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ABSTRACT
Recent advances in machine learning (ML) systems have made it
incredibly easier to train ML models given a training set. However,
our understanding of the behavior of the model training process has
not been improving at the same pace. Consequently, a number of
key questions remain: How can we systematically assign importance
or value to training data with respect to the utility of the trained
models, may it be accuracy, fairness, or robustness? How does noise in
the training data, either injected by noisy data acquisition processes
or adversarial parties, have an impact on the trained models? How
can we find the right data that can be cleaned and labeled to improve
the utility of the trained models? Just when we start to understand
these important questions for ML models in isolation recently, we
now have to face the reality that most real-world ML applications
are way more complex than a single ML model.

In this article—an extended abstract for an invited talk at the
DEEM workshop—we will discuss our current efforts in revisiting
these questions for an end-to-end ML pipeline, which consists of a
noise model for data and a feature extraction pipeline, followed by
the training of anMLmodel. In our opinion, this poses a unique chal-
lenge on the joint analysis of data processing and learning. Although
we will describe some of our recent results towards understanding
this interesting problem, this article is more of a “confession” on
our technical struggles and a “cry for help” to our data management
community.
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1 INTRODUCTION
Recent years have witnessed the incredible progress of machine
learning (ML) systems, driven by the joint efforts from different
communities including machine learning, systems, and data man-
agement. Because of efforts — just to name a few example from
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our community, System ML [2] Snorkel [23], ZeroER [28], TFX [3,
19], “Query 2.0” [29], Krypton [20], Cerebro [21], ModelDB [26],
MLFlow [32], HoloClean [24], ActiveClean [16], NorthStar [15],
mlinspect [7] and some of our own previous work [1, 18, 33]—
given a training set, automatically constructing an end-to-end ML
pipeline has become something possible for a user without much
expertise. Despite various remaining challenges [30, 31], producing
some (not necessarily the best) ML model given a training set is no
longer “rocket science” for many applications.

As a natural next step, it comes MLOps, the DevOps process of
machine learning. How to provide principled guidance for a developer
to continuously improve the quality, may it be accuracy, fairness, and
robustness, of a given ML model? As the quality of an ML model
heavily relies on the quality of its input data, one core problem in
MLOps is to reason about the influence of a data example or a subset
of data examples, in the training set, to the trained model. Recently,
researchers have developed a range of techniques to address this
problem [6, 9, 10, 13, 14, 17, 25].

An Emerging Gap. Most, if not all, endeavors on analyzing the
influence of data quality confine themselves in studying a trivial
pipeline that only contains the ML model itself. In reality, however,
most real-world applications contain more complex pipelines that
typically consist of a sequence of feature transformations then
followed by the training of an ML model. How can we reason about
the influence of data quality for such nontrivial ML pipelines?

2 OUR CURRENT APPROACHES
Figure 1 illustrates our current thinking. We consider an end-to-end
ML pipeline that consists of the following four components:

Noise Model on Training Set. The input to training is a distribu-
tion D over all possible datasets D. Uncertainty can come from
various sources, e.g., noise in data acquisition, weak supervision,
or manually injected noise for robustness.

Feature Extraction Pipeline. A feature extraction pipeline consists
of a sequence of transformations, forming a function 𝑞 : D ↦→ D
mapping from one training set to another transformed dataset. In
frameworks such as sklearn and ML.Net, these transformations
include feature normalization, data augmentation, etc.

ML Training. Followed by a feature extraction pipeline, we then
train an ML model A : D ↦→ M that takes as input a training set 𝐷
and outputs A(𝐷) as an ML model.

Model Validation. Given an ML model, we assume the existence
of a utility function𝑈 : M ↦→ R, which maps each model to some
utility, e.g., validation accuracy, fairness, robustness, etc.
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Figure 1: The goal of our endeavor is to understand two questions for an end-to-end ML pipeline: Q1. What is the impact of
data noise to the utility of a trained model? Q2. What is the impact of each data example to the utility of a trained model? We
hope to characterize these two questions in a principled way: to compute the entropy for Q1 and Shapley value for Q2. Both
quantities are #P-hard to compute in general. To this end, we conduct three heuristics to approximate such a pipeline into
something that we believe should give us PTIME algorithm for both quantities, by approximating the noise model, the feature
extraction pipeline, and the ML model, into simpler counterparts. Our current results cover two simpler instances.

2.1 Entropy and Shapley Value
We are curious about two questions:

Q1. What is the impact of data noise on the utility of a
trained model?

Q2. What is the impact of each individual data example
on the utility of a trained model?

Our current thinking is to understand these two questions by
analyzing the following two quantities.

Q1 and Entropy. To understand the impact of data noise, we are
curious about the entropy of the utility over the distribution of
input training set D:

ℎ = 𝐻 (𝑈 ◦ A ◦ 𝑞(D)) .

Intuitively, when the noise in the input training set does not matter,
we expect this entropy to be zero. Thus, a principled framework
for “Data Cleaning for ML” is to clean data examples to decrease
the expected entropy as much as possible. This process can benefit
from decades of study on sequential information maximization [4].
This term also has an interesting connection to the robustness of
the ML pipeline, via techniques such as randomized smoothing [5].

Q2 and Shapley Value. To understand the impact of each individ-
ual data example 𝑑𝑖 , we are curious about the Shapely value of 𝑑𝑖 .

