is small.

The standard computation model of differential privacy assumes
a static data set. This leads to the usual assumption that the data
universe is fixed. In contrast to that, we assume a model where uni-
verse cannot be fixed a priori due to multiple collections of data.
From this perspective, perhaps the most relevant work is the one by
Dwork et al. [5]. There they considered a streaming setting where
users generate input events to the database and an adversary con-
tinually analyzes the data. They asked the question how to ensure
differential privacy under this situation and provided a solution for
a specific setting of maintaining a single counter. Although the set-
ting resembles ours, there are two notable differences. First, the
universe of their data analysis is still fixed (i.e., a single counter).
Second, we considered a problem that is orthogonal to the single-
counter problem: if a single element could induce a new dimension
in the published result, what shall we do to ensure differential pri-
vacy? Our answer is that suppression is necessary and may give
other benefits.

8. CONCLUSION
While traditional differential privacy theory works in a closed-

world setting, in this paper we studied the problem of ensuring
differential privacy in an open world where the universe of data
can evolve due to multiple collections/releases. Thresholding, an
old suppression-based technique, plays an integral role in this con-
text. In addition, we also showed the usefulness of thresholding in
improving data utility. We further extended our results from thresh-
olding to more general data suppression/transformation.

From a larger perspective, we view our results as a case study on
the interaction between old privacy techniques and the modern dif-
ferential privacy. Previous work on data privacy can be broadly cat-
egorized into two kinds according to the general tradeoff between
privacy and information content. One is based on information sup-
pression, where suppressing all information achieves perfect pri-
vacy. The other is based on perturbation, where releasing complete
noise achieves perfect privacy. With the popularization of differen-
tial privacy, it seems that perturbation-based methods have become
dominant. However, our results demonstrate that suppression can
still be useful or even necessary.

9

We note that, in some sense, thresholding can be thought of as a
special case of k-anonymity as follows. First, perform a group-by
on the quasi-identifier of the tuples to form groups. Threshold-
ing leaves these quasi-identifiers as is, and only publishes groups
whose count exceeds a threshold. On the other hand, k-anonymity
generalizes the quasi-identifiers to create groups of at least k. How-
ever, both involve ensuring that groups are sufficiently large before
publication. Given that thresholding is useful for addressing both
utility and privacy issues in the current differential privacy regime,
it is natural to ask if k-anonymity (and perhaps other privacy no-
tions) is also still useful. We hope our work can serve as a first step
that could trigger further research in this broad, fertile ground.

9. REFERENCES
[1] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and

K. Talwar. Privacy, accuracy, and consistency too: a holistic solution
to contingency table release. In PODS, pages 273–282, 2007.

[2] A. Blum, K. Ligett, and A. Roth. A learning theory approach to
noninteractive database privacy. J. ACM, 60(2):12, 2013.

[3] C. Dwork. Differential privacy. In ICALP (2), pages 1–12, 2006.
[4] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise

to sensitivity in private data analysis. In TCC, pages 265–284, 2006.
[5] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential

privacy under continual observation. In STOC, pages 715–724, 2010.
[6] C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and S. P. Vadhan.

On the complexity of differentially private data release: efficient
algorithms and hardness results. In STOC, pages 381–390, 2009.

[7] C. Dwork and R. Pottenger. Toward practicing privacy. JAMIA,
20(1):102–108, 2013.

[8] C. Dwork and A. Roth. The algorithmic foundations of differential
privacy. Foundations and Trends in Theoretical Computer Science,
9(3-4):211–407, 2014.

[9] C. Dwork, G. N. Rothblum, and S. P. Vadhan. Boosting and
differential privacy. In FOCS, pages 51–60, 2010.

[10] A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally
utility-maximizing privacy mechanisms. SIAM J. Comput.,
41(6):1673–1693, 2012.

[11] Google search analytics help: Data that are subject to thresholds.
https://support.google.com/analytics/answer/
2954071?hl=en&ref_topic=2799375.

[12] A. Gupta, M. Hardt, A. Roth, and J. Ullman. Privately releasing
conjunctions and the statistical query barrier. SIAM J. Comput.,
42(4):1494–1520, 2013.

[13] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy
of differentially private histograms through consistency. PVLDB,
3(1):1021–1032, 2010.

[14] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond
k-anonymity and l-diversity. In ICDE, pages 106–115, 2007.

[15] N. Li, W. Qardaji, and D. Su. On sampling, anonymization, and
differential privacy or, k-anonymization meets differential privacy. In
Proceedings of the 7th ACM Symposium on Information, Computer
and Communications Security, ASIACCS ’12, pages 32–33, 2012.

[16] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. In
ICDE, page 24, 2006.

