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ABSTRACT
Python has become overwhelmingly popular for ad-hoc data anal-
ysis, and Pandas dataframes have quickly become the de facto
standard API for data science. However, performance and scaling to
large datasets remain significant challenges. This is in stark contrast
with the world of databases, where decades of investments have led
to both sub-millisecond latencies for small queries and many orders
of magnitude better scalability for large analytical queries. Further-
more, databases offer enterprise-grade features (e.g., transactions,
fine-grained access control, tamper-proof logging, encryption) as
well as a mature ecosystem of tools in modern clouds.

In this paper, we bring together the ease of use and versatility of
Python environments with the enterprise-grade, high-performance
query processing of cloud database systems. We describe a system
we are building, coined Magpie, which exposes the popular Pandas
API while lazily pushing large chunks of computation into scalable,
efficient, and secured database engines. Magpie assists the data
scientist by automatically selecting the most efficient engine (e.g.,
SQL DW, SCOPE, Spark) in cloud environments that offer multiple
engines atop a data lake. Magpie’s common data layer virtually
eliminates data transfer costs across potentially many such engines.
We describe experiments pushing Python dataframe programs into
the SQL DW, Spark, and SCOPE query engines. An initial analysis
of our production workloads suggest that over a quarter of the
computations in our internal analytics clusters could be optimized
through Magpie by picking the optimal backend.
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1 INTRODUCTION
Python has become the lingua franca for ad-hoc data analysis (typ-
ically over text or CSV files), driven primarily by its concise, com-
prehensible code that requires less time and effort to write relative
to other languages. Furthermore, there is a rapid convergence to-
wards dataframe-oriented data processing in Python, with Pandas
dataframes being one of the most popular and the fastest growing
API for data scientists [46]. Many new libraries either support the
Pandas API directly (e.g., Koalas [15], Modin [44]) or a dataframe
API that is similar to Pandas dataframes (e.g., Dask [11], Ibis [13],
cuDF [10]). This trend has resulted in a language surface for data sci-
ence in Python that is increasingly well defined and converging on
a common set of primitives. Notwithstanding this popularity, scal-
ing data processing with Pandas and achieving good performance
in production remains a substantial challenge [9, 20, 25, 42].

Cloud environments, on the other hand, have enabled users to
manage and process data at hyper scale. Furthermore, in contrast to
the effort of setting up a database on-premise, the cloud has made
it ridiculously easy to try out and operate a variety of backends, i.e.,
database services with either co-located or disaggregated storage,
on demand [4, 5]. As a result, modern enterprises are more likely to
already have their data in the cloud and operate multiple backends,
each optimized for different scenarios. The question therefore is
whether we can bring these two worlds together: the versatility
and easy-to-use aspects of Python data processing environments,
and the scale and performance of cloud environments.

The above question exposes a daunting set of challenges. Pandas
evaluates data operations eagerly over in-memory data while cloud
backends process large query graphs that are pushed closer to the
data in distributed storage. It is often tedious to embed Python code
(usually via UDFs) into cloud backends, which generally provide
a SQL interface. Despite the rise of newer managed services such
as Azure Synapse [7] which allow customers to effortlessly switch
between different backends, choosing between these backends is a
challenging problem (as has been observed in previous polystore
systems [26]). Finally, providing a good data science experience on
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Figure 1: The data science jungle from a subset of current data science tools.

top of cloud data services remains nontrivial, especially given the
unprecedented growth in data volume and complexity.

Fortunately, we identify four key enablers to bridge the gap be-
tween the Python and cloud worlds. First, there is an active ongoing
effort, led by the broader Python community, to standardize the
Python APIs for data by bringing different variants of dataframe
APIs under a common umbrella [1]. Second, many dataframe op-
erations can be mapped to relational algebra, as also shown in
prior work such as Modin [44] and Ibis [13], and hence can be
pushed down to a database (we discuss related work further in Sec-
tion 2). Third, there is a shift from polystores (e.g., [26, 38, 39]) to
polyengines operating on top of common disaggregated storage
in the cloud. As a result, data is no longer locked away in data-
base stores and query engines are increasingly fungible. Finally,
there is an emergence of a common data format—Apache Arrow[2]—
which significantly reduces data transfer costs and makes backend
interoperation practical.

