
Mining Conserved Topological Structures from Large
Protein-Protein Interaction Networks*

Yanghua Xiao+ Wei Wang+ Wentao Wu+

+ Fudan University, China{Shawyanghua, wentaowu1984,Vincent.wzb}@gmail.com,weiwang1@fudan.edu.cn

ABSTRACT1
Analysis of Protein-Protein Interaction (PPI) networks is of great significance in evolutionary biology. Because of high computation cost,
recently multi-PPI network alignment becomes hot topic. In this paper, we proposed conserved topological structures mining based multi-
PPI network alignment technology. The most challenging problems in conserved topological structure mining are the large size of the real
PPI networks and the requirement of inexact alignment of networks. To solve this problem, we develop an algorithm framework:
Conserved Substructure Mining (CSMiner) for PPI networks. In the algorithm, we synthesize many techniques to boost the mining
procedure, including a novel efficient pattern growth method, an efficient node disjoint subgraph homeomorphism determination algorithm
and the integrated strategy of these two algorithms. We also demonstrate the efficiency and effectivity through the experiments on real PPI
networks of Saccharomyces Cerevisiae and Drosophila Melanogaster.

*Supported by the National Natural Science Foundation of China under Grant No.60303008 and 60373133; the National Grand

Fundamental Research 973 Program of China under Grant No. 2005CB321905

1. Introduction
In evolutionary and comparative biology, PPI network analysis

has attracted more and more research attentions. [9][10] focused
on finding motifs in large PPI networks, and these network motifs
can be employed to explore the interactomes. [11][12][13] focused
on aligning multi-PPI networks to find conserved structures, such
as paths[11], clique-like structures[12] or general structures[13],
and these conserved structures can be used to analysis the relevant
functionality across species. Bearing in mind the importance of
PPI network analysis, we must also be aware that neither motif
finding nor network alignment is a trivial or easy thing, especially
the latter.

In multi-PPI network alignment, we need to find the conserved
subnetworks within the PPI networks belonging to different
species. The conservation is measured in terms of sequence
similarity and network topology similarity. The challenging in
PPI network alignment are:

 The PPI network data contains many noisy data. Hence,
alignment of multi-PPI networks in the real application
often needs to allow node skipping or node mismatching.
It increase the computation cost of graph matching.

 The PPI network data is relatively large and complex.
More and more PPI networks which have more than
several thousand nodes and ten thousands edges have
been discovered. Moreover, the PPI network follows
many well-known laws of complex networks, such as
‘scale free’ property.

Figure 1 shows the PPI network of Saccharomyces Cerevisiae.
From the graph mining perspective, multi PPI network

alignment is considered as finding the frequent conserved
subgraph patterns from multi PPI networks. These conserved sub-
networks are similar to each other with relaxation of node
mismatch and node skipping. Hence, the task is equivalent to find
those conserved topological structures, conserved across species
with some noisy node skipped or edges contracted.

Although many graph mining algorithm frameworks have
proposed, they can’t be easily extended to facilitate the
accomplishment of PPI network alignment for the following
reasons. First, most of the existing graph mining systems[1-8]
focused on mining subgraph patterns from relatively small and
simple graphs with size less than one hundred nodes and a very
little average node degrees. However, the PPI network data is
much larger and more complex. Second, traditional graph mining
systems only need to mine out precise subgraph patterns that are
subgraph isomorphic to data graphs. On the contrary, the focus of
PPI mining is not the precise pattern, but the fuzzy pattern
allowing node mismatching and skipping. The process of fuzzy
patterns mining is based on the subgraph homeomorphism
determination (SHD) which is more difficult than subgraph
isomorphism determination (SID).

To solve these problems, we develop an algorithm framework:
Conserved Substructure Mining (CSMiner) for PPI networks.
Besides the algorithm framework CSMiner, we also make the
following contributions.

 We proposed the conserved topological structures
minging based multi-PPI network alignment technology.

