
The Case for ML-Enhanced High-Dimensional Indexes
(Regular Papers)

Rong Kang

Tsinghua University

Beijing, China

kangrong.cn@gmail.com

Wentao Wu

Microsoft Research

Redmond, USA

wentao.wu@microsoft.com

Chen Wang

Tsinghua University

Beijing, China

wang_chen@tsinghua.edu.cn

Ce Zhang

ETH Zurich

Zurich, Switzerland

ce.zhang@inf.ethz.ch

Jianmin Wang

Tsinghua University

Beijing, China

jimwang@tsinghua.edu.cn

ABSTRACT
The case of learned indexes has recently inspired intensive research

in the database community. It has been shown that learned indexes

can often outperform traditional indexes such as B-tree on low-

dimensional data. However, learned indexes suffer from inherent

difficulties due to the “curse of dimensionality” when applied to

datasets with very high dimensions (e.g., time series data). In this pa-

per, we explore the “middle ground” between traditional and learned

indexes where we can leverage advantages of both, targeting high-

dimensional data. Specifically, we studyML-enhanced indexes in the

context of processing 𝑘-nearest-neighbor (𝑘NN) queries over time

series data. Our ML-enhanced indexes take traditional tree-based

indexes as inputs, and train deep neural networks that capture the

distribution of nearest neighbors among index leaf nodes. We then

process 𝑘NN queries by scanning the leaf nodes with respect to the

order suggested by the neural networks (rather than their original

order). Experimental evaluation shows that ML-enhanced indexes

can significantly outperform their traditional counterparts in terms

of the recall of the nearest neighbors with respect to the number of

index leaf nodes being scanned.

1 INTRODUCTION
Indexing techniques are fundamental for accelerating query pro-

cessing in similarity search. Typical applications include 𝑘-nearest-

neighbor (𝑘NN) queries and range queries. Various index struc-

tures have been proposed, such as R-tree [18] and its variants [4],

M-tree [8], and DS-Tree [40]. Recently, there has been intensive

work on the case of learned indexes [28, 33], and it has been shown

that learned indexes can often outperform traditional indexes on

low-dimensional data given their adaptive capability to workload-

specific access patterns. However, in practice, similarity search is

often conducted over objects with very high dimensions, such as

image, text, and time series. Learned indexes can suffer from the

“curse of dimensionality” when applied to such types of data.

In this paper, rather than pursuing pure traditional or learned

indexes for high-dimensional data, we instead explore their “middle

ground” by studying ML-enhanced indexes. Our basic idea is to stay

with traditional, tree-based indexes; however, when scanning the

leaf nodes to fetch relevant data objects from the disk, rather than

following the original order of the leaf nodes suggested by the

indexes we instead use a deep neural network (DNN) to reorder the

leaf nodes. Our experimental evaluation results show that our ML-

enhanced indexes can significantly outperform traditional indexes

in terms of the recall of 𝑘NN queries with respect to the number of

index leaf nodes being scanned.

In more detail, we study ML-enhanced indexes in the context

of processing 𝑘NN queries over time series data, which typically

contain hundreds of dimensions. Query answering using tree-based

indexes in general involves two steps:

• The pruning step (a.k.a. the filtering step), where we traverse
the index in a top-down manner to prune irrelevant objects

(i.e., objects that cannot be among the 𝑘 nearest neighbors)

and land on a set of candidate leaf nodes in which relevant

objects must be included;

• The post-processing step (a.k.a. the refinement step [11]),

where the objects in the candidate set are compared to the

given query object to find the 𝑘 nearest neighbors.

To ensure that no relevant objects are eliminated by the pruning

step, existing tree-based indexes typically employ distance-based

bounding techniques. Specifically, one can compute the lower-bound
of the distances between data objects covered by an index node

and the given query object; if the lower-bound is larger than the

distance of the current 𝑘th nearest neighbor, then that index node

can be safely skipped. In the post-processing step, the candidate

leaf nodes are further ordered by their distance lower-bounds [27].

To measure the effectiveness of tree-based indexes when process-

ing 𝑘NN queries, one common practice is to measure the recall (i.e.,
the number of nearest neighbors that have been found) as we scan

the disk to fetch data objects pointed to by the candidate leaf index

nodes [22]. Clearly, the goal is to cover as many nearest neighbors

within a given budget on the number of disk accesses. If the lower-

bounds were tight enough, one would have expected a few disk

accesses to reach a good recall. For high-dimensional data, unfor-

tunately, this is rarely the case in practice — the lower-bounds are

usually quite loose for the sake of “no false dismissals” (i.e., one can-

not miss a true nearest neighbor). Indeed, for the tree-based index

structure to achieve this, the region in the high-dimensional space

represented by a parent index node must cover all regions repre-

sented by its child nodes [4, 27, 36, 40]. Given the high-dimensional

nature of the data, the lower-bound of an index node is thus in-

evitably loose as long as there are “outliers” in its descendants

along any single dimension. As a result, to reach a certain degree

1

Rong Kang, Wentao Wu, Chen Wang, Ce Zhang, and Jianmin Wang

of recall, the number of disk accesses by following leaf index nodes

ordered by their lower-bounds is often considerable on real-world

high-dimensional datasets.

Our idea in this paper is to use machine learning (ML) technolo-

gies to improve convergence on recall, i.e., to reduce the number of

disk accesses for reaching a given degree of recall, by reordering the
leaf index nodes. Specifically, we train a deep neural network (DNN)

to predict the likelihoods of the leaf index nodes where the nearest
neighbors of the given query object may locate; we then visit the

leaf index nodes with respect to the decreasing order of their likeli-

hoods. The intuition is that, once an index is built, the distribution
of the nearest neighbors given a query object has been fixed and

therefore is learnable. We have conducted extensive experiments to

evaluate the effectiveness of our ML-enhanced indexes, and results

show that they can significantly improve on recall compared to

their corresponding counterparts without ML-based reordering.

The reordering idea is, by no means, tied to ML-based approaches.

Indeed, one can use other mechanisms for reordering. In this pa-

per, we have further examined such an alternative approach based

on quantization [22], which typically tries to convert raw high-

dimensional data into compact formats using encoding schemes.

The compacted data is presumed much smaller and therefore can

be resident in main memory. When searching for the nearest neigh-

bors of a given query object, the compacted representation is used

to reconstruct an approximate version of the original raw, high-

dimensional data object, after which an estimated distance can

be computed as usual. We can design a reordering mechanism of

leaf index nodes by following the quantization-based, approximate

distances. We have further compared our DNN-based reordering

mechanism with this quantization-based reordering mechanism,

and we find that they are comparable in terms of improving recall

on nearest neighbors. However, the construction of the compacted

data representations using quantization is both more computation-

and resource-intensive.

To summarize, this paper makes the following contributions:

• We conduct a systematic performance study over existing

high-dimensional index structures and demonstrate their

inefficiency when processing 𝑘NN queries.

• We propose ML-enhanced indexes that take advantage of

both traditional and learned indexes by reordering leaf index

nodes using deep neural networks, with the goal of improv-

ing the recall of 𝑘NN query processing.

• As an alternative method and a reference point/baseline for

comparison, we propose a quantization-based reordering

mechanism. We further compare it against the above DNN-

based reordering mechanism.