Motivated by these trends, in this paper we present a vision of
scalable and efficient data science on top of cloud backends. Our goal
is to let data scientists focus on data analysis using familiar Python
APIs and then transparently execute their workloads on the best-
performing backend.We present Magpie, a data science middleware
that exposes the popular Pandas API, automatically selects the best-
performing cloud backend for each Pandas script, lazily pushes
down large chunks of Pandas operations to those backends, and
uses Arrow and ArrowFlight to communicate efficiently and cache
intermediate results at the data layer. We illustrate the benefits
with Magpie in two different analytics environments at Microsoft—
a data warehousing environment consisting of data already within
Azure SQL Data Warehouse (SQL DW) and a big data analytics
environment consisting of SCOPE and Spark query engines with
disaggregated storage. Our experiments show that pushing Pandas
down into SQL DW can improve the performance by more than
10×, while judiciously picking between SCOPE and Spark backends
could improve up to 27% of our production workloads (with a
median performance improvement of 85%).

The rest of the paper is organized as follows. In Section 2, we
discuss how the current tools are hard to navigate for data scien-
tists and related efforts to address this problem. We present an
overview of Magpie in Section 3. In Sections 4 and 5, we discuss

the techniques behind pushing Pandas operations into backends.
Section 6 describes how Magpie chooses the best engine for a work-
load. We describe our common data layer in Section 7 and conclude
in Section 8 with a discussion of the road ahead.

2 THE DATA SCIENCE JUNGLE
As illustrated in Figure 1, current data science tools confront data
scientists with a jungle of higher-level abstractions, APIs, data
layers, and backends. The plethora of tools is driven by two factors.
First, the Pandas API is the de-facto choice for data scientists to
analyze data. This is supported by the fact that nearly all the Python-
based tools in Figure 1 provide dataframes-based APIs that resemble
the Pandas API. Second, Pandas is not designed to scale to large
data, as noted by the creators of Pandas [41].

On the one hand, solutions have evolved within the Python
ecosystem to scale Pandas. Modin, for instance, is backed by the
Ray/Dask parallel processing engines that use distributed Pandas
dataframes to leverage multiple cores for faster processing. CuDF
is backed by RAPIDS and provides libraries to execute data ana-
lytics pipelines on GPUs, building on NVIDIA CUDA primitives
for low-level compute optimizations. PySpark provides a Python
API to interact with the Spark ecosystem, and Koalas takes it a step
further by mimicking the Pandas API backed by Spark distributed
processing. Furthermore, Apache Arrow in-memory columnar data
format coupled with ArrowFlight for data transmission is fast de-
veloping as a unifying data storage format across data engines and
APIs.

On the other hand, hybrid approaches have evolved within the
database ecosystem to push the capabilities of relational engines to
support dataframe and tensor computations. The Apache MADlib
project [3] provides SQL-based parallel implementations of algo-
rithms for in-database analytics and machine learning at scale.
Most popular databases including PostgreSQL and SQL Server,
and big data processing systems including Microsoft SCOPE and
Google BigQuery support Python interoperability either natively
or through separate solutions such as Apache Beam.

We can see how different tools are siloed across similar but
different sets of APIs (variants of dataframes or SQL), different data
layer abstractions that range from arrays and in-memory columns
to distributed file systems and relational tables, and very different
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(a) Data science often involvesmultiple, fragmented scripts that (ex-
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EXECUTE sp_execute_external_script
@language=N’Python’, script = N’
import pandas as pd
# ... other Python code to process data
OutputDataSet = pd.Dataframe (res)’, 
@input_data_1 = N’SELECT ... FROM ...’
WITH RESULT SETS(...);
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(b) Performing data science within a single system results in com-
plex programs that are difficult to optimize.

Figure 2: Current approaches to data science for data already
in a database.

processing backends ranging from custom Python backends to
cloud data processing systems. As a result, the current data science
approach is fragmented and difficult to program and optimize.

To illustrate the above challenges, consider the case when data
is already within a database (e.g., SQL DW), a standard scenario in
the cloud. The typical data science process (Figure 2a) involves an
ad hoc patchwork of scripts that pulls relevant data out (e.g., using
Python libraries such as PyODBC [18] or SQLAlchemy [23]) that is
then separately analyzed locally (e.g., in a Jupyter notebook [14]).
Pulling data out of a database forces data scientists to optimize data
movement and data preparation before performing the actual data
analysis. This process also makes subsequent scaling difficult.