[17] F. McSherry and K. Talwar. Mechanism design via differential
privacy. In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2007), October 20-23, 2007, Providence,
RI, USA, Proceedings, pages 94–103, 2007.

[18] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and
sampling in private data analysis. In STOC, pages 75–84, 2007.

[19] L. Sweeney. k-anonymity: A model for protecting privacy.
International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(5):557–570, 2002.

[20] J. Ullman. Answering n2+o(1) counting queries with differential
privacy is hard. In STOC, pages 361–370, 2013.

[21] United states census bureau american community survey data
suppression explained. http://www.census.gov/acs/www/

Downloads/data_documentation/data_suppression/
ACSO_Data_Suppression.pdf.

[22] C. Zeng, J. F. Naughton, and J.-Y. Cai. On differentially private
frequent itemset mining. PVLDB, 6(1):25–36, 2012.

APPENDIX
A. PROOFS

A.1 Proof of Fact 4
PROOF. Suppose that a probabilistic mechanism K can achieve

both. Consider a one dimensional integral query q. Suppose that
q(D) = β and q(D′) = β + 1 where D ∼ D′. Since K is ε-
differentially private, we have

supp(K(D)) = supp(K(D′))

Note that here supp(K(D)) is a collections of ranges. It follows
that for every R ∈ supp(K(D)) we have both β ∈ R and β + 1 ∈
R. Now consider another database D′′ such that q(D′′) = β + 2
and D′ ∼ D′′. With exactly the same argument, we can show that
every range in supp(K(D)) must also contain β + 2. Repeating
this procedure, it follows that every range in supp(K(D)) must
contain all integers. Clearly, only the range (−∞,∞) can satisfy
this requirement.

A.2 Proof of Lemma 1
PROOF. Let q be a counting query. Suppose that q(D) = β and

q(D′) = β−1 for two neighboring databasesD andD′. Consider
supp(M(D)) and supp(M(D′)), which consists of ranges that
contain β and β − 1, respectively. A bad range R must be of one
of the following two types:

(1) R ∈ supp(M(D)) but R /∈ supp(M(D′));

(2) R /∈ supp(M(D)) but R ∈ supp(M(D′)).

Now consider a bad range R of type (1). By the mechanismM0,
we have R1 = [β′ − L, β′ + L] where β′ is noisy version of β
after perturbation. Since β ∈ R1 but β − 1 6∈ R1, it follows that
β′ −L = β and hence R1 = [β, β + 2L] — this is the unique bad
range of type (1). Similarly,R2 = [β−1−2L, β−1] is the unique
bad range of type (2).

We now compute the probability thatR1 can be generated byM
(actually by M0). With respect to M0, it equals the probability
that β′ = β + L, which is

Pr[β′ = β + L] = Pr[β = β′ − L] =
1− e−ε

1 + e−ε
e−Lε

because M0 adds geometric noise drawn from G(ε) to β. Sim-
ilarly, we can compute the probability of R2, which turns out to
be the same as the above. Since R1 and R2 are the only two
ranges that violate ε-differential privacy, it follows that for all S ⊆
Range(M),

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] +
1− e−ε

1 + e−ε
e−Lε,

Pr[M(D′) ∈ S] ≤ eε Pr[M(D) ∈ S] +
1− e−ε

1 + e−ε
e−Lε.

Therefore, it is sufficient to set δ = 1−e−ε

1+e−ε e
−Lε.

A.3 Proof of Lemma 2
PROOF. Let q be such a query. Since ∆q = 1, only one dimen-

sion in q(D) and q(D′) could be different. Following the proof of

10

Lemma 1, approximate DP holds for that particular dimension with
additive error 1−e−ε

1+e−ε · e−Lε. Intuitively, since the affected dimen-
sion must be one of the d dimensions, it follows that the total addi-
tive error in the d-dimensional case is at most d· 1−e

−ε

1+e−ε ·e−Lε. More
formally, letBi be the event that for dimension i type (1) bad range
happens and let B = ∪i∈[d]Bi. For any S ⊆ Range(M), we use
A and A′ to denote the eventsM(D) ∈ S andM(D′) ∈ S. By
symmetry, we only need to consider that

Pr
[
A
]

= Pr
[
A ∧ ¬B

]
+ Pr

[
A ∧B

]
≤ Pr

[
A ∧ ¬B

]
+ Pr

[
B
]

≤ eε Pr
[
A′ ∧ ¬B

]
+ Pr

[
∪di=1 Bi

]
≤ eε Pr

[
A′
]

+ Pr
[
∪di=1 Bi

]
≤ eε Pr

[
A′
]

+ d · 1− e−ε

1 + e−ε
· e−Lε.

The last inequality follows from applying the union bound

Pr[∪ti=1Ai] ≤
t∑
i=1

Pr[Ai],

for any probability space and events A1, . . . , At in that space. Set-
ting δ = d · 1−e−ε

1+e−ε · e−Lε completes the proof of the lemma.