 We propose an efficient node disjoint subgraph
homeomorphism determination algorithm to perform the
inexact pattern matching in multi-PPI network alignment

 We devise the novel pattern growth operators to
enumerate patterns completely and compactly. We also
propose a strategy to treat the pattern matching procedure
as a white box and integrate it into the whole mining
procedure, to boost the mining procedure.

2. Preliminaries
In this section, we will explain some basic notations and

concepts. Then we will give the formal definition of the problem.

2.1 Basic Notations
Let G= (V,E,l) be a vertex labeled graph, where V is the set of

vertices, E is the set of edges and E⊆V×V, and l is a label

function l:V→L , assigning to every vertex a label. The vertex set
of G is referred to as V(G), and its edges set as E(G). A path P in a
graph is a sequence of vertices v1,v2,…,vk, where vi∈V andvivi+1∈

E. The vertices v1 and vk are linked by P and are called its ends.
The number of edges of a path is its length, and the path of length
k is denoted as Pk. A path is simple if its vertices are all distinct.
Particularly, a group of paths is independent if none of the paths
has an inner vertex on another path. In the other words, a path
intersecting with other paths only at its ends can be called as an
independent path.

2.2 Inexact Graph Matching
 The existing inexact graph matching is considered as subgraph
isomorphism between graphs. However, in multi PPI network
alignment, subgraph isomorphism cannot represent the fuzzy
matching in the sense of topological structure, which will be
illustrated in the example 1.
Example 1. As shown in Figure 2, G2 is not a subgraph of G1 nor
G3, in subgraph isomorphism based alignment strategy, such as
maximal common subgraph[15]. However, from the viewpoint of
abstract topological structure, G2 matched to G1 with relaxation of
node skipping or node mismatching. In other words, G2 matched
to G1, because G2 retains the topological structure of G1 by
contracting the paths in G1 into the corresponding edges in G2.
Similarly, G2 also retains the topological structure of G3. As a
result, G2 is considered as a conserved pattern when performing
pairwise alignment between G1 and G3.

Figure 1:PPI Network Figure 2:Inexact Graph Matching

From the perspective of Graph Minor theory [19], the
abstracted topological structure in many real applications can be
described as topology minor which is an abstraction that focuses
on the abstract structure of the graph, and the relation between
topological structure and its original graph can be described as
node/edge disjoint subgraph homeomorphism.

2.3 Topology Minor
A topology minor of a graph is generated by contracting the

independent paths of one of its subgraphs into edges. For example,
in Figure 3, X is a topology minor of Y, since X is generated by
contracting the independent paths of Y’s subgraph: G. Clearly,
contracting independent paths helps simplify a (sub)graph without
compromising its topological information.

Figure 3: Topology Minor

Formally, as shown in Figure 3, if we replace all the edges of X
with independent paths between their ends, so that these paths are
pair-wise node independent, i.e. none of these paths has an inner
vertex on another path, then G is a subdivision of X, denoted as
T(X). If G is a subgraph of Y, then X is a topology minor of Y. As a
subdivision as X and a subgraph of Y, if G is obtained by replacing

all the edges of X with independent paths with length from l to h,
then G is a (l, h)-subdivision of X and T is a (l, h)-Topology Minor
of Y.

If X is a topology minor of Y, then all the edges of X can be
mapped to a simple path of Y, all the nodes in X can be one to one
mapped to nodes of Y, and the mapped nodes are called branch
nodes of Y.

The generalization of topology minor is minor[17], which is
obtained by contracting some edges of one of its subgraphs. If X is
a minor of Y, T(X) may not be a subgraph of Y, but if X is a
topology minor of Y, T(X) must be a subgraph of Y. So topology
minor is the most appropriate concept to represent the abstracted
or simplified topological structure.

2.4 Node Disjoint Subgraph Homeomorphism
From viewpoint of relation between graphs, minor, topology

minor as well as subgraph correspond to three basic relationships
between graphs: subgraph homeomorphism, node disjoint
subgraph homeomorphism and subgraph isomorphism.