Alternatively, data scientists might attempt to perform work us-
ing a single system, as illustrated in Figure 2b. This approach, how-
ever, poses significant implementation- and optimization-related
challenges. It involves intermixing SQL queries with Python user
defined functions (UDFs) to push computation inside the database
engine (e.g., using PL/Python [17], MadLib [3], Myria [51], or SQL
Server ML Services [22]). Furthermore, mixing SQL and Python
UDFs requires expertise in multiple languages, often in a nonstan-
dard dialect (e.g., PostgreSQL or SQL Server), and it has been his-
torically very hard to optimize imperative UDFs pushed into the
database engine [47]. Furthermore, Python has a fast growing set
of libraries and supporting different versions of them within a
database (along with a good debugging experience) is nontrivial.

Several recent works attempt to bridge the gap between Python
and database ecosystems. Closely related efforts include Modin [44],
Dask [11], Koalas [15], Ibis [13], Vaex [24] and others, which provide
a dataframes surface and push down computations into backends.
We compare various aspects of these efforts below.

Language surface. Modin and Koalas provide Pandas compati-
bility, while Ibis, Dask and Vaex provide a variant of the Pandas
dataframes API. The mismatch in API requires data scientists to
rewrite their code from Pandas into the framework specific APIs

to benefit from scaling. Also, Modin does not consider the typical
data processing backends available in current clouds, while Koalas
only maps to Spark (other than Pandas) even though there might
be other backends available in analytics environment.

Lazy evaluation. Lazy evaluation refers to an evaluation strat-
egy that delays the evaluation of an expression until its value is
needed [52]. Lazy evaluation is usually supported by functional
languages, and it’s use for improving performance of database pro-
grams has been explored in [29]. Lazy evaluation of dataframes
has been used in [11, 13, 15, 44] to build expression trees for execu-
tion on a backend. However, lazily constructed expressions could
be further used for optimizations such as caching and automated
backend selection.

Supported backends. Modin currently provides Pandas APIs on
Ray, Dask, or PyArrow as alternate backends. Koalas provides Pan-
das APIs that can run on the Spark ecosystem. The Ibis framework
is able to map dataframe operations expressed in Ibis APIs onto a
number of relational and big data processing backends supported
by Ibis (the complete list of supported backends is given in [13]
including CSV and Pandas backends). The Ibis framework is also
extensible to add support for other backends, such as SQL Server
and SCOPE.

Dataframe Algebra. Petersohn et al. [44] presented a dataframe
algebra to formalize the set of operations offered by dataframe
APIs such as Pandas. Petershohn et al. identify that these opera-
tions are a combination of relational algebra, linear algebra, and
spreadsheet computations. There are other efforts to unify relational
and linear algebra with an aim to support dataframe operations
in databases [31, 37, 50]. Thus, a direct translation of Pandas into
database backends (which are based on relational algebra) may not
always be possible.

However, the need for a query planner for Pandas expressions is
well established [41]. Database backends provide query planning
and optimization capabilities for relational algebra expressions. To
examine the significance of relational operations in the Pandas API,
we conducted an analysis on real world data science notebooks
from the GitHub Archive dataset [12]. We analyzed notebooks with
star rating ≥ 10, and ranked the number of invocations of each
Pandas method in descending order. Of the top-20 methods (totaling
over 50K occurrences), more than 60% correspond to those methods
that perform relational operations or operations that are commonly
supported by popular database systems (e.g., exporting results to
CSV). This suggests that a significant number of popular Pandas
operations can be pushed down to database backends.

Pushing imperative code to databases. Pushing imperative code
to databases is an area that has received significant attention. Re-
lated efforts include techniques for pushing Java code using object-
relational mapping APIs into SQL queries [28, 32], query batch-
ing [29, 35], partitioning of application programs [27], cost-based
transformations for database applications [34], etc. The Myria sys-
tem [51] translates programs specified using a PySpark-like API
into various backends, including pushing down Python UDFs. In
this work, we propose a runtime approach with a focus on pro-
grams using the Pandas API interspersed with other Python code,
such as visualizations and model training.
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Figure 3: Our vision for a more simplified, unified, and effi-
cient data science stack.