A.4 Proof of Theorem 3

PROOF. Without loss of generality, let D ∼ D′ be two neigh-
boring database where q(D′) contains one more dimension than
q(D). We extend q(D) into a (d + 1)-dimensional vector where
the (d+ 1)-th dimension is ⊥.

Consider any randomized mechanism M that is used to com-
pute q(D). The range of M(D) consists of vectors where the
(d + 1)-th dimension must be ⊥, while the range ofM(D′) con-
sists of vectors where the (d + 1)-th dimension is not ⊥. Now
consider the event E = Rd+1. Then Pr[M(D′) ∈ E] = 1 but
Pr[M(D) ∈ E] = 0. For (ε, δ)-differential privacy to hold, we
need that Pr[M(D′) ∈ E] ≤ eε Pr[M(D) ∈ E] + δ which im-
plies δ ≥ 1.

A.5 Proof of Theorem 4

PROOF. Let Ev be the event thatM releases dimension 0 when
it has measure v, and denote pv the probability that Ev happens. By
the definition of differential privacy, we can define the following
sequence p⊥ = 0, p∆ ≤ δ, and pw+∆ ≤ eεpw + δ. Therefore

pv ≤ δ(1 + eε + e2ε + · · ·+ e(dv/∆e−1)ε) ≤ δ e
dv/∆eε − 1

eε − 1

Therefore for pv ≥ p, it suffices that (edv/∆eε − 1)δ ≥ p, which
implies that v ≥ ∆(ln(p/δ + 1)/ε− 1).

A.6 Proof of Lemma 4
For Lemma 4 and Lemma 5, let

S0 =
{
x ∈ (R ∪ {⊥})d

′ ∣∣ ∀i ∈ {d+ 1, . . . , d′}, xi =⊥
}
.

Clearly, the supports of A(D̃) and A(D) only contain vectors in
S0. Let Sc0 be the complement of S0 in (R ∪ {⊥})d

′
.

PROOF. We have that

Pr[A(D′) ∈ S]

≥Pr[A(D′) ∈ S ∩ S0]

= Pr
[
A(D̃) ∈ S ∩ S0,∧d

′
i=d+1(a′i +Xi < T)

]
= Pr[A(D̃) ∈ S ∩ S0] ·

∏d′

i=d+1 Pr[Xi < T − a′i]

≥Pr[A(D̃) ∈ S ∩ S0] ·
(
1− e−ω(T−∆)

1 + e−ω
)∆
.

completing the proof.

A.7 Proof of Lemma 5
PROOF. We have that

Pr[A(D′) ∈ Sc0] = Pr
[
∨d
′
i=d+1 A(D′)i 6=⊥

]
= Pr

[
∨d
′
i=d+1 P(D′)i ≥ T

]
≤

d′∑
i=d+1

Pr[a′i +Xi ≥ T]

≤
d′∑

i=d+1

Pr[∆ +Xi ≥ T]

=

d′∑
i=d+1

e−ω(T−∆)

(1 + e−ω)

≤ ∆ · e−ω(T−∆)

(1 + e−ω)

def
= γ.

Since Pr[E1 ∩ E2] ≥ Pr[E1]− Pr[¬E2],

Pr[A(D′) ∈ S ∩ S0] ≥ Pr[A(D′) ∈ S]− Pr[A(D′) ∈ Sc0]

≥ Pr[A(D′) ∈ S]− γ.

As a result Pr[A(D′) ∈ S] ≤ Pr[A(D′) ∈ S ∩S0] +γ. Since the
first d dimensions of D′ and D̃ are the same,

Pr[A(D′) ∈ S ∩ S0] ≤ Pr[A(D̃) ∈ S ∩ S0]

The lemma follows by observing that Pr[A(D̃) ∈ S ∩ S0] =

Pr[A(D̃) ∈ S].

A.8 Proof of Theorem 5
PROOF. Combining (1) and (3), (2) and (4), we have that

Pr[A(D) ∈ S] ≤ eω∆(
1− e−ω(T−∆)

1+e−ω

)∆ Pr[A(D′) ∈ S],

Pr[A(D′) ∈ S] ≤ eω∆ Pr[A(D) ∈ S] +
∆e−ω(T−∆)

(1 + e−ω)
.

It is left to set the parameters. Our goal is that

eω∆
(

1− e−ω(T−∆)

1 + e−ω

)−∆

≤ eε, ∆e−ω(T−∆)

(1 + e−ω)
≤ δ

It suffices to set

eω∆(1− e−ω(T−∆))−∆ ≤ eε, (5)

∆e−ω(T−∆) ≤ δ (6)

By (6) we have

e−ω(T−∆) ≤ δ/∆ = o(1/n)

11

which gives that

T ≥ ∆ + ln(∆/δ)/ω

Plugging into (5),

eω∆(1− e−ω(T−∆))−∆ ≤ eω∆(1− δ/∆)−∆

≤ eω∆+δ

want
≤ eε.

