
Mining Conserved Topological Structures from Large 
Protein-Protein Interaction Networks*  

 
Yanghua Xiao+     Wei Wang+       Wentao Wu+      

+ Fudan University, China{Shawyanghua, wentaowu1984,Vincent.wzb}@gmail.com,weiwang1@fudan.edu.cn 

ABSTRACT1 
Analysis of Protein-Protein Interaction (PPI) networks is of great significance in evolutionary biology. Because of high computation cost, 
recently multi-PPI network alignment becomes hot topic. In this paper, we proposed conserved topological structures mining based  multi-
PPI network alignment technology. The most challenging problems in conserved topological structure mining are the large size of the real 
PPI networks and the requirement of inexact alignment of networks. To solve this problem, we develop an algorithm framework: 
Conserved Substructure Mining (CSMiner) for PPI networks. In the algorithm, we synthesize many techniques to boost the mining 
procedure, including a novel efficient pattern growth method, an efficient node disjoint subgraph homeomorphism determination algorithm 
and the integrated strategy of these two algorithms. We also demonstrate the efficiency and effectivity through the experiments on real PPI 
networks of Saccharomyces Cerevisiae and  Drosophila Melanogaster. 
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1. Introduction 
In evolutionary and comparative biology, PPI network analysis 

has attracted more and more research attentions. [9][10] focused 
on finding motifs in large PPI networks, and these network motifs 
can be employed to explore the interactomes. [11][12][13] focused 
on aligning multi-PPI networks to find conserved structures, such 
as paths[11], clique-like structures[12] or general structures[13], 
and these conserved structures can be used to analysis the relevant 
functionality across species. Bearing in mind the importance of 
PPI network analysis, we must also be aware that neither motif 
finding nor network alignment is a trivial or easy thing, especially 
the latter.  

In multi-PPI network alignment, we need to find the conserved 
subnetworks within the PPI networks belonging to different 
species. The conservation is measured in terms of sequence 
similarity and network topology similarity.  The challenging in  
PPI network alignment are: 

 The PPI network data contains many noisy data. Hence, 
alignment of multi-PPI networks in the real application 
often needs to allow node skipping or node mismatching. 
It increase the computation cost of graph matching.  

 The PPI network data is relatively large and complex.  
More and more PPI networks which have more than 
several thousand nodes and ten thousands edges have 
been discovered. Moreover, the PPI network follows 
many well-known laws of complex networks, such as 
‘scale free’ property.  

Figure 1 shows the PPI network of Saccharomyces Cerevisiae. 
From the graph mining perspective, multi PPI network 

alignment is considered as finding the frequent conserved 
subgraph patterns from multi PPI networks. These conserved sub-
networks are similar to each other with relaxation of node 
mismatch and node skipping. Hence, the task is equivalent to find 
those conserved topological structures, conserved across species 
with some noisy node skipped or edges contracted.  

Although many graph mining algorithm frameworks have 
proposed, they can’t be easily extended to facilitate the 
accomplishment of PPI network alignment for the following 
reasons. First, most of the existing graph mining systems[1-8] 
focused on mining subgraph patterns from relatively small and 
simple graphs with size less than one hundred nodes and a very 
little average node degrees. However, the PPI network data is 
much larger and more complex. Second, traditional graph mining 
systems only need to mine out precise subgraph patterns that are 
subgraph isomorphic to data graphs. On the contrary, the focus of 
PPI mining is not the precise pattern, but the fuzzy pattern 
allowing node mismatching and skipping. The process of fuzzy 
patterns mining is based on the subgraph homeomorphism 
determination (SHD) which is more difficult than subgraph 
isomorphism determination (SID).  

To solve these problems, we develop an algorithm framework: 
Conserved Substructure Mining (CSMiner) for PPI networks. 
Besides the algorithm framework CSMiner, we also make the 
following contributions. 

 We proposed the conserved topological structures 
minging based multi-PPI network alignment technology. 

 We propose an efficient node disjoint subgraph 
homeomorphism determination algorithm to perform the 
inexact pattern matching in multi-PPI network alignment 

 We devise the novel pattern growth operators to 
enumerate patterns completely and compactly. We also 
propose a strategy to treat the pattern matching procedure 
as a white box and integrate it into the whole mining 
procedure, to boost the mining procedure. 

2. Preliminaries 
In this section, we will explain some basic notations and 

concepts. Then we will give the formal definition of the problem. 

2.1 Basic Notations 
Let G= (V,E,l) be a vertex labeled graph, where V  is the set of 

vertices, E  is the set of edges and E⊆V×V, and l is a label 



function l:V→L , assigning to every vertex a label. The vertex set 
of G is referred to as V(G), and its edges set as E(G). A path P in a 
graph is a sequence of vertices v1,v2,…,vk, where vi∈V andvivi+1∈

E. The vertices v1 and vk are linked by P and are called its ends. 
The number of edges of a path is its length, and the path of length 
k is denoted as Pk. A path is simple if its vertices are all distinct. 
Particularly, a group of paths is independent if none of the paths 
has an inner vertex on another path. In the other words, a path 
intersecting with other paths only at its ends can be called as an 
independent path.  