3 MAGPIE OVERVIEW
Figure 3 shows our vision for a simplified, unified, and efficient data
science stack. Our goal is to bridge the Pythonic environments at the
top with the cloud backends at the bottom. Specifically, we want to
let data scientists write programs in the Pandas API and map them
to the Python layer that already exists for most cloud backends1
To achieve this, the Magpie middleware consists of a compiler, a
backend optimizer, and a common data layer. The compiler con-
verts Pandas computations into logical expressions, batches them
together using Ibis [13], and decides when to materialize them us-
ing the underlying backends. The backend optimizer selects the
most-performant backend amongst the available ones using a deci-
sion tree classifier learned from past observations available on the
cloud. The common data layer helps improve the database interface,
facilitate interactivity by caching results in memory, and combining
data from different sources. Overall, Magpie helps improve the data
science lifecycle in several ways:

Pandas without regret. One of the key factors behind the wide
adoption of Pandas besides the imperative interface and relatively
small learning curve is its interoperability with other popular sys-
tems such as matplotlib, Jupyter notebooks, sklearn, etc. In one
of our recent projects at Microsoft, data scientists implemented
a data cleaning module using Pandas. They tested locally using
a sample dataset, but later they had to scale it to a large dataset
on Cosmos. They ended up rewriting their module using SCOPE,
the query engine on Cosmos. The data scientists could have tried
alternate engines like Dask [11] to scale their programs, however,
operationalizing new engines in a cloud environment is non-trivial
and something which data scientists are not expert at. Examples
like this illustrate the gap between data science APIs and the data
processing tools, and exposes the dilemma that data scientists face
everyday. Magpie relieves data scientists of this dilemma and lets
them focus on their tasks using the Pandas API without any subse-
quent regret. We achieve this by transparently executing Pandas
computations on backends and taking care of materializing the
1We added a Python layer for SCOPE.

results when required. Our approach is to push down operations to
backends whenever possible; for other operations with no external
side effects, we extract a User Defined Function (UDF) that can
run on a co-located Python runtime at the database. It may also be
possible to use frameworks such as Dask for out of core processing
on resulting data after partially pushing down computations into
backends. Our preliminary evaluation (refer Section 5) shows that
relational operations can be significantly sped up by pushing down
to backends.

Abstracting data processing complexity. Data scientists may
not be experts in the underlying techniques for data management.
As a result, it may be hard for them to figure out details like data
partitioning, indexing, movement, joins, etc., especially when dif-
ferent cloud backends implement these concepts differently. Even
working with different data formats, given that CSV is the de facto
file format for data science, could be challenging. Magpie abstracts
the data processing details by automatically mapping to different
cloud backends and even picking amongst different ones for dif-
ferent scenarios. Using Magpie, data scientists can start off their
explorations locally on a sample of the data using CSV files. Later,
they can easily port their solutions to the backend of choice us-
ing leveraging Magpie’s automatic push down from Pandas into
various backends.

Write once, execute anywhere. As discussed earlier in Section 1,
polyengines are now commonplace thanks to disaggregated cloud
storage, and different backends may be suitable for data science
at different times, e.g., as the data volume grows. Magpie allows
data scientists to write their programs once and execute anywhere,
e.g., switch to more powerful or scalable cloud backends as the data
grows, debug locally on smaller data using just the Pandas backend,
or even port the same code to completely different environments
or different clouds.

We note here that Magpie requires users to provide a list of
backends available to them for computations on their data. From
these backends, Magpie can choose the best backend and run the
workload efficiently on the selected backend.

In-situ data science. Data movement is often the biggest blocker
to getting started with the data science, and so it is desirable to
run data science right where the data is without moving it around.
The advent of GDPR regulations has established the need for in-
database data science solutions [46]. This is further emphasized
with newer HTAP scenarios that require analytics on top of the
operational data. However, the lack of a familiar and unified API
makes it difficult for data scientists to build solutions efficiently.

4 PANDAS SURFACE FOR CLOUD BACKENDS
Magpie enables users to use the familiar Pandas API without sacri-
ficing the scale and performance provided by cloud backends. This is
achieved through a compiler, coined PyFroid, that translates Pandas
into a backend-agnostic intermediate representation, which is then
translated into an executable query on a target backend selected
by Magpie. We defer the underlying details about constructing and
optimizing the intermediate representation to Section 5.

Figure 4 illustrates the journey from Pandas to cloud backends.
For simplicity, we hereafter refer to programs that use the Pandas
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1 import pyfroid.pandas as pd # vs import pandas as pd

2 df = pd.read_sql(‘nyctaxi’, con) # fetch data

3 df = df[df.fare_amount > 0] # filter bad rows

4 df[‘day’] = df.pickup_datetime.dt.dayofweek # add features

5 df = df.groupby([‘day’])[‘passenger_count’].sum() # aggregation

6 print(df) # use dataframe

(a) Pandas DataFrame Program

‘day’=

‘nyctaxi’

SELECTION

PREDICATES

GREATER [boolean]

COL [float32*] LITERAL [float32]