Thus one can set ω = ε/(1 + γ)∆ because δ = o(1/n). Plugging
back ω = ε/(1 + γ)∆, we have T ≥ ∆

(
1 + (1 + γ) ln(∆/δ)/ε

)
completing the proof.

A.9 Proof of Lemma 6
PROOF. Part (a) follows directly from the fact that u is natural.

Part (b) follows from our definition of ∆u and the fact that D and
D′ are neighboring.

A.10 Proof of Lemma 7
PROOF. We observe that, because P uses independent random-

ness to each tuple type, we have that for any S ⊆ R,

Pr[M(P(D)) ∈ S] = Pr[M(P(D′)) ∈ S|i /∈ supp(P(D′))]

Therefore,

Pr[M(P(D′) ∈ S]

= Pr[M(P(D′)) ∈ S|i ∈ supp(P(D′))] · Pr[i ∈ supp(P(D′))]+

Pr[M(P(D′)) ∈ S|i /∈ supp(P(D′))] · Pr[i /∈ supp(P(D′))]

≤Pr[i ∈ supp(P(D′))] + Pr[M(P(D′)) ∈ S|i /∈ supp(P(D′))]

≤ exp(−κ−∆u

b
) + Pr[M(P(D′)) ∈ S|i /∈ supp(P(D′))]

= exp(−κ−∆u

b
) + Pr[M(P(D)) ∈ S]

where the second inequality is due to Lemma 6. On the other hand,
note that

Pr[M(P(D′)) ∈ S] ≥ Pr[M(P(D′)) ∈ S|i /∈ supp(P(D′))]

·
(
1− exp(−κ−∆u

b
)
)

It then follows that

Pr[M(P(D)) ∈ S] ≤
(
1− exp(−κ−∆u

b
)
)−1

· Pr[M(P(D′)) ∈ S]

completing the proof.

A.11 Proof of Corollary 1
PROOF. We want that(

1− exp(−κ−∆u

b

)
− 1 ≤ eε (1)

exp(−κ−∆u

b
) ≤ δ (2)

From (2) we derive that κ ≥ ∆u+ b ln(1/δ). Plugging (2) back to
(1) (

1− exp(−κ−∆u

b
)
)−1

≤(1− δ)−1

≤(e−δ)−1 = eδ ≤ eε

where the last inequality is due to our settings of δ and ε.

A.12 Proof of Lemma 8
PROOF. We write

Pr[M(P(D)) ∈ S]

=
∑
Z

Pr[supp(P(D)) = Z] Pr[M(D|Z) ∈ S]

≤
∑
Z

Pr[supp(P(D)) = Z)]

·
(
eε Pr[M(D′|Z) ∈ S] + δ

)
Therefore it suffices to bound

e−∆u/b ≤ Pr[supp(P(D′)) = S]

Pr[supp(P(D)) = S]
≤ e∆u/b

But this follows becauseD andD′ has the same universe so we can
view P as applying a postprocessing after Laplacian mechanism,
therefore by Fact 2 the above quantity is bounded by the privacy
loss of Laplacian mechanism, which is exp(∆u/b). Plugging back
completes the proof.

A.13 Proof of Theorem 7
PROOF. Let D ∼ D′ be two neighboring databases in NU , and

M be an (ε, δ)-differentially private mechanism, then for any event
E ⊆ R,

Pr[M(P(D)) ∈ E]

=
∑
σ

Pr[P = σ] Pr[M(P|σ(D) ∈ E]

≤
∑
σ

Pr[P = σ](eε Pr[M(P|σ(D′)) ∈ E] + δ)

=eε Pr[M(P(D′)) ∈ E] + δ

completing the proof.

A.14 Proof of Corollary 2
PROOF. Fix any sequence of coin tosses of F , the resulting

mapping is a deterministic mapping that maps each element in U to
an element in U ′, and thus is `1-norm preserving. Thus by Theorem
above, F is differential privacy oblivious.

A.15 Proof of Lemma 9
PROOF. Let q′ be any query from NU

′
toR, andM be an (ε, δ)-

differentially private mechanism computing q′. Now, given any two
databasesD ∼ D′ in NU , we have thatP(D) ∼ P(D′) becauseP
is `1-norm preserving. Therefore the differential privacy guarantee
of M holds for P(D) ∼ P(D′). This indicates that M ◦ P is
(ε, δ)-differentially private, and so P is differential privacy oblivi-
ous.

12