• We evaluate our ML-enhanced indexes, including the DNN-

based and quantization-based reorderingmechanisms, via ex-

tensive experiments. Our experimental results demonstrate

the effectiveness of ML-enhanced indexes using the DNN-

based reordering mechanism.

The rest of the paper is organized as follows. We summarize

related work in Section 2. We then present a systematic study of

existing tree-based indexes for high-dimensional data, in terms

of their effectiveness when processing 𝑘NN queries (Section 3).

Following this performance study and analysis, we propose ML-

enhanced indexes in Section 4 and report evaluation results in

Section 5. We conclude and discuss future work in Section 6.

2 RELATEDWORK
The related work on similarity search has been overwhelming in

literature. We focus our discussion on indexing techniques that are

designed for answering 𝑘NN queries. In general, they fall into two

categories, depending on whether they support exact or approxi-

mate 𝑘NN queries. Note that, however, many of the indexes that

were proposed for answering exact 𝑘NN queries can also be used

to support approximate 𝑘NN queries [6, 7, 30, 36, 40], which is the

focus of our work in this paper.

2.1 Indexes for Exact kNN Queries
Indexes for exact 𝑘NN queries need to guarantee that the pruning

step should not eliminate any data objects that are true nearest

neighbors. To achieve this, such indexes usually use distance (e.g.,

Euclidean distance) lower-bounds as pruning conditions: If the

lower-bound of an index node is larger than the current largest

distance between the query object and its nearest neighbors, this

index node can be safely ignored.

R-tree [18] is perhaps one of the most classic indexes that follow

this pruning strategy based on distance lower-bounds. It divides the

multi-dimensional search space into overlapping hyperrectangles
that are organized as a tree. A leaf node contains pointers to the

raw data, and an inner node represents the minimum bounding
rectangle of its child nodes. There have been a number of variants

proposed since the initial introduction of R-tree, such as R* tree [4]

that improves space partitioning and balance of R-tree.

Other prominent tree indexes for time series data include M-

tree [8] and DS-Tree [40]. M-tree divides data objects based on

their relative distances. The lower-bound pruning strategy works

correctly in M-tree as long as the distance metric (e.g., Euclidean

distance) satisfies the triangular inequality. On the other hand,

DS-Tree builds the index with respect to the “extended adaptive

piecewise constant approximation” (EAPCA) [26], which splits an

index node base on the mean or variance of data objects covered.

In the past decade, a series of tree indexes have been proposed for

time series data that are based on the so-called “symbolic aggregate

approximation” (SAX) [29]. As the first attempt in this line of work,

iSAX [36] constructs a multi-level tree based on SAX and the so-

called “piecewise aggregate approximation” (PAA) [25]. Follow-up

work improves it on various aspects such as splitting policy [6],

bulk-loading [7] support, adaptive construction [44], and utilization

of new hardware [34].

2.2 Indexes for Approximate kNN queries
Given the overhead of processing exact kNN queries, approximate

𝑘NNs are acceptable in lots of applications. As a result, many in-

dexes have been proposed for supporting approximate 𝑘NN queries,

including hash-based methods [17, 21, 37], graph-based methods

(e.g., HSGW [31] and NSG [14]), and tree-based methods [1, 32].

One key idea leveraged by indexes for approximate 𝑘NN queries

is quantization, which aims to convert high-dimensional data into a

more compact representation. For instance, PQ [22] partitions the

original high-dimensional space into subspaces with lower dimen-

sions, and then learns a quantization encoding in each subspace

2

The Case for ML-Enhanced High-Dimensional Indexes

independently. The final encoding/representation of the data is

formed by concatenating the encodings of the subspaces. OPQ [16,

39] improves PQ by rotating the raw data properly to reduce the

quantization error. LOPQ [23], on the other hand, proposes a two-

level structure. It first uses an inverted multi-index [2] to partition

data into two subspaces; it then trains a rotation matrix for each

node independently for finer-grained optimization.

2.3 Learned Indexes
Recently, the case of learned indexes has triggered intensive re-

search (e.g., [10, 15, 19, 28, 33, 43]). The basic idea is to view indexes

as “models” that predict the “positions” of relevant data objects. It

has been shown that learned indexes can outperform traditional

tree-based indexes, such as B-tree [28] and R-tree [33], by exploiting

workload-specific access patterns. Notable optimizations include

fitting-tree [15], which uses piece-wise linear functions with a

bounded error specified at index construction time, and ALEX [10],

which further supports index updates. The main challenge of ap-

plying learned indexes on high-dimensional data is the well-known

“curse of dimensionality,” which makes it difficult to build good

models with limited training data (compared to the number of data

dimensions). Notably, the recentwork on learnedmulti-dimensional

indexes only tested datasets with less than ten dimensions [33],

whereas time series data typically involve tens or hundreds of di-

mensions (as used in our experiments).

2.4 Other Technologies
In addition to tree-based indexes, which is the focus of this paper,

there are other technologies for processing exact 𝑘NN queries as

well. For example, VA-File [42] converts raw data into quantization-

based approximations. VA+File [13] improves VA-File by converting

raw data using Karhunen Loeve Transform (KLT) [24].

3 STUDY OF TREE-BASED INDEXES
We start by a systematic study of existing tree-based indexes in

terms of their effectiveness when processing 𝑘NN queries.

3.1 Experiment Setup
Weanalyze three indexes that have been covered in Section 2 for pro-

cessing 𝑘NN queries: DS-Tree [40], iSAX [36], and VA+Index [13],

which are considered as the state of the art [11, 12] among others.

We use C/C++ implementations of these indexes from [11]. For the

VA+Index implementation, we further build R-tree on top of the

VA+File features [13]. We run experiments using a PC with Intel

Xeon E5-2620 CPU that runs Ubuntu 16.04 and GCC 5.4.0.

3.1.1 Datasets. In our experiments, We use one synthetic dataset,

RandomWalk (RWalk for short), that is generated based on a random-

walk model. It has been widely used in previous work [11, 40]. In

addition, we also use two real datasets, Deep and ECG. Table 1

presents the details of the datasets.

Deep [3] is an image dataset that contains over 1 billion image

vectors. The image vectors were extracted from the last layers of

GoogLeNet [38] with parameters trained by ImageNet [35], and

were further converted into 96-dimensional vectors using principal

component analysis (PCA).

Table 1: Summary of Datasets
Dataset Type Dimension #Rows Size on Disk

RWalk-{1M,100M} [11] Synthetic 256 {106, 108} {1GB, 100GB}

Deep-{1M,100M} [3] Real 96 {106, 108} {384MB, 38.4GB}

ECG-1M [5] Real 500 10
6

2GB

ECG [5] contains 549 ECG records from 290 patients. Each ECG

record contains 15 measurement signals and is further divided into

a list of 500-dimensional time series.

3.1.2 Query Processing. We expand the implementation of 1NN

search by [11] to support 𝑘NN search for all three indexes evaluated.

We maintain an in-memory max-heap to maintain the 𝑘NN objects

found so far. Since for all three indexes we can easily derive a

distance lower-bound for each index node given a query, we simply

compute the distance between the query and the current 𝑘th nearest

neighbor (i.e., the root element of the max-heap) and discard any

index node with a larger distance lower-bound.