‘fare_amount’ 0

SELECTION

EXTR. WEEKDAY[i32*]

COL [timestamp]

‘pickup_datetime’

AGGREGATION

BY

COL [i32*]

‘week_day’

METRICS

SUM [i64]

COL [i32*]

‘passenger_count’

(b) Intermediate Representation

SELECT DATEPART(WEEKDAY, 
pickup_datetime) AS day, 
SUM(passenger_count)

FROM nyctaxi
WHERE fare_amount > 0
GROUP BY DATEPART(WEEKDAY, 

pickup_datetime)

(c) T-SQL Statement

SELECT
(Cost: 0%)

Group by 
Aggregates

Shuffle
(Cost: 100%)

Group by 
Aggregates

Project Filter Get

(d) SQL DW Execution Plan

df = script.extract(path, schema)
.select(“fare_amount > 0”)
.groupby (“day”) 
.project(“pickup_datetime.
DayOfWeek.ToString() AS day”,
“passenger_count”)

(e) PySCOPE Script

(f) SCOPE Execution Plan

Figure 4: Pushing Pandas dataframes to cloud backends.

API as Pandas programs. The Pandas program in Figure 4a com-
putes the number of taxi trips per weekday over the NYC Taxi [16]
dataset, a common benchmark for data science and exploration. We
created a Pandas script that includes commonly used operations
including selections, projections, and group by aggregations. Data
scientists can run their existing Pandas programs using Magpie by
just modifying one line in their scripts (as shown in line 1 of Figure
4a). Figure 4b shows the compiled version of this program, captur-
ing computations across multiple imperative statements (lines 2 to
5 in the program) into a single logical query tree. As a result, Pandas
programs can now be executed as large chunks of computations,
potentially in parallel, compared to the default eager evaluation
offered by Pandas. Representing Pandas programs as a logical query
tree also allows us to apply database-style query optimization tech-
niques, i.e., it decouples the Pandas programs from their physical
execution on cloud backends. Our current implementation uses
Ibis [13] for the logical query tree representation.

‘week_day’

6
print(df)

Return: DataFrame

SELECT DATEPART(WEEKDAY, 
pickup_datetime) AS day,     

SUM(passenger_count) 
FROM nyctaxi
WHERE fare_amount > 0
GROUP BY day

Line# Dataframe Op

IR Expressions2
pd.read_sql(‘nyctaxi’, con)

Return: PyFroid Expression

e2:

3
df [fare_amount > 0]

Return: PyFroid Expression
e3:

4
df.col.dayofweek

Return: PyFroid Expression

e4:

5
df.groupby(‘day’)[col].sum()

Return: PyFroid Expression
e5:

Database

SCAN

SELECTION

PREDICATES

EXTR. 
WEEKDAY[i32*]

AGGREGATION

SELECTION

BY METRICS

‘nyctaxi’

Figure 5: PyFroid Lazy Evaluation

PyFroid currently handles selections, projections, feature addi-
tions, joins, and aggregations. However, for unsupported or untrans-
latable operations, PyFroid falls back to ordinary Pandas operations
(prior translatable operations are still executed on the backend).
This fallback is important as the Pandas API contains a large set of
rapidly growing operations, some of which may not have counter-
parts in the database backend (e.g., DataFrame.interpolate()).
PyFroid can also push Python functions as UDFs to the database,
which then may be executed on a co-located interpreter. This fur-
ther opens up interesting research challenges for applying a number
of optimizations. Preserving the ordering of data in dataframe com-
putations (explicit ordering such as that obtained through sort
or implicit ordering as obtained from other data sources) during
push down to backends is an important challenge. Techniques to
handle ordering from prior work on translating imperative code to
declarative representations [28, 33] can be leveraged for this pur-
pose. The unrestricted combination of Pandas statements with other
Python code, such as visualizations and model training, presents
new research challenges such as handling complex control flow, us-
ing program analysis, and rewriting to maximize the computation
pushed into the database.