2.2 Inexact Graph Matching  
  The existing inexact graph matching is considered as subgraph 
isomorphism between graphs.  However, in multi PPI network 
alignment, subgraph isomorphism cannot represent the fuzzy 
matching in the sense of topological structure, which will be 
illustrated in the example 1. 
Example 1. As shown in Figure 2, G2 is not a subgraph of G1 nor 
G3, in subgraph isomorphism based alignment strategy, such as 
maximal common subgraph[15]. However, from the viewpoint of 
abstract topological structure, G2 matched to G1 with relaxation of 
node skipping or node mismatching. In other words, G2  matched 
to G1, because G2 retains the topological structure of G1 by 
contracting the paths in G1 into the corresponding edges in G2.  
Similarly, G2 also retains the topological structure of G3. As a 
result, G2 is considered as a conserved pattern when performing 
pairwise alignment between G1 and G3. 

            
Figure 1:PPI Network       Figure 2:Inexact Graph Matching 

From the perspective of Graph Minor theory [19], the 
abstracted topological structure in many real applications can be 
described as topology minor which is an abstraction that focuses 
on the abstract structure of the graph,  and the relation between 
topological structure and its original graph can be described as 
node/edge disjoint subgraph homeomorphism.  

2.3 Topology Minor 
A topology minor of a graph is generated by contracting the 

independent paths of one of its subgraphs into edges. For example, 
in Figure 3, X is a topology minor of Y, since X is generated by 
contracting the independent paths of Y’s subgraph: G. Clearly, 
contracting independent paths helps simplify a (sub)graph without 
compromising its topological information. 

 
Figure 3: Topology Minor 

Formally, as shown in Figure 3, if we replace all the edges of X 
with independent paths between their ends, so that these paths are 
pair-wise node independent, i.e. none of these paths has an inner 
vertex on another path, then G is a subdivision of X, denoted as 
T(X). If G is a subgraph of Y, then X is a topology minor of Y. As a 
subdivision as X and a subgraph of Y, if G is obtained by replacing 

all the edges of X with independent paths with length from l to h, 
then G is a (l, h)-subdivision of X and T is a (l, h)-Topology Minor 
of Y.  

If X is a topology minor of Y, then all the edges of X can be 
mapped to a simple path of Y, all the nodes in X can be one to one 
mapped to nodes of Y, and the mapped nodes are called branch 
nodes of Y. 

The generalization of topology minor is minor[17], which is 
obtained by contracting some edges of one of its subgraphs. If X is 
a minor of Y, T(X) may not be a subgraph of Y, but if X is a 
topology minor of Y, T(X) must be a subgraph of Y. So topology 
minor is the most appropriate concept to represent the abstracted 
or simplified topological structure. 

2.4 Node Disjoint Subgraph Homeomorphism 
From viewpoint of relation between graphs, minor, topology 

minor as well as subgraph correspond to three basic relationships 
between graphs: subgraph homeomorphism, node disjoint 
subgraph homeomorphism and subgraph isomorphism. 

Subgraph isomorphism from P into G is an injective mapping of 
vertices and edges from P into that of G. The subgraph 
homeomorphism from P into G is a pair of injective mappings (f, 
g), the first from vertices of P into G, and from edges of P into 
simple paths of G. In addition, if P is subgraph homeomorphic to 
G and all the mapped paths of G are node or edge disjoint, i.e. all 
the mapped paths are pairwise independent, then P is a topology 
minor of G and P is node or edge disjoint subgraph 
homeomorphic to G.  

In some applications, such as multi-PPI network alignment, 
extracting abstracted topological structure is very useful. Node 
disjoint subgraph homeomorphism is more flexible than subgraph 
isomorphism and more restricted than general subgraph 
homeomorphism. As a result, more covert and meaningful 
conserved patterns will be found. The relation of three basic graph 
relationship is shown in Figure 4. 

 
Figure 4: Relation among Three Basic Graph Relationship. 

2.5 Problem Definition 
With the concept of topology minor at hands, we can formally 

give the definition of the problem.  
Definition 1 (Conserved Topological Structures). For a given 

set D consisting of k PPI networks, parameters l and h, the 
Conserved Topological Substructures is the graph that is 
isomorphic to a (l, h)-Topology Minor of each PPI network in D. 

For a given k PPI networks set D, parameters l and h, the 
problem of  Mining Conserved Topological Substructures from 
PPI networks is to find all the graph that is isomorphic to a (l, h)-
Topology Minor of each PPI network in D. For the convenience of 
discussion, this problem is denoted as P(D, k, l, h). 