Subgraph isomorphism from P into G is an injective mapping of
vertices and edges from P into that of G. The subgraph
homeomorphism from P into G is a pair of injective mappings (f,
g), the first from vertices of P into G, and from edges of P into
simple paths of G. In addition, if P is subgraph homeomorphic to
G and all the mapped paths of G are node or edge disjoint, i.e. all
the mapped paths are pairwise independent, then P is a topology
minor of G and P is node or edge disjoint subgraph
homeomorphic to G.

In some applications, such as multi-PPI network alignment,
extracting abstracted topological structure is very useful. Node
disjoint subgraph homeomorphism is more flexible than subgraph
isomorphism and more restricted than general subgraph
homeomorphism. As a result, more covert and meaningful
conserved patterns will be found. The relation of three basic graph
relationship is shown in Figure 4.

Figure 4: Relation among Three Basic Graph Relationship.

2.5 Problem Definition
With the concept of topology minor at hands, we can formally

give the definition of the problem.
Definition 1 (Conserved Topological Structures). For a given

set D consisting of k PPI networks, parameters l and h, the
Conserved Topological Substructures is the graph that is
isomorphic to a (l, h)-Topology Minor of each PPI network in D.

For a given k PPI networks set D, parameters l and h, the
problem of Mining Conserved Topological Substructures from
PPI networks is to find all the graph that is isomorphic to a (l, h)-
Topology Minor of each PPI network in D. For the convenience of
discussion, this problem is denoted as P(D, k, l, h).

Obviously, from definition 1, we can see that Mining
Conserved Topological Substructures from PPI networks is

similar to traditional frequent graph pattern mining. However,
there are still two major distinctive features. The first is the
frequency of the intended pattern is 100% in the problem of
Mining Conserved Topological Substructures from PPI networks,
due to its origination from problem of network alignment. The
second is the graph relation utilize different criteria of pattern
matching, node disjoint subgraph homeomorphism is the
substitution for subgraph isomorphism.

Clearly, topology minor is the essential of the whole problem,
therefore from this perspective, this problem also can be called as
mining frequent (l,h)- topology minor from PPI networks.

In the problem of Mining Conserved Topological Substructures
from PPI networks, the anti-monotone property also holds. In the
context of conserved topological structure, the anti-monotony
implies that if a given graph G is a conserved topological structure
of the PPI networks, then any graph subgraph isomorphic to G
must be also conserved pattern. As a result, all G’s subgraphs are
trivial in the sense that these conserved substructures can be
inferred from the G. Hence, in multi PPI network alignment, we
can only take care of maximal conserved graphs.

Lemma 1 (Closure of Conserved Topological Structure Space
under subgraph isomorphic relation). For a given problem P(D, k,
l, h), let Conserved Topological Structure Space be the collection
of all the conserved topological structures of the problem, denoted
as M. Then M is closed under subgraph isomorphic relation,
which means that if graph g∈M, then for any g’ subgraph
isomorphic to g, g’∈M.

Property 1 (Anti-monotony of the conservation of Conserved
Topological Structures under subgraph isomorphic relation). For
a given problem P(D, k, l, h), if G is conserved, then any graph
subgraph isomorphic to G is also conserved.

Property 1 can also be expressed reversely, if G is not
conserved, then any G’s supergraph will not be conserved, which
often called as downward closure property of G. This property can
be used to prune the candidate pattern space

3. Algorithm Framework
In this section, we first sketch out the Apriori-based algorithm

framework.

3.1 Apriori-based Conserved Topological
Structure Mining

As a general algorithm framework, level-wise search based on
Apriori property has been widely used to enumerate candidate
patterns in frequent graph pattern mining [1][2]. In this paper, we
also utilize the Apriori based level-wise search as the algorithm
framework, which is shown in Algorithm 1 and the notations used
in Algorithm 1 is shown in Table 1.