5 PUSHING DATA SCIENCE DOWN
We saw in the previous section how Pandas programs could be
translated to logical query trees. In this section, we describe how
the trees expressions are lazily constructed and evaluated. Then,
we describe pushing them down to two popular cloud backends
at Microsoft: SQL DW and the SCOPE big data engine in Cosmos.
Finally, we show some of the benefits of pushing data science down.
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Figure 6: Pushdown performance

Lazy Evaluation. Pandas eagerly evaluates each method call. By
contrast, PyFroid does the following: (a) it parses the Pandas state-
ment to extract information about the underlying dataframe com-
putation, (b) registers the computations as part of an encapsulated
intermediate representation, called a PyFroid Expression (PFE), and
(c) returns a copy of the modified PFE object. This process is illus-
trated in Figure 5. For instance, after line 2, the table expression e2
(i.e., SCAN(nyctaxi)) is added to the PFE. After line 3, the PFE is
updated to a new expression e3 rooted at SELECTION operator and
children as e2 and a PREDICATES subexpression, which contains
the filter fare_amount > 0. In this way Pandas computations are
incrementally accumulated into a PFE.

Evaluation of a PFE is delayed until the dataframe needs to be
materialized for use in the program (i.e., a sink statement). For ex-
ample, in Figure 5, line 6 contains the sink statement print, which
forces the dataframe to be materialized. At this point, PyFroid trans-
lates the PFE into a query tree, submits it to the cloud backend for
optimization and execution, and returns the result as a dataframe.
We currently identify the following statements as sinks to force
dataframe materialization: (a) statements that require the contents
of dataframes to be printed or passed on to other library functions,
(b) occurrences of loops that iterate over the dataframe, or (c) state-
ments that use parts of the Pandas API that are that unsupported by
PyFroid. For unsupported operations, PyFroid materializes a result
and returns a DataFrame object (instead of a PFE). This enables
graceful fallback to Pandas.

Cloud Backends. PyFroid leverages Ibis [13] for query tree repre-
sentation and Ibis provides support for a number of relational and
hadoop-based backends, including Spark, PostgreSQL, BigQuery,
etc. Ibis specifies a set of common APIs to be implemented by
each backend, to facilitate code generation from Ibis expressions to
backend-specific queries and translation between database results
and dataframes. Ibis provides driver routines that invoke specific
implementations of these APIs depending on the backend.

As part of our work, we have added support for SQL DW and
SCOPE backends. Figure 4c and Figure 4d shows the SQL DW query
and the corresponding execution plan for our running example. In
this case, the database engine chose a parallelizable plan consisting
of partial group by aggregates followed by shuffle and global ag-
gregates. Alternatively, Magpie might select SCOPE as the target
backend. In this case, Figure 4e and Figure 4f shows the correspond-
ing PyScope (our Python layer for SCOPE) expressions and the
SCOPE query plan. Note that users do not have to worry about
implementing the SQL or SCOPE queries, or tuning the underlying

query plans. They only write their Pandas programs and the system
takes care of pushing them down to the cloud backends.

Our system design amortizes the cost of adding a new backend.
The PyFroid compiler exposes a common Pandas interface that can
be compiled down to any backend supported by Ibis. Thus, to add
a new backend, we only need to add a new backend to Ibis. This
was also a design goal of Ibis and our work extends the benefit of
this amortization, enabling existing data science solutions to be
migrated onto cloud engines without rewriting.

Pushing data science down matters. Figure 6 summarizes our
early evaluation results. Our experiments are run on SQLDW (Gen2
DW 100c) as the data store, with Pandas programs accessing the
data from an Azure Standard D8s v3 machine (8 vCPUs, 32 GiB
memory) running Ubuntu 18.04. First, we run the running example
(Figure 4a) using Pandas and PyFroid (i.e., pushed into database)
by varying the table size. Figure 6a shows the speedup when the
program is run using PyFroid compared to ordinary Pandas. Next,
we vary the complexity of the script in terms of number of joins
involved and compare in-database vs in-Pandas performance. For
this experiment, we fix the size of nyctaxi at one million rows
(around 120MB on database disk); each other table participating in
the join is obtained by randomly selecting five rows from nyctaxi.
The results are shown in Figure 6b. The X indicates that Pandas
ran out of resources and was killed. As seen in Figure 6, as the data
size or complexity of computations increases, PyFroid significantly
outperforms Pandas. However, the choice of which engine to choose
based on data statistics and workload complexity is a challenging
problem, which motivates our next section.

6 MANAGING THE ENGINE ZOO
As discussed earlier, polyengines are a reality in modern clouds.
The underlying data could be in a variety of locations such as oper-
ational stores, data warehouses, or data lakes. For operational data,
there is increasingly a trend to make it available for hybrid transac-
tion and analytical processing (HTAP). For example, Synapse Link
makes operational data from Cosmos DB available to Synapse [8].
For data warehouses, in order to minimize data movement, we cur-
rently push data science to the respective store. However, future
work should explore whether it makes sense to pull out intermedi-
ate results from the data warehouse for more efficient subsequent
local processing. Data lakes [48] on the other hand provide shared,
disaggregated storage that can be accessed by multiple engines,
including data warehouses [19, 21], without any additional data
movement costs.