3.1.3 Measurements. In our experiments, raw data objects are res-

ident on disk and leaf nodes contain pointers to them. As we men-

tioned in the introduction, the goal of 𝑘NN query processing is to

minimize the number of disk accesses required to reach a certain

degree of recall. We now formally define this performance metric.

We define first-N-recall, i.e., the average recall of the first 𝑁 index

leaf nodes accessed, as follows:

first-𝑁 -recall =
1

𝑁

∑𝑁

𝑖=1

𝑇 (𝑖)
𝑘

, (1)

where 𝑇 (𝑖) is the number of true nearest neighbors in the first 𝑖

accessed leafs. Note that, when 𝑁=1, first-1-recall is equivalent to
the precision metric used by approximate 𝑘NN query processing [7,

40]. Unless otherwise stated, we set 𝑁=10 and report first-10-recall.

3.2 Analysis of Recall
We next perform an analysis based on the first-N-recall metric

defined in Equation 1.

3.2.1 Ideal Access Order. Given a set of candidate index leaf nodes,

we count the number of true nearest neighbors each candidate

node contains, and access the candidates in the order of decreasing

counts. We call this the ideal access order.

Example 3.1. Consider a case when 𝑘=5 and 𝑁=10. Suppose the

first 10 candidate leaf nodes given by the index (ordered by their

distance lower-bounds) are 𝐿1, ..., 𝐿10. Assume that 𝐿5 contains 3 of

the 5 nearest neighbors, 𝐿2 and 𝐿6 each contains 1 of them, whereas

the others do not contain any. The ideal access order of the leaf
nodes is then 𝐿5, 𝐿2, 𝐿6, and others. The first-10-recall of the ideal
access order is 0.94, whereas it is 0.64 for the original order.

Theorem 3.2. For any 𝑘 and 𝑁 , the ideal access order achieves
the highest first-N-recall.

Proof. Without loss of generality, assume that the ideal access

order is O = {𝐿1, 𝐿2, · · · , } with first-𝑁 -recall 𝑅. Suppose that the

number of true nearest neighbors in 𝐿𝑖 is 𝑐 (𝐿𝑖). By definition, we

have 𝑐 (𝐿1) ≥ 𝑐 (𝐿2) · · · ≥ 𝑐 (𝐿𝑁). Suppose that there exists a differ-
ent order O′ = {𝐿′

1
, 𝐿′

2
, · · · , 𝐿′

𝑁
} with the highest first-𝑁 -recall 𝑅′

such that 𝑅′ > 𝑅. Then there exists

1 ≤ 𝑎 < 𝑏 ≤ 𝑁 such that 𝑐 (𝐿𝑎) < 𝑐 (𝐿𝑏) . (2)

3

Rong Kang, Wentao Wu, Chen Wang, Ce Zhang, and Jianmin Wang

0.0

0.5

1.0

R
ec

al
l

(a) Ranwalk-1M, Leaf=100

0.0

0.5

1.0

(b) Ranwalk-1M, Leaf=1k

0.0

0.5

1.0

(c) Ranwalk-1M, Leaf=10k

F1 F6 F11
0.0

0.5

1.0

R
ec

al
l

(d) Deep-1M, Leaf=100

F1 F6 F11
0.0

0.5

1.0

(e) Deep-1M, Leaf=1k

F1 F6 F11
0.0

0.5

1.0

(f) Deep-1M, Leaf=10k

Top5-Original
Top5-Ideal

Top50-Original
Top50-Ideal

Top500-Original
Top500-Ideal

Figure 1: The first-10-recalls of DS-Tree w.r.t. different 𝑘’s.
By Equation (1), we can write 𝑅′ as

𝑅′ =
1

𝑁

𝑁∑
𝑖′=1

1

𝑘

𝑖′∑
𝑗 ′=1

𝑐 (𝐿𝑗 ′) =
1

𝑁𝑘

𝑁∑
𝑖′=1

𝑖′∑
𝑗 ′=1

𝑐 (𝐿𝑗 ′)

=
1

𝑁𝑘

𝑁∑
𝑖′=1

(𝑁 − 𝑖 ′ + 1) · 𝑐 (𝐿𝑖′) .

By (2), we can exchange 𝐿𝑖′ and 𝐿𝑗 ′ in O
′
, and obtain a new order

O′′ with first-𝑁 -recall 𝑅′′ such that

𝑅′′ − 𝑅′ = 1

𝑁𝑘
[(𝑁 − 𝑎 + 1) · 𝑐 (𝐿𝑏) + (𝑁 − 𝑏 + 1) · 𝑐 (𝐿𝑎)]−

1

𝑁𝑘
[(𝑁 − 𝑎 + 1) · 𝑐 (𝐿𝑎) + (𝑁 − 𝑏 + 1) · 𝑐 (𝐿𝑏)]

=
1

𝑁𝑘
[(𝑏 − 𝑎) · 𝑐 (𝐿𝑏) + (𝑎 − 𝑏) · 𝑐 (𝐿𝑎)]

=
1

𝑁𝑘
· (𝑏 − 𝑎) · [𝑐 (𝐿𝑏) − 𝑐 (𝐿𝑎)] > 0

which contradicts the fact that O′ has the highest first-𝑁 -recall. As

a result, we must have 𝑅′ ≤ 𝑅, which implies that 𝑅 is the highest

first-𝑁 -recall one can achieve. □

3.2.2 Original vs. Ideal Access Orders. Figure 1 depicts the first-

10-recall curves of DS-Tree with leaf node size varying among

{100, 1k, 10k} and 𝑘 ∈ {5, 50, 500}. In Figure 1, the solid lines

are recall curves following the original access orders (i.e., by the

distance lower-bounds), whereas the dashed lines are recall curves

following the ideal access orders.

We investigate the original access orders first. On RWalk-1M,

the recall decreases as 𝑘 increases, because there are more nearest

neighbors and we need to look into more index nodes to search

for them. For example, when the leaf size is 100, the first-10-recall

on RWalk-1M drops from 0.292 to 0.143 as 𝑘 increases from 5 to

500. If we fix 𝑘 , then the first-10-recall increases when the leaf

size increases. For instance, when 𝑘=5 and the leaf size increases

from 100 to 10k, the first-10-recall increases from 0.334 to 0.837. On

the other hand, the first-10-recall drops significantly on Deep-1M
compared to RWalk-1M.

We next study the ideal access orders, which yield the optimal

recall curves by Theorem 3.2. we observe that, regardless of the

values of 𝑘 and 𝑁 , there is a significant gap between the recall

curve by the original access order compared to the one by the ideal

access order. Moreover, the gap becomes smaller when the leaf size

increases. For example, the first-10-recalls on RWalk-1M are 0.835,

0.885, and 0.937 following the ideal access orders when the leaf

sizes are 100, 1k, and 100k, which are 0.501, 0.267, and 0.1 higher

than the first-10-recalls following the original access orders. The

observation on Deep-1M is similar.

(Summary) The large gap between the original and ideal access

orders in terms of the first-𝑁 -recall suggests a huge room for po-

tential improvement. Consequently, in the rest of this paper, we

will focus on optimizing the access order of index leaf nodes.