Algorithm 1 Apriori-CSMiner (D, l, h)
Input: PPI networks D, l :minimal path length, h :maximal path
length;
Output: conserved topological structures F
Method:
 //phase 1: Initial Mining
1. M ←VertexMappingBuilding(D)
2. Initia Mining(D) ; //Initialize the mining procedure.
3. F1← {e | ∀G∈D, e∈E(G)}
4. k←1

5. while Fk≠∅
 //phase 2: Pattern Growth

6. Ck+1←CandidateGen(Fk)
8. Fk+1←Ck+1
 //phase 3: Pattern Matching Validation
9. for each candidate Pk+1∈ Ck+1
10. for each G∈D
11. if ndSHD(Pk+1, G)=false then
12. Fk+1← Fk+1- {Pk+1}
13. k←k+1
14. return F={F1,…, Fk}

Table 1 Notations in Algorithm 1

Notation Description
M
Fk

Ck

Pk

The set of Initial Node Compatible Matrix
Frequent pattern set of size k
Candidate pattern set of size k
A pattern with size k

As illustrated in Algorithm 1, the entire procedure can be
divided into three major phases, initial mining, pattern growth and
graph matching validation.

1. Initial Mining. To correlate all input networks, vertex
mapping is build. The details will be discussed in section 3.2. In
this phase, we also generate all the paths with length between
l and h for each PPI network, as well as an index structure, which
will be discussed in 4.2 in detail. In this index structure, all of the
nodes and the paths in the data graph, are indexed. This index
structure will be employed to speed up the procedure of node
disjoint subgraph homeomorphism based pattern matching.

2. Pattern Growth(Enumeration). In the pattern enumeration
phase (lines 6-8), we employ level-wise Pattern Growth as the
enumeration strategy. To ensure the completeness and
compactness of pattern enumeration, three graph pattern join
operators have been devised based on the linear order defined on
the patterns set: one Forward Join operator, two Backward Join
Operator, which will be discussed in section 5.

3. Pattern matching .In this phase (line 9-11), node disjoint
SHD is performed. It is the most crucial part of the whole
algorithm. The basic idea is to employ depth first search in the
state space with backtrack. For SHD problems, node mapping
space and edge-path mapping space will be searched. In CSMiner,
first we look for a valid node mapping, and then explore the edge-
path space to find a valid edge-path mapping. In this edge-path
mapping, all the paths need to be pair-wise independent. Once a
node is selected or a path is selected, all the paths passing through
the node or joint with the path are marked as negative and cannot
be used as a mapped path. The details will be introduced in
section 4. Furthermore, in this phase, when we are going to
perform a ndSHD between pattern graph G1 and data graph G2,
it’s not necessary to start the from scratch, we only need to start
from the matched state when performing ndSHD between one of
G1’s parent pattern and G2 .This process will be described in
section 7.

3.2 Vertex Mapping Building
The first conservation level in multi-PPI Networks alignment is

protein sequence similarity. Hence, before we perform topology
structure alignment, need to accomplish the pairwise sequence
alignment. Luckily, this preliminary step can be achieved by using
BLAST[18], a well-known sequence alignment tool.

After protein sequences alignment have been performed, we

will find the similar protein sequence pair from different species.
The similarity score value will be larger than a similarity
threshold α. Then we can build the mapping relation between each
pair of PPI networks in terms of α.

Procedure of Vertex Mapping Building. Formally, for the
problem P(D, k, l, h) , first, we select a seed network Gs such that
Gs =arg min{|V(G)|G∈ D }. Then for each Gi∈ D , we build a
partial multi-value mapping from V(Gs) to V(Gi) in terms of the
protein sequence similarity threshold α. We only keep the
mapping relations whose similarity score larger than α. We use Vs
⊆V(Gs) to denote the nodes participating in the mapping in V(Gs).
And the partial mapping between Gs and Gi∈D is denoted as fi :Vs
→V(Gi). Overall, we have a mapping set F={f1 ,…, fk}. Then for
each fi∈F , we define node compatible matrix Mi=[mpq] to be n1
(rows)×n2 (columns) matrix whose elements are 1’s or 0’s and
mpq =1 iff vq∈fi (vp), where n1=| Vs | and n2=| fi(Vs) |.