Let 𝐷 be a training set:

𝑠 =
∑

𝐷′⊆𝐷\𝑑𝑖

(
|𝐷 |
|𝐷 ′ |

)−1
(𝑈 ◦ A ◦ 𝑞(𝐷 ∪ {𝑑𝑖 }) −𝑈 ◦ A ◦ 𝑞(𝐷))

Intuitively, this computes the expected marginal contribution of
𝑑𝑖 over all possible permutations of other data examples. Previous
research has shown the effectiveness of Shapley value in helping
many downstream tasks [11].

2.2 Hardness, Heuristics, and Proxies
The technical challenge is that computing both the entropy and the
Shapley value is #P-hard for general distributions, pipelines, and
ML models. Although one can resort to Markov chain Monte Carlo
(MCMC) to approximate these values, our current approach aims
at understanding scenarios where they can be computed exactly.

To achieve this, we approximate an end-to-end ML pipeline
(D, 𝑞,A,𝑈 ) with a proxy pipeline (D̃, 𝑞, Ã,𝑈 ):

(1) D ↦→ D̃: We approximate the noise model over training set
as Codd’s table, assuming cell-independent noises.

(2) 𝑞 ↦→ 𝑞: We approximate the feature extraction pipeline as
an expression in positive relational algebra equipped with a
provenance semiring (B,∨,∧, false, true) [8].

(3) A ↦→ Ã: We approximate the ML model as a KNN classifier.
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2.3 Entropy: KNN over Codd’s Table
In our previous work [12] we show that it is possible to compute,
in PTIME, the entropy of the proxy pipeline (D̃, 𝑞, Ã,𝑈 ) when

(1) The feature extraction pipeline 𝑞 consists of only map opera-
tions;

(2) The utility function 𝑈 is validation accuracy.

2.4 Shapley Value: KNN over Positive
Relational Algebra

In our previous work [9] we show that it is possible to compute, in
PTIME, the Shapley value of the proxy pipeline (D̃, 𝑞, Ã,𝑈 ) when

(1) The feature extraction pipeline 𝑞 consists of only map opera-
tions;

(2) The utility function 𝑈 is validation accuracy.
Also, in our ongoing work, we believe that we can compute, in

PTIME, the Shapley value for the proxy pipeline (D̃, 𝑞, Ã,𝑈 ) when
(1) The feature extraction pipeline 𝑞 contains map, fork, and

1-to-many join operations.
(2) The utility function 𝑈 is validation accuracy.

2.5 Empirical Results
We also have empirical results that for many pipelines, especially
those that we studied in real-world representative scenarios [22],
the proxy pipeline (D̃, 𝑞, Ã,𝑈 ) is a good proxy for many end-to-
end ML pipelines. This helps us to enable a range of applications
efficiently, including data cleaning for ML [12], certifiable defense
against backdoor attacks [27], and data debugging [11].

On the other hand, we also identify two cases where we fail,
which are related to the decision on using a KNN classifier as a
proxy for more complex ML models:

(1) (Shapely value) When the utility function reflects some
global, populational utility (e.g., fairness), the KNN proxy
tends to fail since it captures more of the local structures.

(2) (Entropy) When the downstream ML model reflects a dif-
ferent noise tolerance profile as KNN, the KNN proxy tends
to fail.

3 TECHNICAL STRUGGLES AND THE “CRY
FOR HELP”

Our current efforts reflect more about what we do not know than
what we actually know. In the following, we list several key strug-
gles that we have, hoping for feedback and help.

3.1 What is a Feature Extraction Pipeline?
What is a Good Proxy?

One key struggle is that we do not know how to characterize a
feature extraction pipeline precisely. On one hand, we have a generic
abstraction that treats it as a data flow graph, which, despite its
tremendous success in practice, does not give us the necessary
specifics to reason about its theoretical property. On the other hand,
treating it as a positive relational algebra query gives us a way to
reason about data provenance, which, however, completely ignores
all computations happening inside the pipeline. We are in dire need
on some formalism of the pipelines that is more powerful than a

polynomial in the provenance semiring while at the same time can
give us more logical properties than what a data flow graph offers.

3.2 What is a Good Proxy for ML Models?
So far, we have been using kNN as proxy of the downstream ML
model. This is a compromise we made to trade off between accu-
racy and computational efficiency. While having kNN as our proxy
makes our problems computationally tractable, we could lose on
accuracy when the downstream ML model itself is complex. We
are in dire need of more advanced proxies that, similar to kNN, are
amenable to mathematical analysis (so that we can design efficient
algorithmic solutions), but can be more accurate than kNN when
approximating downstream ML models.

3.3 What is a Good Metric for Measuring Data
Quality Impact?

Is entropy the best way to reason about data cleaning for ML? Is
Shapley value the best way to reason about data influence? How
about data subgroups? How about influence functions [14]?

Although we believe that both entropy and Shapley value are
reasonable metrics to measure the impact of data quality in our
problem context, they are by no means the only ones. Since our cur-
rent solutions are tied to these twometrics, a natural question to ask
is then, if we replace the metrics by something else (e.g., influence
functions), would that change our main observations and conclu-
sions? For example, maybe our current algorithmic frameworks are
no longer efficient and therefore we need brand-new solutions for
such new metrics. It would be interesting and perhaps challenging
to investigate the generalizability of our techniques when facing
a new data quality metric, which can even be application-driven.
On the other hand, it would also be interesting to study the com-
monality of the popular metrics used in practice and see its impact
on the computational problem structure, which may bring in new
insights to our algorithm design and generalization as well.
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