Despite this reality, current tools require the data scientists to
choose database backends manually. Modin, for instance, requires
users to pick between Dask, Ray, or Pandas backend. This is chal-
lenging since a data scientist must study available engines and
select one for each specific use case. Below we describe three pro-
duction scenarios to illustrate why backend selection is nontrivial
for data scientists and how the backend optimizer in Magpie can
help them when working on a data lake.

Load Prediction on the Cloud. We recently deployed an infras-
tructure, called Seagull, for predicting the load of database services
and to optimize resource allocation [45] To ensure scalability across
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(a) Manual experiments
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(c) Decision tree: Spark & Pandas
Figure 7: Manual vs automatic choice of engine
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all Azure regions, we had to pick the most efficient backend for
the data processing component written using Pandas APIs and exe-
cuted using Azure Machine Learning [6] containers that fetch data
from Azure Data Lake Storage [48]. To this end, we manually ran
scripts of various complexity against input data of different sizes
on Pandas and on Dask (Figure 7a). We concluded that speed-up
of the multi-threaded execution on Dask increases with growing
input size and script complexity compared to the single-threaded
execution on Pandas. For a complex script and 2.5GB of input, Dask
achieves over 4× speed-up compared to Pandas on an Ubuntu VM
with 16 cores and 64GB of RAM. Running these experiments manu-
ally is labor-intensive, time-consuming, error-prone, and hard to
generalize to any script or input data. Data scientists have neither
time nor expertise to conduct a rigorous study for all engines. The
above Seagull experience further motivated our exploration for
backend selection, even on a single machine, and demonstrated the
feasibility of an automated approach.

Backend Selection in Cosmos. Previously, Cosmos had SCOPE
as the only query engine. SCOPE scripts perform petabyte-scale
preparation and analysis of production telemetry. Recently, Spark
has been introduced in Cosmos as well, which means both SCOPE
and Spark can process data from the same underlying Azure Data
Lake Storage. Now, the question is which SCOPE scripts can be
executed faster on Spark. We ran a workload of equivalent PyScope
and PySpark scripts on SCOPE and Spark on Cosmos. Based on
typical data preprocessing steps in Cosmos, we automatically gen-
erated 68 script templates and executed them on inputs with sizes
ranging from 1MB to 1TB. The scripts contained operators such as
filters, projections, groupbys, aggregations, joins, reads, and writes.
Each script contained between 3 and 20 operators, with an average
of 7 operators per script.

We extracted features from this workload such as query oper-
ators, input and output cardinalities, row length, and per-engine
runtimes [49]. Based on these features, we trained a decision tree
that automatically picks an engine with minimal expected runtime
for a given script (Figure 7b). We chose a decision tree since product
teams (and customers) want to understand why a particular en-
gine was chosen—particularly in case of an incident or unexpected
result. We observed cases where neither engine always performs
better for a given script due to variance in runtimes and so we
added a third label "Either" for such cases. We trained the tree using
scikit-learn [43] and used cross-validation to pick the appropriate
values of the hyperparameters max_depth, min_samples_split,
max_leaf_nodes, and min_samples_leaf.

The decision tree in Figure 7b achieves 87% accuracy on the test set,
which contained 25% of the scripts. For the scripts that executed
more quickly on Spark than on SCOPE, we observed up to 98%
improvement in runtime, with a median improvement of 85%.

As Figure 7b illustrates, if the input data contains fewer than
72M rows, Spark wins over SCOPE, while SCOPE wins when the
input data is large and the script has high estimated cost. Based
on this decision tree, we can automatically translate and redirect
respective scripts using the Magpie API from SCOPE to Spark to
reduce their runtime. In summary, we conclude that the runtime of
more than a quarter of scripts on Cosmos can be reduced by up to
half by moving them from SCOPE to Spark.