Example 2. Figure 5 shows an example of the mapping relation
in terms of protein sequence similarity between Gs and Gi. The
solid line represent the mapping relation with similarity value
larger than α, the dotted line represent that less than α. Note that
v3∉Vs, as no protein sequence of Gi is similar to v3. Therefore, the
mapping from V(Gs) to V(Gi) is only a partial mapping. Moreover,
it is not difficult to see that the mapping also is a multi-value
mapping. Mi is the node compatible matrix.

Figure 5: Mapping Relation . Figure 6: Running Example

In the above vertex mapping building procedure, we need to
have a deep look on the partial mapping property of fi. fi is only a
partial mapping, which implies that there exist some vertices of
seed network, for which no mapping can be built. The proteins
belong to V(Gs)-Vs will not occur in the conserved topological
structures as branch nodes. α is the key parameter in the algorithm.
It can be determined by the distribution of similarities scores
between proteins of different species.

The vertex mapping building procedure is also a vertex
relabeling procedure. The node with similar sequence will share
the same label. It will make the process of node mapping simpler.
Node Disjoint Subgraph Homeomorphism Determination(ndSHD)

The core of CSMiner is node disjoint Subgraph
Homeomorphism Determination (ndSHD). In the Apriori-
CSMiner framework, given a candidate pattern P and PPI
networks D, we need to determine whether P is isomorphic to a (l,
h)-topology minor of each G∈D.

To simplify the description, we give some notations. Assume
that the pattern graph G1=(V1,E1,l1) is a (l, h)-topology minor of
PPI network G2=(V2,E2,l2) under the node disjoint subgraph
homeomorphism (f , g), where f:V1→V2 and g:E1→Pl∪...∪Ph.
The number of vertices and edges of G1 and G2 are n1, m1 and n2,
m2, respectively.

3.1 Two-level State Space Searching
To determine whether G1 is a (l, h) topology minor of G2 is

equivalent to find a pair of mapping (NM, EPM) between these
two graphs. The mapping NM⊆ V1×V maps the nodes in G1 to the
nodes with the same label in G2. While EPM⊆ E1×Pl∪...∪Ph
map all the edges of G1 to the path with the same end in G2. All
the mapped nodes of G2 is denoted as NM(2), and all the mapped
paths of G2 is denoted as EPM(2).

The process of finding the homeomorphism mapping can be
described by means of State Space Representation [16]. Each state
s of the matching process can be associated to a partial mapping
solution M(s), which contains all the matches we have found and
is a subset of the final match set.

In terms of the above discussion, it’s naturally to employ the
two-level state space searching as the framework of ndSHD. The
algorithm framework is shown in Algorithm 2. At first, we
initialize two basic data structures of the algorithm: node
compatible matrix M and independent path matrix R as well as its
associated path indexed structure. Then we start the node
matching process from the empty state (line 3). Each time we
select a branch in the state space, a state s transits to a new
succeeding state s’ by adding a new match, which is a node pair or
an edge path pair, to the partial solution. Each time a new match
state arrives, M and R are updated so that the node mapping space
and edge-path mapping space can be pruned. When a complete
node mapping has been found (line 5), the matching process will
come to the second level: edge-path matching space search (line
6). Similar to the search process in node mapping space, each time
a branch is selected, an edge-path pair is added to the partial
mapping solution and the independent path matrix is updated. The
process continues until a complete edge-path mapping is found. If
all the possible valid branches in the subspace rooted at current
state s have been explored, the searching process backtracks to the
parent state of s. And any time the procedure enters into dead
state which will be discussed in 4.3, the whole process will stop
and return false.