Obviously, from definition 1, we can see that Mining 
Conserved Topological Substructures from PPI networks is 



similar to traditional frequent graph pattern mining. However, 
there are still two major distinctive features. The first is the 
frequency of the intended pattern is 100% in the problem of 
Mining Conserved Topological Substructures from PPI networks, 
due to its origination from problem of network alignment. The 
second is the graph relation utilize different criteria of pattern 
matching, node disjoint subgraph homeomorphism is the 
substitution for subgraph isomorphism.  

Clearly, topology minor is the essential of the whole problem, 
therefore from this perspective, this problem also can be called as 
mining frequent (l,h)- topology minor from PPI networks. 

In the problem of Mining Conserved Topological Substructures 
from PPI networks, the anti-monotone property also holds. In the 
context of conserved topological structure, the anti-monotony 
implies that if a given graph G is a conserved topological structure 
of the PPI networks, then any graph subgraph isomorphic to G 
must be also conserved pattern. As a result, all G’s subgraphs are 
trivial in the sense that these conserved substructures can be 
inferred from the G. Hence, in multi PPI network alignment, we 
can only take care of maximal conserved graphs. 

Lemma 1 (Closure of Conserved Topological Structure Space 
under subgraph isomorphic relation). For a given problem P(D, k, 
l, h), let Conserved Topological Structure Space be the collection 
of all the conserved topological structures of the problem, denoted 
as M. Then M is closed under subgraph isomorphic relation, 
which means that if graph g∈M, then for any g’ subgraph 
isomorphic to g,  g’∈M. 

Property 1 (Anti-monotony of the conservation of Conserved 
Topological Structures under subgraph isomorphic relation). For 
a given problem P(D, k, l, h), if G is conserved, then any graph 
subgraph isomorphic to G is also conserved.  

Property 1 can also be expressed reversely, if G is not 
conserved, then any G’s supergraph will not be conserved, which 
often called as downward closure property of G. This property can 
be used to prune the candidate pattern space 

3. Algorithm Framework 
In this section, we first sketch out the Apriori-based algorithm 

framework. 

3.1 Apriori-based Conserved Topological 
Structure Mining 

As a general algorithm framework, level-wise search based on 
Apriori property has been widely used to enumerate candidate 
patterns in frequent graph pattern mining [1][2].  In this paper, we 
also utilize the Apriori based level-wise search as the algorithm 
framework, which is shown in  Algorithm 1 and the notations used 
in Algorithm 1 is shown in Table 1. 

Algorithm 1 Apriori-CSMiner (D, l, h) 
Input: PPI networks D,  l :minimal path length, h :maximal path 
length; 
Output: conserved topological structures F 
Method: 
        //phase 1: Initial Mining 
1. M ←VertexMappingBuilding(D) 
2. Initia Mining(D) ; //Initialize the mining procedure. 
3. F1← {e | ∀G∈D, e∈E(G)} 
4. k←1 

5. while Fk≠∅ 
     //phase 2: Pattern Growth 

6.     Ck+1←CandidateGen(Fk) 
8.     Fk+1←Ck+1  
    //phase 3: Pattern Matching Validation 
9.     for each candidate  Pk+1∈ Ck+1 
10.         for each G∈D 
11.             if ndSHD(Pk+1, G)=false then 
12.                Fk+1← Fk+1- {Pk+1} 
13.    k←k+1 
14. return F={F1,…, Fk} 

Table 1 Notations in Algorithm 1 

Notation Description 
M 
Fk 

Ck 

Pk 

The set of Initial Node Compatible Matrix  
Frequent pattern set of size k 
Candidate pattern set of size k 
A pattern with size k 

As illustrated in Algorithm 1, the entire procedure can be 
divided into three major phases, initial mining, pattern growth and 
graph matching validation.  

1. Initial Mining. To correlate all input networks, vertex 
mapping is build. The details will be discussed in section 3.2. In 
this phase, we also generate all the paths with length between 
l and h for each PPI network, as well as an index structure, which 
will be discussed in 4.2 in detail. In this index structure, all of the 
nodes and the paths in the data graph, are indexed. This index 
structure will be employed to speed up the procedure of node 
disjoint subgraph homeomorphism based pattern matching. 

2. Pattern Growth(Enumeration). In the pattern enumeration 
phase (lines 6-8), we employ level-wise Pattern Growth as the 
enumeration strategy. To ensure the completeness and 
compactness of pattern enumeration, three graph pattern join 
operators have been devised based on the linear order defined on 
the patterns set: one Forward Join operator, two Backward Join 
Operator, which will be discussed in section 5. 

3. Pattern matching .In this phase (line 9-11), node disjoint 
SHD is performed. It is the most crucial part of the whole 
algorithm. The basic idea is to employ depth first search in the 
state space with backtrack. For SHD problems, node mapping 
space and edge-path mapping space will be searched. In CSMiner, 
first we look for a valid node mapping, and then explore the edge-
path space to find a valid edge-path mapping. In this edge-path 
mapping, all the paths need to be pair-wise independent. Once a 
node is selected or a path is selected, all the paths passing through 
the node or joint with the path are marked as negative and cannot 
be used as a mapped path.  The details will be introduced in 
section 4. Furthermore, in this phase, when we are going to 
perform a ndSHD between pattern graph G1 and data graph G2, 
it’s not necessary to start the from scratch, we only need to start 
from the matched state when performing ndSHD between one of 
G1’s parent pattern and G2 .This process will be described in 
section 7. 