Algorithm 1 Index-based 𝑘NN query processing

Require: Tree-based index I, 𝑘NN query 𝑄

Ensure: The 𝑘 nearest neighbors of 𝑄

1: H ← newMax-Heap(𝑘); Q𝑢𝑒𝑢𝑒 ← new Priority-Queue;

2: H , bsf ← Initial_𝑘NN(𝑄 , I);
3: Add I.root to Q𝑢𝑒𝑢𝑒 ;
4: while node← pop next node from Q𝑢𝑒𝑢𝑒 do
5: if node.dist > bsf.dist then
6: break;

7: if node is leaf then
8: Load all raw obj’s in node from disk;

9: for each obj in node do
10: obj.dist← computeDistance(𝑄 , obj);
11: if obj.dist < bsf.dist then
12: Insert obj intoH w.r.t. obj.dist;
13: bsf.dist←H .root.dist;

14: else
15: for each child in node do
16: child.lbd← computeLowerBound(𝑄 , child);
17: if child.lbd < bsf.dist then
18: Insert child to Q𝑢𝑒𝑢𝑒 according to child.lbd;
19: ReturnH .toList();

4 ML-ENHANCED INDEXES
We propose ML-enhanced indexes that can be viewed as a combina-

tion of classic tree-based indexes and the ongoing trend of “learned

indexes.” Specifically, we build a classic index as it is (e.g., DS-Tree,

iSAX, R-tree, etc.) and then improve the access order of its leaf

nodes when processing a 𝑘NN query, using ML techniques. In this

section, we present the details of this idea. Moreover, we propose

an alternative baseline that reorders leaf nodes using quantization
techniques from the area of approximate 𝑘NN query processing.

In the following, we start by presenting the general framework

that is shared by our ML-based and quantization-based reorder-

ing techniques. We then present the details of the two reordering

techniques, respectively.

4.1 General Framework
Algorithm 1 outlines the general framework of 𝑘NN query process-

ing using traditional tree-based indexes. It uses a priority query

Q𝑢𝑒𝑢𝑒 to determine the access order of index that leaf nodes sur-

vived after pruning, based on the distance lower-bounds.

In contrast, Algorithm 2 summarizes our enhanced 𝑘NN query

processing framework by reordering the index leaf nodes being

4

The Case for ML-Enhanced High-Dimensional Indexes

accessed. Based on the tree-based index and the reordering strategy

(details in the following subsections), we obtain the optimized leaf-

node access order. We then follow this optimized access order to

visit the relevant leaf nodes. For each leaf node we simply load all

raw data objects it contains from disk and process them one by one.

Algorithm 2 will not miss any true nearest neighbor as it still relies

on the node pruning strategy based on distance lower-bounds.

Algorithm 2 Index-based 𝑘NN query processing w/ reordering

Require: Tree-based index I, 𝑘-NN query 𝑄 , Reordering strategy

R for the leaf index nodes of I
Ensure: The 𝑘 nearest neighbors of 𝑄

1: H ← newMax-Heap(𝑘); Q𝑢𝑒𝑢𝑒 ← new Priority-Queue;

2: H , bsf, Q𝑢𝑒𝑢𝑒 ← optimizedNodeOrder(𝑄 , I, R);
3: while node← pop next node from Queue do
4: if node.dist > bsf.dist then
5: Continue;

6: Load all raw obj’s in node from disk;

7: Calculate real distances for all obj’s in node;
8: UpdateH and bsf.dist;
9: ReturnH .toList();

4.2 Reordering by Deep Neural Networks
We propose an ML-based reordering strategy by leveraging deep

neural networks (DNNs). Neural networks can extract features from

raw data without specific domain knowledge when performing fea-

ture engineering. As a result, they are attractive when modeling

high-dimensional data. Meanwhile, the recent advancement in hard-

ware technologies (such as the utilization of GPUs and TPUs) has

significantly improved the efficiency of computations (e.g., model

training and inference) over DNNs, which makes it feasible when

integrating DNNs into online index lookup and 𝑘NN processing.

Our basic observation is the following: Once the index is built, the

distribution of the 𝑘 nearest neighbors of a given query in the index

leaf nodes is fixed and thus learnable. Based on this observation,

our goal is to predict which index leaf nodes contain the nearest

neighbors. Since the leaf nodes are also fixed once the index is

constructed, we can model this prediction task as a multi-class
classification problem.

Formally, given a time series dataset S = {𝑆1, 𝑆2, · · · , 𝑆𝑛}, sup-
pose that the index I distributes the data objects of S into𝑀 leaf

nodes. Given an input query object 𝑄 , the output of the ML model

is an𝑀-dimensional vector y such that 𝑦𝑖 (1 ≤ 𝑖 ≤ 𝑀) represents

the fraction of nearest neighbors of 𝑄 that would land on the index

leaf node L𝑖 . In other words, y represents the probability densities
of the distribution of nearest neighbors over the index leaf nodes.

As Figure 2 shows, we randomly sample data objects from S to
construct the training set T = {𝑇1,𝑇2, · · · ,𝑇𝑀 }. We then specify the

𝑀-dimensional labels y for each training data object 𝑇 , which are

the probability densities of its nearest neighbors over the index leaf

nodes. Note that this information can be obtained by first finding

the ground-truth 𝑘-NNs of the training object and then computing

their distribution. Specifically, for 𝑇 ∈ T and 1 ≤ 𝑖 ≤ 𝑀 ,

𝑦𝑖 =
1

𝑘
|{𝑆 ∈ L𝑖 |𝑆 ∈ 𝑘NN(𝑇)}|. (3)

!""#

$%%&'()"*&+

L1

FC1 FC2 FC3

L2 L3 L4 L5

,'-.%.%/(0&#

1&-2(
)"*&

0 3 0 1 1

53))(4.+#'.56#."%

0 0.6 0 0.2 0.2

5-NN(1-5&7+

$%*&8

)	"':

0

0.6

0

0.2

0.2

1-5&7;6#<6#

0.05

0.55

0.08

0.20

0.12

(a) (b)

!-9
4-#- L1 L2 L3 L4 L5

M
e
m
o
ry

D
is
k

Figure 2: (a) Given a training data object, its labels are the
probability densities of its 𝑘NNs; (b) Train the neural net-
work with the training labels.

Algorithm 3 DNN-based reordering strategy

Require: Tree index I, 𝑘-NN query 𝑄 , DNN modelM
Ensure: The optimized access order

1: DNN-Order O𝐷 ←M.predict(𝑄 , I);
2: Load the first leaf node in O𝐷 and initializeH and bsf ;
3: Prune all leaf nodes in I with node.lbd > bsf.dist and obtain the

candidate set 𝐶 with access order O𝐶 ;
4: Q𝑢𝑒𝑢𝑒 ← combineAccessOrders(O𝐷 , O𝐶) with Alg. 4;

5: ReturnH , bsf, Q𝑢𝑒𝑢𝑒;

Algorithm 4 Combine access orders

Require: Original access order O𝐶 with candidate set 𝐶 , DNN-

order O𝐷 , 𝜆 ∈ [0, 1]
Ensure: Combined access order of O𝐶 and O𝐷
1: Remove leaf nodes from O𝐷 that are not in 𝐶;

2: 𝑊 norm

𝐶
← normalize(𝑊𝐶);

3: 𝑊 norm

𝐷
← normalize(𝑊𝐷);

4: 𝑊𝐹 ← 𝜆 ·𝑊 norm

𝐷
+ (1 − 𝜆) ·𝑊 norm

𝐶
5: Reorder O𝐷 according to𝑊𝐹 ;

6: Return O𝐷 ;

We train a deep neural network afterwards, based on T and the

above labeling method.