Algorithm 2 NodeDisjointSHD (G1,G2, M12,l,h)
Input: G1,G2: vertex labeled graphs, M12: the initial node
compatible matrix, l :minimal path length, h :maximal path
length ;
Output: If G1 is a (,)l h topology minor of G2 return true and
return the first found node disjoint subgraph homeomorphism (f,
g), otherwise return false.
Method:
 // Initialize the basic data structures
1. Initial(M, M12)
2. Initial(R)
3. s←∅ //initialize state as empty state
4. s←NodeMappingSearch(s,M,R) //node mapping space search
5. If not IsValid(s) return false else
6. s ←EdgePathMappingSearch(s,M,R)
7. If not IsValid(s) return false else return true
Example3.Given the two vertex labeled graphs as shown in
Figure 6, the two-level state space searching procedure for a (2,2)
topological mapping is shown as Figure 7.

 Figure 7: Two Level State Space Searching

3.2 Basic Data Structure
As described in 4.1, there are two basic data structures. Node

compatible matrix is used to represent the node mapping
information. Independent path matrix is used to represent (l, h)
independent path information of G2. Both of these two data
structures are changing with the transition of the matching state.

Figure 8: M0 and M’

 Figure 9: R and its associated Path Indexed Structure

The elements of node compatible matrix M=[mij] to be n1 (rows)
×n2 (columns) matrix are 1’s or 0’s. In the final mapping matrix
M’=[m’ij], each row contains exactly one 1 and each column
contains no more than one 1. The final mapping matrix represents
a one to one mapping between nodes of G1 and G2, while the
initial compatible matrix represents the probable mappings. The
two matrixes of Figure 6 are shown in Figure 8. Obviously it
follows that M’, (m’ij =1)→(m0

ij =1).

LEMMA 2: The number of elements of the independent path set
starting from a specified vertex vi∈V is no more than d(vi), where
d(vi) denotes the degree of vi.

Because every path set starting from vi must pass through one
or more edges incident with vi. So the independent path set
starting from vi has at most d(vi) elements. According to lemma 2,
the node v in G1 cannot be mapped to those nodes in G2 whose
degree is less than d(v). Therefore, we refined the initial
compatible matrix M0 in accordance with the following rule:

m0
ij=0 if d(vi)>d(vj). As shown in Figure 3, v1 in G1 cannot

mapped to v5 of G2, although these two nodes have the same label.

When constructing Independent Path Matrix and its associated
Path Indexed Structure, whether we need to generate all the (l, h)
path information of G2. The answer is false.

LEMMA 3: If G1 is a (l , h)-topology minor of G2 under subgraph
homeomorphism (f , g), then gE1 only contains paths ending with
those branch nodes in G2.

From lemma 3, we only need to generate all the (l, h) paths
between any candidate branch node pairs. These candidate branch
nodes have been filtered out by matrix M0. For example, in Figure
8 shown, column 5 and 9 have only 0’s, then v5 and v9 in G2
cannot be branch nodes, then all paths in figure 3 starting from v5
and v9 can be ignored. The cardinality of the candidate branch
node set is denoted as n2’.

The independent path matrix R=[rij] is n2’ (rows)×n2’(columns)
matrix. Its elements are positive integers or 0’s, which represent
the number of (l, h) paths between the node pair (vi,vj) in G2. We
associate R to a path index structure RLists, and every list in
RLists contains all the path addresses that point to the physical
storage of the path.

3.3 State Space Searching
The procedure of node mapping space searching and edge-path

mapping space searching are similar to each other. These two
procedures are shown in Algorithm 3.

From line 1-2, when a new state s arrives, s can be a dead state
or success state. The state space search arrives at a success state if
all the node mappings or edge-path mappings have been found,
which means |NM(s)|=|V1| or |EPM(s)|=|E1|. The node mapping
state space search arrives at a dead state if there is a row with all
0’s in node compatible matrix M of the current state. While the
edge-path mapping state space search arrives at a dead state if
there is no path between any branch node pairs, which can be
determined from independent path matrix R of the current state.

From The 4-12 lines, when search process enters success state
or dead state, the procedure is over. If success state arrives, the
complete mapping is found and the procedure returns true. If dead
state arrives, the procedure returns false. For other cases, the
procedure will continue exploring the state space.