3.2 Vertex Mapping Building 
The first conservation level in multi-PPI Networks alignment is 

protein sequence similarity. Hence, before we perform topology 
structure alignment, need to accomplish the pairwise sequence 
alignment. Luckily, this preliminary step can be achieved by using 
BLAST[18], a well-known sequence alignment tool. 

After protein sequences alignment have been performed, we 



will find the similar protein sequence pair from different species. 
The similarity score value will be larger than a similarity 
threshold α. Then we can build the mapping relation between each 
pair of PPI networks in terms of α. 

Procedure of Vertex Mapping Building. Formally, for the 
problem P(D, k,  l, h) , first, we select a seed network Gs such that 
Gs =arg min{|V(G)|G∈ D }. Then for each Gi∈ D , we build a 
partial multi-value mapping from V(Gs) to V(Gi) in terms of the 
protein sequence similarity threshold α. We only keep the 
mapping relations whose similarity score larger than α.  We use Vs 
⊆V(Gs) to denote the nodes participating in the mapping in V(Gs). 
And the partial mapping between Gs and Gi∈D is denoted as fi :Vs
→V(Gi). Overall, we have a mapping set F={f1 ,…, fk}. Then for 
each fi∈F , we define node compatible matrix Mi=[mpq] to be n1 
(rows)×n2 (columns) matrix whose elements are 1’s or 0’s and 
mpq =1 iff  vq∈fi (vp), where n1=| Vs | and n2=| fi(Vs) |. 

Example 2. Figure 5 shows an example of the mapping relation  
in terms of protein sequence similarity between Gs and Gi. The 
solid line represent the mapping relation with similarity value 
larger than α, the dotted line represent that less than α. Note that 
v3∉Vs, as no protein sequence of Gi is similar to v3.  Therefore, the 
mapping from V(Gs) to V(Gi) is only a partial mapping. Moreover, 
it is not difficult to see that the mapping also is a multi-value 
mapping. Mi is the node compatible matrix.  

 
Figure 5: Mapping Relation .   Figure 6: Running Example 

In the above vertex mapping building procedure, we need to 
have a deep look on the partial mapping property of fi. fi  is only a 
partial mapping, which implies that there exist some vertices of 
seed network, for which no mapping can be built. The proteins 
belong to V(Gs)-Vs will not occur in the conserved topological 
structures as branch nodes. α is the key parameter in the algorithm. 
It can be determined by the distribution of similarities scores 
between proteins of different species. 

The vertex mapping building procedure is also a vertex 
relabeling procedure. The node with similar sequence will share 
the same label. It will make the process of node mapping simpler. 
Node Disjoint Subgraph Homeomorphism Determination(ndSHD) 

The core of CSMiner is node disjoint Subgraph 
Homeomorphism Determination (ndSHD). In the Apriori-
CSMiner framework, given a candidate pattern P and PPI 
networks D, we need to determine whether P is isomorphic to a (l, 
h)-topology minor of each G∈D. 

To simplify the description, we give some notations. Assume 
that the pattern graph G1=(V1,E1,l1) is  a (l, h)-topology minor of 
PPI network G2=(V2,E2,l2) under the node disjoint subgraph 
homeomorphism (f , g), where  f:V1→V2 and g:E1→Pl∪...∪Ph. 
The number of vertices and edges of G1 and G2 are n1, m1 and n2, 
m2, respectively. 

3.1 Two-level State Space Searching 
To determine whether G1 is a (l, h) topology minor of G2 is 

equivalent to find a pair of mapping (NM, EPM) between these 
two graphs. The mapping NM⊆ V1×V maps the nodes in G1 to the 
nodes with the same label in G2. While EPM⊆ E1×Pl∪...∪Ph 
map all the edges of G1 to the path with the same end in G2. All 
the mapped nodes of G2 is denoted as NM(2), and all the mapped 
paths of G2 is denoted as EPM(2). 

The process of finding the homeomorphism mapping can be 
described by means of State Space Representation [16]. Each state 
s of the matching process can be associated to a partial mapping 
solution M(s), which contains all the matches we have found and 
is a subset of the final match set. 