Algorithm 3 presents our DNN-based reordering strategy. We as-

sume that the index and the neural network have been constructed

offline before any query comes.

One problem of purely relying on the output of the DNN model

to guide the search of 𝑘-NNs is that one has to access all index leaf

nodes since the model cannot guarantee that leaf nodes with zero

probabilities do not contain true nearest neighbors. As a result, one

might end up with visiting all irrelevant index leaf nodes that do

not contain any nearest neighbor. We fix this problem by combining

the DNN-based access order with the original access order of the

candidate leaf nodes given by Algorithm 1. That is, we take only

the leaf nodes that appear in the original access order and reorder

them based on the output from the DNN model.

As shown in Algorithm 4, we take the two access orders O𝐷 and

O𝐶 as inputs. O𝐶 is obtained by sorting 𝐶 from smallest to largest

according to the distance lower-bounds, whereas O𝐷 is obtained

by sorting all leaf nodes from largest to smallest based on their

probability densities predicted by the DNN model. We first remove

all nodes that are not in𝐶 from O𝐷 (line 1). We then normalize the

5

Rong Kang, Wentao Wu, Chen Wang, Ce Zhang, and Jianmin Wang

Algorithm 5 Quantization-based reordering strategy

Require: Tree index I, 𝑘-NN query 𝑄 , QuantizationM
Ensure: The optimized access order.

1: H , bsf ← Initial_𝑘NN(𝑄 , I);
2: Prune all leaf nodes in I with node.lbd > bsf.dist and obtain the

candidate set 𝐶 with access order O𝐶 ;
3: for each leaf in 𝐶 do
4: for each code in leaf byM do
5: obj’← reconstruct obj from code;
6: Estimate distance d’← Dist(obj’, 𝑄);
7: Compute a score for leaf w.r.t. estimated distances;

8: Q𝑢𝑒𝑢𝑒 ← Reorder O𝐶 according to leaf scores;

9: ReturnH , bsf, Q𝑢𝑒𝑢𝑒;

weights of the nodes in O𝐶 and O𝐷 (line 2 and line 3). Finally, we

compute combined weights𝑊𝐹 for the nodes (line 4) and reorder

the nodes according to𝑊𝐹 .

4.3 Reordering by Quantization Methods
Quantization methods have been widely used in approximate 𝑘NN

query processing. Using various dimension reduction techniques,

quantization methods can convert high-dimensional data into com-

pact binary codes (called “quantization codes”). For example, a raw

data point represented by a 96-dimensional floating-point vector

(96×4×8=3,072 bits) can be represented by a quantization code with

64 bits, with a compression ratio of more than 48 times. We can

further estimate the distances between data objects using their

quantization formats. However, the pruning strategy based on dis-

tance lower-bounds does not guarantee “no false dismissals” when

applied to such estimated distances.

We design an alternative reordering strategy based on quantiza-

tion. The basic idea is to use the estimated distances as the delegates

of the corresponding real distances and reorder the objects based

on their estimated distances. Algorithm 5 presents the details. Here,

each data object in a candidate leaf node has been compressed

using quantization methodM and needs to be reconstructed. It

also employs a scoring function to rate the index leaf nodes and

order them based on their scores. There are various choices for this

scoring function, though it should not depend on any specific data

object in a leaf node. In our experiments, we have tried both the

Avg and TopK functions. The Avg function computes the mean of

the distances between all reconstructed objects in a leaf node and

the query object 𝑄 , whereas the TopK function only considers the

mean of the top 𝑘 objects with closest distances.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate the ML-enhanced indexes, using DNN-

based or quantization-based reordering strategies, by comparing

them with their traditional counterparts.

5.1 Experiment Settings
5.1.1 DNN-based Reordering Strategy. We implement the DNN

model using PyTorch-0.4.1 and a Tesla K80 or GeForce GTX GPU

with 12GBmemory. In our experiments, we assume that the training

and test sets follow the same distribution (by sampling from the

base dataset). We used base datasets that contain 1M (10
6
) and 100M

(10
8
) data objects. The training set contains 100K objects and the test

0 90 180 270
Epoch

10−1

Lo
ss

MLP1-T
MLP3-T
ResNet-T

MLP1-V
MLP3-V
ResNet-V

(a) Training loss and valid loss

0 90 180 270
Epoch

0.25

0.50

0.75

F-
10

-R
ec
al
l

MLP1
MLP3
ResNet

(b) The First-10-Recall curve

Figure 3: Training of three DNNs for DS-Tree on RWalk-1M.
set contains 100 (query) objects, respectively. The training set and

test set do not overlap. We also experimented with three DNNs [41]:

(1) MLP-1, which is a one-layer fully-connected network with the

following size of the hidden layer [9]

size of training set

2 × (# of dimensions + # of categories)) ;

(2) MLP-3, which is a three-layer fully-connected network with

the size of the hidden layer set to 500 [41]; (3) ResNet-3, which
contains three ResNet blocks [20, 41].

5.1.2 Quantization-based Reordering Strategy. We use LOPQ as the

quantization method in Algorithm 5, which extends the previous

classic quantization methods PQ [22] and OPQ [16]. We obtain the

C/C++ implementation of LOPQ from [23]. All our algorithms are

single-thread implementations.

5.2 DNN-based Reordering
We now evaluate the DNN-based reordering strategy. We start

by examining the training processes of the three aforementioned

neural network architectures and choosing appropriate ones. We

then test and analyze the performance of the reordering strategy

using the DNN models on the three datasets and three tree indexes

that have been used in Section 3, in terms of the first-10-recall. We

further study the generalizability of the reordering strategy when

training and testing on different 𝑘’s, as well as its scalability when

expanding the datasets from 1M to 100M data objects.

5.2.1 DNN Training. Figure 3a shows the training progress of the

three neural networks MLP1, MLP3, and ResNet-3, when applied

to DS-Tree on RWalk-1M. As shown in Figure 3a, the training and

validation losses of the three networks decrease rapidly within

20 epochs. After 300 epochs, the training loss of MLP1 and MLP3

decrease to around 0.013, whereas the training and validation losses

of ResNet are no less than 0.022. The average time spent on each

epoch of the three networks is 24.2s, 26.4s, and 45.5s, respectively.

Figure 3b further presents the first-10-recall on the test (query)

set in each epoch. The initial first-10-recall of MLP1 is 0.476, which

is much higher than that of MLP3 (0.124) and ResNet (0.078). MLP1

improves the first-10-recall rapidly to around 0.8 and then slows

down. MLP3 improves the first-10-recall rapidly and surpasses

MLP1 after about 30 epochs. On the other hand, the performance of

ResNet rises slowly: The first-10-recall of ResNet after 300 epochs

is only 0.537. Considering its training time and low first-10-recall,

we will not use ResNet in the rest of our experiments.