Assume the process comes to state s whose M(s) is a partial
solution. Then as long as a valid mapping pair exists, which may
be a node pair or an edge-path pair, we need to generate a new
state by adding the new match (line 7). To enable backtracking,
we need to backup the current state first (line 6). Under the
influence of the new added match, the node compatible matrix and
independent path matrix need to be updated (line 8,9). Then DFS
continues, until the search enters into dead state or success state. If
we cannot find a success state in subtree space rooted at s, we
recover the state s (line 12), and try the sibling state branch.

Algorithm 3 Node/EdgePatbMappingSearch (s,M,R)
Input: s: the current matching state; M: the current node
compatible matrix; R: the current independent path matrix ;
Output: found: a boolean variable indicate whether a complete
node/edge-path mapping has been found
Method:
1. if s is dead state then return false;

2. if s is complete mapping state then return true;
3. found←false;
4. while(!found && Exists Valid Node/edge-path Mapping Pair)
5. m←nextValidPair() // generate a match m;
6. s’←BackupState(s)
7. NM(s)←NM(s)∪{m} // or EPM(s)←EPM(s)∪{m}
8. Refine(M)
9. Refine(R)
10. found←Node/EdgePathMappingSearch(s,M,R)
11. if found then return true
12. else s←RecoverState(s’)
13. return false;

3.4 Refinement Procedure
To enumerate all possible mapping solution is time consuming,

so space pruning is essential for node disjoint SHD. We devise
two refinement procedures on R and M respectively, the former is
based on lemma 4,5, and the latter is based on lemma 6.

LEMMA 4: In the matching process, if v∈NM(2), then any path
with v as inner vertex will not ∈EPM(2).

LEMMA 5: In the matching process, if p∈EPM(2), then any path
passing trough the inner vertex of p will not ∈EPM(2) .

LEMMA 6: If (vi,vj) ∈NM (vi∈V1, vj∈V2) and assume that current
state is s with |M(s)|=t and M(s)⊆NM, then the following
statements hold:
(1) ' 0j kr∏ > (j’=Index(j) , (2)(())k Index M s∈).
(2) ' ()iv Adjacent v∀ ∈ , 2v V∃ ∈ with l2(v)=l1(v’) and rj’k >0 ,
(j’=Index(j) ,k=Index(v)).
(3) The path set consisting of the paths to which rj’k in (1) and (2)
indicates is independent.

In the above statements, index(R) gets an index in R for a node
in G2 and Adjacent(v) obtains the adjacent nodes set of v.

4. Pattern Enumeration
In this section, we focus on the following problem: given

conserved structures of size k, i.e. Fk, how to efficiently enumerate
all possible candidate conserved patterns Ck+1, s t. (1)
Completeness, all conserved patterns of size k+1, belong to Ck+1;
and(2) Compactness, for any two candidate patterns P1, P2∈Ck+1,
P1 is not isomorphic to P2.

4.1 Pattern Growth Operators
The whole pattern growth procedure can be recursively

described. We begin the discussion with initial phase F1 .
For PPI networks, each vertex in the network represent a unique

protein of the specie and after data preprocessing, proteins can be
labeled so that each protein is globally unique. Therefore, given
F1, let V(F1)={v1,v2|e(v1,v2)∈F1}, we can define a linear order on
V(F1), which can is a labeling function. For example, we can
assign to each node a distinctive integer ID µ : V(F1)→ I,
I={1,2,…,n}, where n=|V(F1)|. Then each conserved edge can be
uniquely identified by an ordered node pair <i,j>,s.t .i≤j, where
i,j∈I. Thus, we also can define a linear order ≤1 on F1 according
to the lexicographical order of the corresponding ordered node
pairs. Then in terms of order ≤1, each conserved edge can be
indexed by an integer i∈[1,m], where m=|F1|.

For each pattern Pk with size k, we assign a globally unique
pattern ID PID and a bit sequence b=b1,…,bm, s.t. bi=1 iff the i-th
conserved edge in F1 occur in P, otherwise 0. Each pattern Pk, is
generated by merging two joinable patterns with k-1 size, which is
called as P’s parent patterns. Hence, we can associate to each Pk
an ordered pair <PID1, PID2> s.t. PID1<PID2, to indicate its two
parents’ pattern ID.