In terms of the above discussion, it’s naturally to employ the 
two-level state space searching as the framework of ndSHD. The 
algorithm framework is shown in Algorithm 2. At first, we 
initialize two basic data structures of the algorithm: node 
compatible matrix M and independent path matrix R as well as its 
associated path indexed structure. Then we start the node 
matching process from the empty state (line 3). Each time we 
select a branch in the state space, a state s transits to a new 
succeeding state s’ by adding a new match, which is a node pair or 
an edge path pair, to the partial solution. Each time a new match 
state arrives, M and R are updated so that the node mapping space 
and edge-path mapping space can be pruned. When a complete 
node mapping has been found (line 5), the matching process will 
come to the second level: edge-path matching space search (line 
6). Similar to the search process in node mapping space, each time 
a branch is selected, an edge-path pair is added to the partial 
mapping solution and the independent path matrix is updated. The 
process continues until a complete edge-path mapping is found. If 
all the possible valid branches in the subspace rooted at current 
state s have been explored, the searching process backtracks to the 
parent state of s. And any time the procedure enters into dead 
state which will be discussed in 4.3, the whole process will stop 
and return false. 

Algorithm 2  NodeDisjointSHD (G1,G2, M12,l,h) 
Input: G1,G2: vertex labeled graphs, M12: the initial node 
compatible matrix, l :minimal path length, h :maximal path 
length ; 
Output: If G1 is  a ( , )l h topology minor of G2  return true and 
return the first found node disjoint subgraph homeomorphism (f, 
g), otherwise return false. 
Method: 
 // Initialize the basic data structures 
1. Initial(M, M12) 
2. Initial(R)  
3. s←∅ //initialize state as empty state 
4. s←NodeMappingSearch(s,M,R)  //node mapping space search 
5. If not IsValid(s) return false else 
6.    s ←EdgePathMappingSearch(s,M,R)    
7. If not IsValid(s) return false  else return true 
Example3.Given the two vertex labeled graphs as shown in 
Figure 6, the two-level state space searching procedure for a (2,2) 
topological mapping is shown as Figure 7. 



 
 Figure 7: Two Level State Space Searching 

3.2 Basic Data Structure 
As described in 4.1, there are two basic data structures. Node 

compatible matrix is used to represent the node mapping 
information. Independent path matrix is used to represent (l, h) 
independent path information of G2.  Both of these two data 
structures are changing with the transition of the matching state. 

   
Figure 8: M0 and M’   

 
 Figure 9: R and its associated Path Indexed Structure  

The elements of node compatible matrix M=[mij] to be n1 (rows)
×n2 (columns) matrix are 1’s or 0’s. In the final mapping matrix 
M’=[m’ij], each row contains exactly one 1 and each column 
contains no more than one 1. The final mapping matrix represents 
a one to one mapping between nodes of G1 and G2, while the 
initial compatible matrix represents the probable mappings. The 
two matrixes of Figure 6 are shown in Figure 8. Obviously it 
follows that M’, ( m’ij =1)→(m0

ij =1).  

LEMMA 2: The number of elements of the independent path set 
starting from a specified vertex vi∈V is no more than d(vi), where 
d(vi) denotes the degree of vi. 

Because every path set starting from vi must pass through one 
or more edges incident with vi. So the independent path set 
starting from vi has at most d(vi) elements. According to lemma 2, 
the node v in G1 cannot be mapped to those nodes in G2 whose 
degree is less than d(v). Therefore, we refined the initial 
compatible matrix M0 in accordance with the following rule: 

m0
ij=0 if d(vi)>d(vj).  As shown in Figure 3, v1 in G1 cannot 

mapped to v5 of G2, although these two nodes have the same label. 

When constructing Independent Path Matrix and its associated 
Path Indexed Structure, whether we need to generate all the (l, h) 
path information of G2. The answer is false. 

LEMMA 3: If G1 is a (l , h)-topology minor of G2 under subgraph 
homeomorphism (f , g), then gE1 only contains paths ending with 
those branch nodes in G2. 

From lemma 3, we only need to generate all the (l, h) paths 
between any candidate branch node pairs. These candidate branch 
nodes have been filtered out by matrix M0. For example, in Figure 
8 shown, column 5 and 9 have only 0’s, then v5 and v9 in G2 
cannot be branch nodes, then all paths in figure 3 starting from v5 
and v9 can be ignored. The cardinality of the candidate branch 
node set is denoted as n2’. 

The independent path matrix R=[rij] is n2’ (rows)×n2’(columns) 
matrix. Its elements are positive integers or 0’s, which represent 
the number of (l, h) paths between the node pair (vi,vj) in G2. We 
associate R  to a path index structure RLists, and every list in 
RLists contains all the path addresses that point to the physical 
storage of the path.  

3.3 State Space Searching 
The procedure of node mapping space searching and edge-path 

mapping space searching are similar to each other. These two 
procedures are shown in Algorithm 3.  

From line 1-2, when a new state s arrives, s can be a dead state 
or success state. The state space search arrives at a success state if 
all the node mappings or edge-path mappings have been found, 
which means |NM(s)|=|V1| or |EPM(s)|=|E1|. The node mapping 
state space search arrives at a dead state if there is a row with all 
0’s in node compatible matrix M of the current state. While the 
edge-path mapping state space search arrives at a dead state if 
there is no path between any branch node pairs, which can be 
determined from independent path matrix R of the current state. 