5.2.2 First-10-recall. Table 2 presents the first-10-recalls of DNN-
based reordering. The average first-10-recalls of MLP1 over three

6

The Case for ML-Enhanced High-Dimensional Indexes

Table 2: First-10-recalls of DNN-based reordering

Method

RWalk-1M Deep-1M ECG-1M

DS-Tree iSAX VA+Index DS-Tree iSAX VA+Index DS-Tree iSAX VA+Index

NN_MLP3 0.879 0.804 0.935 0.537 0.408 0.728 0.901 0.837 0.972
NN_MLP1 0.871 0.788 0.937 0.508 0.387 0.724 0.822 0.795 0.963

QUAN_AVG_V8 0.706 0.51 0.932 0.342 0.097 0.552 0.589 0.505 0.233

QUAN_AVG_V16 0.703 0.509 0.931 0.345 0.105 0.563 0.593 0.509 0.232

QUAN_AVG_V32 0.704 0.505 0.931 0.353 0.108 0.559 0.585 0.508 0.227

QUAN_TopK_V8 0.833 0.795 0.939 0.584 0.471 0.733 0.849 0.797 0.911

QUAN_TopK_V16 0.859 0.786 0.945 0.604 0.488 0.761 0.862 0.795 0.918

QUAN_TopK_V32 0.856 0.793 0.941 0.602 0.486 0.749 0.858 0.815 0.917

Original 0.837 0.698 0.833 0.424 0.279 0.095 0.93 0.773 0.895

Ideal 0.935 0.907 0.959 0.871 0.855 0.912 0.964 0.932 0.987

0.60

0.80

1.00

F-
10

-R
ec
al
l

(a) DS-Tree,RWalk-1M

0.00

0.50

1.00
(b) DS-Tree,Deep-1M

0.40

0.60

0.80

1.00
(c) DS-Tree,ECG-1M

0.25

0.50

0.75

1.00

F-
10

-R
ec
al
l

(d) iSAX,RWalk-1M

0.00

0.50

1.00
(e) iSAX,Deep-1M

0.40

0.60

0.80

1.00
(f) iSAX,ECG-1M

0.70

0.80

0.90

1.00

F-
10

-R
ec
al
l

(g) VA+Index,RWalk-1M

0.00

0.50

1.00
(h) VA+Index,Deep-1M

0.80

0.90

1.00
(i) VA+Index,ECG-1M

MLP3MLP1Original

Figure 4: The first-10-recalls of DNN-based reordering.
indexes are 0.865, 0.540, and 0.860 on RWalk-1M, Deep-1M, and

ECG-1M, respectively. Compared with the original access orders, its

average first-10-recalls over the three indexes only decrease by 0.6%

on ECG-1M but increase by 9.72% and 115.29% on RWalk-1M and

Deep-1M. MLP3 achieves better average first-10-recalls on almost

all three datasets with 0.873, 0.558, and 0.903, which outperforms

the original access orders by 10.65%, 122.47%, and 4.31%.

Figure 4 further presents distributions of the first-10-recalls (w.r.t.

the 100 testing query objects) over the three datasets. On RWalk-
1M, MLP1 and MLP3 exhibit similar variances for DS-Tree and

VA+Index; however, the lowest first-10-recall of MLP3 for iSAX is

significantly higher than that of both MLP1 and the original access

order. OnDeep-1M, the variances are large for bothMLP1 andMLP3.

On ECG-1M, all approaches have relatively high recalls.

We now evaluate the benefits of combining DNN-based access

order with original access order using the weighted approach in

Algorithm 4. Figure 5 presents the results. We vary the ratio 𝜆 in

{0, 0.2, 0.4, 0.6, 0.8, 1.0}. If 𝜆=0, the combined access order reduces

to the original access order, whereas if 𝜆=1 it reduces to the DNN-

based access order. Table 3 illustrates the effect of 𝜆 with some cases

where the combined orders can outperform the uncombined ones.

5.2.3 Time Overhead. Next, we investigate the time overhead of

DNN-based reordering. In our experiments, the average prediction

0.84

0.86

0.88

F-
10
-R
ec
al
l

(a) DS-Tree,RWalk-1M

0.45

0.50

(b) DS-Tree,Deep-1M

0.85

0.90

(c) DS-Tree,ECG-1M

0.70

0.75

0.80

F-
10
-R
ec
al
l

(d) iSAX,RWalk-1M

0.30

0.35

0.40

(e) iSAX,Deep-1M

0.78

0.80

0.82

(f) iSAX,ECG-1M

0
All-DB

0.2 0.4 0.6 0.8 1
All-NN

0.85

0.90

F-
10
-R
ec
al
l

(g) VA+Index,RWalk-1M

0
All-DB

0.2 0.4 0.6 0.8 1
All-NN

0.25

0.50

0.75
(h) VA+Index,Deep-1M

0
All-DB

0.2 0.4 0.6 0.8 1
All-NN

0.90

0.95

(i) VA+Index,ECG-1M

MLP1 MLP3

Figure 5: Combining DNN-based with original access order.

Table 3: Combined access orders: Case studies
Dataset Method Original DNN-based Combined Best 𝜆

RWalk-1M DS-Tree + MLP1 0.837 0.871 0.872 0.4

RWalk-1M DS-Tree + MLP3 0.837 0.879 0.881 0.2

Deep-1M DS-Tree + MLP1 0.424 0.508 0.511 0.2

ECG-1M VA+Index + MLP1 0.895 0.963 0.966 0.2

time of MLP1 and MLP3 for each query is only 0.21 ms and 0.29

ms, which is negligible. Figure 6 shows the first-10-recalls w.r.t. the

elapsed time. On all three datasets, MLP3 outperforms or performs

no worse than MLP1. Except for DS-Tree on ECG-1M, DNN-based

access orders are superior to the original ones in all the other cases.

5.2.4 Generalizability. Users may issue queries with different 𝑘’s

from the 𝑘 used when training the DNN models, and it is perhaps

not feasible to train a DNN model for each individual 𝑘 . As a result,

it is interesting to investigate the generalization capacity of the

trained model when it faces queries with different 𝑘’s.

We use DS-Tree to train DNN models on the three datasets

with 𝑘 ∈ {5, 10, 20, 50}, and then test 𝑘-NN queries by varying 𝑘

from 1 to 100. Figure 7 illustrates the generalization behavior of

DNN-based reordering. As the 𝑘 in the testing queries increases,

the number of true nearest neighbors increases as well, which

may be distributed into more leaf nodes. As a result, we observe

that the first-10-recalls decrease for all access orders evaluated.

7

Rong Kang, Wentao Wu, Chen Wang, Ce Zhang, and Jianmin Wang

10 20
Cost Time(ms)

0.60

0.80

1.00

R
ec
al
l

(a) DS-Tree,RWalk-1M

10 20
Cost Time(ms)

0.20

0.40

0.60

(b) DS-Tree,Deep-1M

5 10 15
Cost Time(ms)

0.60

0.80

1.00
(c) DS-Tree,ECG-1M

20 40
Cost Time(ms)

0.40

0.60

0.80

R
ec
al
l

(d) iSAX,RWalk-1M

20 40
Cost Time(ms)

0.20

0.40

0.60
(e) iSAX,Deep-1M

20 40
Cost Time(ms)

0.40

0.60

0.80

1.00
(f) iSAX,ECG-1M

0 50
Cost Time(ms)

0.00

0.50

1.00

R
ec
al
l

(g) VA+Index,RWalk-1M

25 50
Cost Time(ms)

0.00

0.25

0.50

0.75

(h) VA+Index,Deep-1M

100 200 300
Cost Time(ms)

0.25

0.50

0.75

1.00
(i) VA+Index,ECG-1M

Original MLP1 MLP3

Figure 6: First-10-recalls w.r.t. execution time.