Local vs Cluster Execution. Given that data scientists are used
to working with local CSV files, it is not easy for them to decide
when to switch to cluster-based execution in Cosmos, i.e., when
the input is small, it may be most efficient to execute the script
on a single node using Pandas. However, as the size grows it may
be more efficient to move the data to the data lake and process
using one of the available cloud engines. Based on this intuition, we
trained another decision tree to decide whether Pandas (running
locally) or Spark on Cosmos (after moving the data to the data lake)
has shorter expected runtime using the same features and training
procedure as above. Wemeasured runtimes by executing equivalent
scripts written using Pandas on a Surface Pro 7 with an Intel Core
i7 CPU and 16GB of RAM. The tree shown in Figure 7c achieves
84% accuracy on the test set, which contained 25% of the scripts.
For the scripts that ran more quickly on Pandas, we observed up to
99% improvement in runtime, with a median improvement of 84%
in runtime.

An alternative approach is to frame backend selection as a re-
gression problem and predict the runtime of scripts on each engine.
However, training high-quality runtime prediction models is diffi-
cult, and recent work on a similar problem of index selection has
shown that positioning the decision as a classification task can
lead to superior performance [30]. While the search space for this
problem is unbounded, few features matter in practice. And since
identifying the decision points is nontrivial, Magpie can leverage
large cloudworkloads to provide robust backend selection decisions.

7 BETTER TOGETHER
Magpie uses Arrow [2] and ArrowFlight [40] as a common for-
mat for data access across each of its backend engines. It serializes
intermediate results as Arrow tables and uses ArrowFlight as an
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in-memory and wire format when moving data between systems.
For co-located engines, this virtually eliminates transfer cost, and
greatly reduces it for inter-node transfer. We now describe two sce-
narios where Magpie’s common data layer brings things together.

Different data sources together. A common scenario in the cloud
is to combine cold and near-archival data with hot and near-opera-
tional data (e.g., combining data from Cosmos and SQL DW). The
typical approach is to ingest data from one source to the other
before running the analysis. Magpie, however, pushes the computa-
tions (as much as possible) down the two sources before combining
the result. Furthermore, given that the cold data is typically large
and more stationary by definition, Magpie caches it in ArrowFlight,
whereafter it can be quickly joined with the constantly changing
hot data. Figure 8 shows 2–3× speedups in our running example
query over the NYC taxi dataset, when combining 100K rows of hot
data in SQL DW with varying sizes of cold data in Cosmos. Equally
importantly, Magpie allows processing over various file formats
(e.g., CSV and Cosmos’ StructStream), presenting a unified view to
data scientists.

Different data scientists together. Data science is both an itera-
tive and a collaborative process, with data scientists often running
partially or fully same computations on the same data. Magpie
can cache these common computations or even just the common
frequently used datasets (e.g., recent sales or telemetry) in Arrow
flight server to avoid going back to cloud backends every time. For
instance, it is desirable to hit the SQL DW backends less frequently
to make it more available for data warehousing workloads. Fig-
ure 8 shows the speedups if the data or the results of our running
example were cached in ArrowFlight. We show that with increas-
ing sizes, the speedups decrease for caching data but increase for
caching the results directly. Caching and reusing also deduplicates
the dataframes loaded in memory and reduces workspace memory
footprint.

A common, efficient serialized and wire format across data en-
gines is a transformational development. Many previous systems
and approaches (e.g., [26, 36, 38, 51]) have observed the prohibitive
cost of data conversion and transfer, precluding optimizers from
exploiting inter-DBMS performance advantages. By contrast, in-
memory data transfer cost between a pair of Arrow-supporting
systems is effectively zero. Many major, modern DBMSs (e.g., Spark,
Kudu, AWS Data Wrangler, SciDB, TileDB) and data-processing
frameworks (e.g., Pandas, NumPy, Dask) have or are in the process
of incorporating support for Arrow and ArrowFlight. Exploiting
this is key for Magpie, which is thereby free to combine data from
different sources and cache intermediate data and results, without
needing to consider data conversion overhead.

8 THE ROAD AHEAD
In this paper we introduced Magpie, a system that we are building
to bring together the increasingly popular Pandas API as an inter-
face for data science and decades of performance and scalability
optimizations found in database backends on the cloud.

Many challenges remain. With the Pandas community converg-
ing rapidly on a unified API, Magpie should ultimately strive for

full compatibility and evolve with the standard. This opens up ad-
ditional opportunities for optimizations (e.g., matrix multiply) and
new operations to be pushed down. Ultimately, full unification will
require even deeper system integration.

Finally, backend selection remains a longstanding and formida-
ble research challenge. The trend toward disaggregated storage and
a common data format offers a new opportunity for resolving this
challenge. However, many open problems remain, such as maximiz-
ing user experience (e.g., unifying error messages across dissimilar
backends), exploring federated or multi-backend execution, and
efficiently integrating new backend systems into a learned model.
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