From The 4-12 lines, when search process enters success state 
or dead state, the procedure is over. If success state arrives, the 
complete mapping is found and the procedure returns true. If dead 
state arrives, the procedure returns false. For other cases, the 
procedure will continue exploring the state space.   

Assume the process comes to state s whose M(s) is a partial 
solution. Then as long as a valid mapping pair exists, which may 
be a node pair or an edge-path pair, we need to generate a new 
state by adding the new match (line 7). To enable backtracking, 
we need to backup the current state first (line 6). Under the 
influence of the new added match, the node compatible matrix and 
independent path matrix need to be updated (line 8,9). Then DFS 
continues, until the search enters into dead state or success state. If 
we cannot find a success state in subtree space rooted at s, we 
recover the state s (line 12), and try the sibling state branch. 

Algorithm 3   Node/EdgePatbMappingSearch (s,M,R) 
Input: s: the current matching state; M: the current node 
compatible matrix; R: the current independent path matrix ; 
Output:  found: a boolean variable indicate whether a complete 
node/edge-path mapping has been found 
Method: 
1. if s is dead state then return false; 



2. if s is complete mapping state then return true; 
3. found←false; 
4. while(!found && Exists Valid Node/edge-path Mapping Pair) 
5.    m←nextValidPair()   // generate a match m; 
6.    s’←BackupState(s) 
7.    NM(s)←NM(s)∪{m} // or EPM(s)←EPM(s)∪{m} 
8.    Refine(M) 
9.    Refine(R) 
10.   found←Node/EdgePathMappingSearch(s,M,R) 
11.   if found then return true  
12.   else s←RecoverState(s’) 
13. return false; 

3.4 Refinement Procedure 
To enumerate all possible mapping solution is time consuming, 

so space pruning is essential for node disjoint SHD. We devise 
two refinement procedures on R and M respectively, the former is 
based on lemma 4,5, and the latter is based on lemma 6. 

LEMMA 4: In the matching process, if v∈NM(2), then any path 
with v as inner vertex will not ∈EPM(2). 

LEMMA 5: In the matching process, if p∈EPM(2), then any path 
passing trough the inner vertex of p will not ∈EPM(2) . 

LEMMA 6: If (vi,vj) ∈NM (vi∈V1, vj∈V2) and assume that current 
state is s with |M(s)|=t and M(s)⊆NM, then the following 
statements hold:  
(1) ' 0j kr∏ >  (j’=Index(j) , ( 2)( ( ) )k Index M s∈ ). 
(2) ' ( )iv Adjacent v∀ ∈ , 2v V∃ ∈  with l2(v)=l1(v’) and rj’k >0 , 
(j’=Index(j) ,k=Index(v)). 
(3) The path set consisting of the paths to which rj’k in (1) and (2) 
indicates is independent.  

In the above statements, index(R) gets an index in R for a node 
in G2 and Adjacent(v) obtains the adjacent nodes set of v. 

4. Pattern Enumeration 
In this section, we focus on the following problem: given 

conserved structures of size k, i.e. Fk, how to efficiently enumerate 
all possible candidate conserved patterns Ck+1, s t.  (1) 
Completeness, all conserved patterns of size k+1, belong to Ck+1; 
and(2) Compactness, for any two candidate patterns P1, P2∈Ck+1, 
P1 is not isomorphic to P2. 

4.1 Pattern Growth Operators 
The whole pattern growth procedure can be recursively 

described. We begin the discussion with initial phase F1 . 
For PPI networks, each vertex in the network represent a unique 

protein of the specie and after data preprocessing, proteins can be 
labeled so that each protein is globally unique. Therefore, given 
F1, let V(F1)={v1,v2|e(v1,v2)∈F1}, we can define a linear order on 
V(F1), which can is a labeling function. For example, we can 
assign to each node a distinctive integer ID µ : V(F1)→ I, 
I={1,2,…,n}, where n=|V(F1)|. Then each conserved edge can be 
uniquely identified by an ordered node pair <i,j>,s.t .i≤j, where 
i,j∈I. Thus, we also can define a linear order  ≤1 on F1 according 
to the lexicographical order of the corresponding ordered node 
pairs. Then in terms of order ≤1, each conserved edge can be 
indexed by an integer i∈[1,m], where m=|F1|. 

For each pattern Pk with size k, we assign a globally unique 
pattern ID PID and a bit sequence b=b1,…,bm, s.t.  bi=1 iff the i-th 
conserved edge in F1 occur in P, otherwise 0. Each pattern Pk, is 
generated by merging two joinable patterns with k-1 size, which is 
called as P’s parent patterns. Hence, we can associate to each Pk 
an ordered pair <PID1, PID2> s.t. PID1<PID2, to indicate its two 
parents’ pattern ID.  