1 5 10 20 50 100
TopK

0.80

0.90

F-
10
-R
ec
al
l

(a) RWalk-1M

1 5 10 20 50 100
TopK

0.30

0.40

0.50

F-
10
-R
ec
al
l

(b) Deep-1M

1 5 10 20 50 100
TopK

0.85

0.90

0.95

F-
10
-R
ec
al
l

(c) ECG-1M

Original Top5 Top10 Top20 Top50

Figure 7: Training and testing on different 𝑘’s.
On RWalk-1M and Deep-1M, the DNN-based access orders remain

superior to the original access orders. On ECG-1M, when 𝑘 >10,

the first-10-recall of the original access order drops rapidly and

is surpassed by the DNN-based access order. Overall, when we

increase 𝑘 from 1 to 100, the first-10-recall of DNN-based access

order decreases less than that of the original access order, which

demonstrates the robustness and generalizability of DNN-based

reordering. The fact that our approach is not so sensitive to the 𝑘

used in model training is intriguing, which implies that we can stay

with using relatively small 𝑘’s to reduce the preprocessing overhead

of generating training/testing labels by finding the ground-truth

𝑘NNs. Meanwhile, we should also note that, when the discrepancy

between the 𝑘’s used in training and testing becomes large, the

trained model will inevitably become less effective.

5.2.5 Scalability. To test the scalability of ML-enhanced indexes,

we further conduct experiments on expanded versions of RWalk
and Deep that contain 100M data objects. The corresponding disk

file sizes are 100GB and 38.4GB, respectively. We set the leaf-node

size to 1M so that the indexes can keep similar number of leaf nodes

as in the previous experiments.

Table 4 presents the first-10-recalls on the 100M datasets. MLP3

outperforms other approaches on all combinations of indexes and

datasets. This demonstrates the scalability of DNN-based reordering.

Table 4: First-10-recall on 100M datasets

Method

RWalk-100M Deep-100M

DS-Tree iSAX VA+Index DS-Tree iSAX VA+Index

Original 0.881 0.815 0.865 0.522 0.463 0.249

MLP1 0.866 0.789 0.960 0.557 0.489 0.774

MLP3 0.885 0.837 0.962 0.567 0.506 0.789

Table 5: Execution time on 100M datasets

Method

RWalk-100M Deep-100M

DS-Tree iSAX VA+Index DS-Tree iSAX VA+Index

Index time 242m 74m 78m 102m 7m 42m

DNN-based 572s 321s 32s 437s 357s 28s

0.25

0.50

0.75

1.00

F-
10

-R
ec

al
l

(a) DS-Tree,Ranwalk-1M

0.00

0.50

1.00
(b) DS-Tree,Deep-1M

0.00

0.50

1.00
(c) DS-Tree,ECG-1M

0.00

0.50

1.00

F-
10

-R
ec

al
l

(a) iSAX,Ranwalk-1M

0.00

0.50

1.00
(b) iSAX,Deep-1M

0.00

0.50

1.00
(c) iSAX,ECG-1M

0.70

0.80

0.90

1.00

F-
10

-R
ec

al
l

(a) VA+Index,Ranwalk-1M

0.00

0.50

1.00
(b) VA+Index,Deep-1M

0.00

0.50

1.00
(c) VA+Index,ECG-1M

AVG-V32

TopK-V32TopK-V8 TopK-V16

AVG-V16AVG-V8

Original

Ideal

Figure 8: First-10-recalls by quantization-based reordering.

DS-Tree iSAX
RWalk-1M

VA+Idx DS-Tree iSAX
Deep-1M

VA+Idx DS-Tree iSAX
ECG-1M

VA+Idx
0

103

C
os

t T
im

e(
m
s)

Index Query
Time

Quantization
Query Time

Quantization
Reorder Time

Figure 9: Execution time of quantization-based reordering.
Notably, when the number of data objects increases to 100M, the

index construction time and query processing time increase, while

the training time and prediction time of the DNN models remain

stable. As shown in Table 5, in most cases index construction takes

more than one hour to finish. Meanwhile, the first-10-recall of DNN-

based access order starts to outperform the original access order

after less than 10 minutes of training.

5.3 Quantization-based Reordering
Figure 8 presents the first-10-recalls of LOPQ when Avg and TopK
are used as scoring functions. We vary the cluster number used by

LOPQ within {8, 16, 32}. For comparison, Figure 8 also shows the

recalls of the ideal access order and the original order.

8

The Case for ML-Enhanced High-Dimensional Indexes

As we can see, for most combinations of indexes and datasets,

the recall of using Avg is lower than that of the original access

order, whereas the recall of using TopK is higher than that of the

original access order. There is an observable outlier, though, for

VA+Index on Deep-1M, where the recall of the original access order

is only 0.095 and both AVG and TopK lead to significant improve-

ments. Meanwhile, the variance of the recall is small when using

TopK, while it is relatively large when using Avg. This suggests
that, the performance of TopK is more stable than Avg across the

queries tested. Nonetheless, as shown in Figure 9, the use of TopK
introduces additional time overhead.

Finally, compared to DNN-based reordering, the extra time over-

head introduced by quantization methods has a noticeable impact

on query processing efficiency. Although the reconstruction of the

data objects and computation of the estimated distances can be

both done in memory, there are still a large number of index leaf

nodes and raw data objects to be examined in the post-processing

step of query processing, usually in the order of 𝑂 (𝑀) where𝑀 is

the total number of leaf nodes in the index.

6 CONCLUSION
In this work, we propose ML-enhanced indexes for 𝑘NN query pro-

cessing over high-dimensional data, which combine the merits of

traditional tree-based indexes and the ongoing trend of “learned

indexes.” ML-enhanced indexes take as input the leaf nodes of a tra-

ditional index, and improve their access order based on predictions

from ML models (notably, deep neural networks). Experimental

evaluation shows the advantage of ML-enhanced indexes over their

original counterparts, in terms of the recall of the nearest neighbors.

Future work includes exploring the utilization of other types of ML

methods, making ML-enhanced indexes more scalable (to indexes

with more leaf nodes) and more adaptable (to data updates).

7 ACKNOWLEDGMENTS
This work was supported by NSFC Grant (No. 62021002).

REFERENCES
[1] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. 2018. HD-

Index: Pushing the Scalability-Accuracy Boundary for Approximate kNN Search

in High-Dimensional Spaces. VLDB Endow. 11, 8 (2018), 906–919.
[2] A. Babenko and V. Lempitsky. 2015. The Inverted Multi-Index. TPAMI 37, 6

(2015), 1247–1260.