Similar to F1, for each Pk∈Ck, we define a linear order ≤k on Ck , 
which is defined in terms of the lexicographical order defined on 
the corresponding parent ID pairs. Formally, let Zk be the set 
whose elements are finite sequence of elements of Ck, the 
lexicographical order of Zk induced by ≤k is denoted as ≤k’ , then 
for distinct P1,P2∈Ck,  P1≤kP2 iff P1.<PID1, PID2> ≤k-1’ P2.<PID1, 
PID2>. Furthermore, given ≤k, we assign to each Pk∈Ck a globally 
unique pattern ID s.t. P1≤kP2⇔P1.PID≤P2.PID. 

Definition 3 (Pattern Joinable) Given Fk, for any two patterns 
P1, P2∈Fk s.t. P1 ≤k P2 

(1) case P1.PID2=P2.PID1, then P1 is forward joinable to P2  
(2) case P1.PID1=P2.PID1, then P1 is backward joinable to P2 

in case 1 
(3) case P1.PID2=P2.PID2, then P1 is backward joinable to P2 

in case 2.  

Definition 4 Given Fk , for any two patterns P1, P2∈Fk , we 
define the following binary operator on Fk: 

 (1)  (Forward Join Operator) 
If P1 is forward joinable to P2, P1  P2=P1∪P2, else P1  P2=∅. 
(2) 1 (Backward Join Operator 1)  
If P1 is backward joinable to P2 in case 1, P1 1P2=P1∪P2, else 

P1 1P2=∅. 
(3) 2 (Backward Join Operator 2)  
If P1 is backward joinable to P2 in case 1, P1 2P2=P1∪P2, else 

P1 2P2=∅. Where, P1∪P2=(V(P1) ∪V(P2), E(P1) ∪E(P2) ). 

Example 3  As shown in Figure 10, given frequent pattern set 
Fk, using the operators defined in definition 4, we can get Ck+1, if 
all the patterns in Ck+1 is frequent, continuously using these three 
operators, we get Ck+2. Note that, for k=1, P1, P2, P3 in all the 
patterns in Figure 10 just represent a conserved node of PPI 
networks, respectively. For k>1, P1, P2, P3 represent a pattern 
generated from Fk-1, respectively. 

Figure 10: Pattern Growth Method 

4.2 Procedure of Candidate Generation 
With the above preliminaries ready, it’s not difficult to sketch 

out the framework of candidate generation procedure, which is 
shown in Algorithm 4. In the algorithm, two tricky and time-
consuming problems of the existing pattern growth methods can 
be solved in a relative lightweight method. The first is duplication 
testing to avoid pattern duplication, the second is k-1 core testing 
or pattern joinable testing. 



Algorithm 4  CandidateGen(Fk) 
Input:  Fk : the frequent pattern set of size k; 
Output:   Ck+1 : the candidate pattern set of size k+1; 
Method: 
1. for each P1∈Fk 
2.    for each P2∈Fk s.t. P1≤kP2 
3.       If P1 is forward joinable to P2, then  p← P1  P2 
5.       If P1 is backward joinable 1 to P2,  then  p←P1 1P2 
6.       If P1 is backward joinable 2 to P2,  then   p←P1 2P2 
7.       If  p≠∅ and p∉Ck+1  then 
              //test if downward closure property holds for  p 
8.            flag ←true 
9.           for each p’∈Ck-Fk 
10.             If p’ is subpattern of p then 
11.                  flag←false 
12.                 exit for 
13.         if flag then  Ck+1← Ck+1∪{ p} 

14. return  Ck+1; 
Pattern joinable testing in algorithm 4(line 3-6) only need to 

compare parent id pairs between two pattern of Fk, which avoid 
the time consuming procedure to generate k-1 core of each 
pattern in Fk , to determine the joinable of these k-1 cores . 

Duplication Testing.  Due to the uniqueness of labeling of PPI 
networks, in line 7 we only needs to determine whether p∉Ck+1, 
by performing an logical ‘and’ computation on the bits array of 
each pattern. Formally, if there exists a p’∈Ck+1 s.t. p.b&p’.b= p.b 
then p is a duplication of p’.   

Similar to many existing pattern growth methods, the infrequent 
pattern set Ck-Fk  is used to filter the candidate pattern set in terms 
of the downward closure property. The pruning procedure is 
described from line 8-13 in Algorithm 4. 

5. Pattern Matching As a White Box 
Generally, pattern matching is not the focus of most of the 

existing graph mining system. While in PPI networks mining 
application, we need to consider the process of pattern matching 
process, because of the semantics of the label of the node. In 
Figure 10, when pattern 1P grows into 4P , the pattern matching 
of 4P doesn’t start from the scratch, but start from 1P ’s matched 
state. Out of this observation, it is rational for us to unfold the 
SHD procedure and integrate it into the mining procedure. 
Algorithm 5  NodeDisjointSHD_WB (G1,G2,l,h) 
Input: G1,G2: vertex labeled graphs, l :minimal path length, 
h :maximal path length ; 
Output: If G1 is a ( , )l h topology minor of G2  return true and 
return the first found node disjoint subgraph homeomorphism (f, 
g), otherwise return false. 
Method: 
 // Initialize the basic data structures 
1. Initial(M, G1) 
2. Initial(R, G1) 
3. s←GetState(G1,S) //initialize state as the matched state 
4. s←NodeMappingSearch(s,M,R) //node mapping space search 
5. If not IsValid(s) return false else 
6.    s ←EdgePathMappingSearch(s,M,R) 
7.    S=S∪{s} 
8. return true; 

  However, not all the algorithm of pattern matching is convenient 
for the implementation of this idea. Luckily, two-level state space 
searching based pattern matching can be adapted to implement the 
idea in little difficulties. Moreover, the only thing we need to do is 
to modify ndSHD, as described in Algorithm 2, while the whole 
algorithm framework: Apriori-CSMiner, as described in 
Algorithm 1, can retain without any change. The modified 
ndSHD , denoted as NodeDisjointSHD_WB, is desciribed in 
Algorithm 5. In the algorithm, we need a set S to save all the 
matched state of pattern matching between pattern graph G1 and 
data graph G2. S can be implemented as a hash table and each 
entry in the table is the pair <<PID, GID>, MS>, where PID is the 
pattern id of G1, and GID is the id of the data graph G2, and MS is 
the matching state. 

6. Performance and Mining Result 
We use the PPI networks of Saccharomyces Cerevisiae(which 

has 2187 nodes and 4837 edges after preprocessed, as shown in 
Figure1) and Drosophila Melanogaster(which has 404 nodes and 
481 edges after preprocessed) to show the mining result of the 
alignment algorithm. 

First, using BLAST[18], we perform protein sequences 
alignment between the protein from Saccharomyces Cerevisiae, 
and Drosophila Melanogaster. Thenwe get a similarity score table 
filled with the similarity value of these protein pairs. The 
distribution of the similarity score value is shown in Figure 11. 
The mean value of the similarity score is 31 (shown as the red line 
in Figure 11). We use x- X >d to filter out those protein pairs that 
is relatively less similar to each other. If we set d=9, then we get 
x>40, which is shown as the upper line above the mean line in 
Figure 11. Of course, d or α can be parameterized to tune the 
result of the alignment. 

 
Figure 11:Protein Sequence Similarity Distribution 
Let  α =50, l=1, h=4, we found a conserved topological pattern 

as shown in Figure 12(a). Let  α =40, l=2, h=3, we found a more 
complex  conserved topological patterns as shown in Figure 12(b). 
We also perform a series of experiments; part of results about the 
performance of our system is listed in Figure 12 (c).  
 



 
        
   (a)                                   (b)                               (c) 

Figure 12: Resulting Conserved Topological Structures and 
Performance Experiment Results 

The above experiments are performed on a PC with 1.2GHZ 
Intel CPU and 1,128M-memory and all the code of the CSMiner 
system are compiled by the Visual C++.NET compiler.  

7. Related Works 
Recently, frequent graph pattern mining has received broad 

research attentions. Many efficient subgraph mining algorithms 
have emerged, and these algorithms can be roughly classified into 
two categories according to the search strategy: Apriori based 
level-wise strategy and depth first search strategy. AGM[1] and 
FSG[2] are the earliest published algorithms employing the level-
wise search scheme to enumerate the recurrent subgraph patterns. 
Hereafter, a variety of DFS based algorithms has been proposed, 
including MoFa[3],gSpan[4], FFSM[5],Gaston[6].  

The most related work to this paper in graph mining area is 
TSMiner[8]. Although TSMiner has utilized the topology minor to 
solve the fuzzy matching problem, the pattern matching of 
TSMiner is still based on subgraph isomorphism. The key idea of 
TSMiner is to find frequent subgraph pattern first, then test 
whether the found subgraph pattern can be transformed into a 
topology minor pattern through performing (l,h) subdivision 
operation on the subgraph  pattern. Obviously, TSMiner can not 
go beyond the influence of the exact graph matching. 

In the network alignment research area, Kelley et al.[11] first 
introduced an efficient computational procedure for aligning two 
PPI networks to identify their conserved interaction pathways, 
called as PathBLAST[11]. PathBlast introduce the concept of gaps 
and mismatches to handle the inexact matching characteristic of 
PPI network alignment. Sharan et al. [12] focus on finding 
conserved complexes (clique-like patterns) by comparative 
analysis of a pair of PPI networks. Jason et al. [13] propose a 
general and robust alignment algorithm framework: Graemin, 
which is scalable to find conserved function modules from large 
dense interaction networks. 

8. Conclusion 
In this paper, we propose an Apriori based algorithm 

framework CSMiner to mine conserved topological structures 
from multi PPI networks, so that multi PPI network alignment can 
be efficiently performed. We also discuss the technique to 
improve the performance of process. 

As future work, we will carry out extensive experiments to 

explore the characteristics of CSMiner. Moreover, we will 
perform comprehensive comparison between CSMiner and 
TSMiner, the benchmark of inexact graph pattern mining. 
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