[3] Artem Babenko and Victor S. Lempitsky. 2016. Efficient Indexing of Billion-Scale

Datasets of Deep Descriptors. In CVPR. IEEE Computer Society, 2055–2063.

[4] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

1990. The R*-Tree: An Efficient and Robust Access Method for Points and Rect-

angles. In SIGMOD. ACM, 322–331.

[5] R Bousseljot et al. 1995. Nutzung der EKG-Signaldatenbank CARDIODAT der

PTB über das Internet. Biomedizinische Technik/Biomedical Engineering 40, s1

(1995), 317–318.

[6] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn J. Keogh. 2010.

iSAX 2.0: Indexing and Mining One Billion Time Series. In ICDM. 58–67.

[7] Alessandro Camerra, Jin Shieh, Themis Palpanas, Thanawin Rakthanmanon, and

Eamonn Keogh. 2014. Beyond one billion time series: indexing and mining very

large time series collections with iSAX2+. KAIS 39, 1 (2014), 123–151.
[8] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An Efficient Access

Method for Similarity Search in Metric Spaces. In VLDB. 426–435.
[9] Howard B Demuth, Mark H Beale, Orlando De Jess, and Martin T Hagan. 2014.

Neural network design. Martin Hagan.

[10] Jialin Ding et al. 2020. ALEX: An Updatable Adaptive Learned Index. In SIGMOD.
ACM, 969–984.

[11] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.

2018. The Lernaean Hydra of Data Series Similarity Search: An Experimental

Evaluation of the State of the Art. PVLDB 12 (2018), 112–127.

[12] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.

2019. Return of the Lernaean Hydra: Experimental Evaluation of Data Series

Approximate Similarity Search. Proc. VLDB Endow. 13, 3 (2019), 403–420.
[13] Hakan Ferhatosmanoglu, Ertem Tuncel, Divyakant Agrawal, and Amr El Abbadi.

2000. Vector Approximation Based Indexing for Non-uniform High Dimensional

Data Sets. In CIKM. ACM, 202–209.

[14] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate

Nearest Neighbor Search With The Navigating Spreading-out Graph. Proc. VLDB
Endow. 12, 5 (2019), 461–474.

[15] Alex Galakatos et al. 2019. FITing-Tree: AData-aware Index Structure. In SIGMOD.
ACM, 1189–1206.

[16] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product

Quantization. TPAMI 36, 4 (2014), 744–755.
[17] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in

High Dimensions via Hashing. In VLDB. 518–529.
[18] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-

ing. In SIGMOD, Beatrice Yormark (Ed.). ACM Press, 47–57.

[19] Ali Hadian, Ankit Kumar, and Thomas Heinis. 2020. Hands-off Model Integration

in Spatial Index Structures. In AIDB@VLDB.
[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In CVPR. IEEE Computer Society, 770–778.

[21] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.

Query-aware locality-sensitive hashing for approximate nearest neighbor search.

Proceedings of the VLDB Endowment 9, 1 (2015), 1–12.
[22] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization

for Nearest Neighbor Search. IEEE TPAMI 33, 1 (2011), 117–128.
[23] Yannis Kalantidis and Yannis Avrithis. 2014. Locally Optimized Product Quan-

tization for Approximate Nearest Neighbor Search. In CVPR. IEEE Computer

Society, 2329–2336.

[24] Kari Karhunen. 1947. Uber lineare Methoden in der Wahrscheinlich-keitsrechnung.
Vol. 37. Sana.

[25] Eamonn Keogh et al. 2001. Dimensionality reduction for fast similarity search in

large time series databases. KAIS 3, 3 (2001), 263–286.
[26] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra.

2001. Locally adaptive dimensionality reduction for indexing large time series

databases. ACM SIGMOD Record 30, 2 (2001), 151–162.

[27] Eamonn J. Keogh and Chotirat (Ann) Ratanamahatana. 2005. Exact indexing of

dynamic time warping. KAIS 7, 3 (2005), 358–386.
[28] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. In SIGMOD. ACM, 489–504.

[29] Jessica Lin, Eamonn J. Keogh, Li Wei, and Stefano Lonardi. 2007. Experiencing

SAX: a novel symbolic representation of time series. DMKD 15, 2 (2007), 107–144.

[30] Michele Linardi and Themis Palpanas. 2018. ULISSE: ULtra Compact Index for

Variable-Length Similarity Search in Data Series. In ICDE. 1356–1359.
[31] Yury A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate

Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.

TPAMI 42, 4 (2020), 824–836.
[32] Marius Muja and David G. Lowe. 2009. Fast Approximate Nearest Neighbors with

Automatic Algorithm Configuration. In VISAPP 2009. INSTICC Press, 331–340.

[33] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-

ing Multi-Dimensional Indexes. In SIGMOD. 985–1000.
[34] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2020. MESSI: In-Memory

Data Series Indexing. In ICDE. IEEE, 337–348.
[35] Olga Russakovsky et al. 2015. ImageNet Large Scale Visual Recognition Challenge.

IJCV 115, 3 (2015), 211–252.

[36] Jin Shieh and Eamonn Keogh. 2009. iSAX: disk-aware mining and indexing of

massive time series datasets. DMKD 19, 1 (2009), 24–57.

[37] Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. 2014. SRS:

Solving c-Approximate Nearest Neighbor Queries in High Dimensional Euclidean

Space with a Tiny Index. VLDB 8, 1 (2014), 1–12.

[38] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. 2015. Going deeper with convolutions. In CVPR. 1–9.
[39] J. Wang, J. Wang, J. Song, X. S. Xu, H. T. Shen, and S. Li. 2015. Optimized Cartesian

K-Means. IEEE TKDE 27, 1 (2015), 180–192.

[40] Yang Wang, Peng Wang, Jian Pei, Wei Wang, and Sheng Huang. 2013. A Data-

adaptive and Dynamic Segmentation Index for Whole Matching on Time Series.

PVLDB 6 (2013), 793–804.

[41] Zhiguang Wang et al. 2017. Time series classification from scratch with deep

neural networks: A strong baseline. In IJCNN. IEEE, 1578–1585.
[42] Roger Weber, Hans-Jörg Schek, and Stephen Blott. 1998. A Quantitative Analysis

and Performance Study for Similarity-Search Methods in High-Dimensional

Spaces. In VLDB. 194–205.
[43] Yingjun Wu et al. 2019. Designing Succinct Secondary Indexing Mechanism by

Exploiting Column Correlations. In SIGMOD. 1223–1240.
[44] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2016. ADS: The

Adaptive Data Series Index. The VLDB Journal 25, 6 (2016), 843–866.

9

	Abstract
	1 Introduction
	2 Related Work
	2.1 Indexes for Exact kNN Queries
	2.2 Indexes for Approximate kNN queries
	2.3 Learned Indexes
	2.4 Other Technologies

	3 Study of Tree-based Indexes
	3.1 Experiment Setup
	3.2 Analysis of Recall

	4 ML-Enhanced Indexes
	4.1 General Framework
	4.2 Reordering by Deep Neural Networks
	4.3 Reordering by Quantization Methods

	5 Experimental Evaluation
	5.1 Experiment Settings
	5.2 DNN-based Reordering
	5.3 Quantization-based Reordering

	6 Conclusion
	7 Acknowledgments
	References