Similar to F1, for each Pk∈Ck, we define a linear order ≤k on Ck ,
which is defined in terms of the lexicographical order defined on
the corresponding parent ID pairs. Formally, let Zk be the set
whose elements are finite sequence of elements of Ck, the
lexicographical order of Zk induced by ≤k is denoted as ≤k’ , then
for distinct P1,P2∈Ck, P1≤kP2 iff P1.<PID1, PID2> ≤k-1’ P2.<PID1,
PID2>. Furthermore, given ≤k, we assign to each Pk∈Ck a globally
unique pattern ID s.t. P1≤kP2⇔P1.PID≤P2.PID.

Definition 3 (Pattern Joinable) Given Fk, for any two patterns
P1, P2∈Fk s.t. P1 ≤k P2

(1) case P1.PID2=P2.PID1, then P1 is forward joinable to P2
(2) case P1.PID1=P2.PID1, then P1 is backward joinable to P2

in case 1
(3) case P1.PID2=P2.PID2, then P1 is backward joinable to P2

in case 2.

Definition 4 Given Fk , for any two patterns P1, P2∈Fk , we
define the following binary operator on Fk:

 (1) (Forward Join Operator)
If P1 is forward joinable to P2, P1 P2=P1∪P2, else P1 P2=∅.
(2) 1 (Backward Join Operator 1)
If P1 is backward joinable to P2 in case 1, P1 1P2=P1∪P2, else

P1 1P2=∅.
(3) 2 (Backward Join Operator 2)
If P1 is backward joinable to P2 in case 1, P1 2P2=P1∪P2, else

P1 2P2=∅. Where, P1∪P2=(V(P1) ∪V(P2), E(P1) ∪E(P2)).

Example 3 As shown in Figure 10, given frequent pattern set
Fk, using the operators defined in definition 4, we can get Ck+1, if
all the patterns in Ck+1 is frequent, continuously using these three
operators, we get Ck+2. Note that, for k=1, P1, P2, P3 in all the
patterns in Figure 10 just represent a conserved node of PPI
networks, respectively. For k>1, P1, P2, P3 represent a pattern
generated from Fk-1, respectively.

Figure 10: Pattern Growth Method

4.2 Procedure of Candidate Generation
With the above preliminaries ready, it’s not difficult to sketch

out the framework of candidate generation procedure, which is
shown in Algorithm 4. In the algorithm, two tricky and time-
consuming problems of the existing pattern growth methods can
be solved in a relative lightweight method. The first is duplication
testing to avoid pattern duplication, the second is k-1 core testing
or pattern joinable testing.

Algorithm 4 CandidateGen(Fk)
Input: Fk : the frequent pattern set of size k;
Output: Ck+1 : the candidate pattern set of size k+1;
Method:
1. for each P1∈Fk
2. for each P2∈Fk s.t. P1≤kP2
3. If P1 is forward joinable to P2, then p← P1 P2
5. If P1 is backward joinable 1 to P2, then p←P1 1P2
6. If P1 is backward joinable 2 to P2, then p←P1 2P2
7. If p≠∅ and p∉Ck+1 then
 //test if downward closure property holds for p
8. flag ←true
9. for each p’∈Ck-Fk
10. If p’ is subpattern of p then
11. flag←false
12. exit for
13. if flag then Ck+1← Ck+1∪{ p}

14. return Ck+1;
Pattern joinable testing in algorithm 4(line 3-6) only need to

compare parent id pairs between two pattern of Fk, which avoid
the time consuming procedure to generate k-1 core of each
pattern in Fk , to determine the joinable of these k-1 cores .

Duplication Testing. Due to the uniqueness of labeling of PPI
networks, in line 7 we only needs to determine whether p∉Ck+1,
by performing an logical ‘and’ computation on the bits array of
each pattern. Formally, if there exists a p’∈Ck+1 s.t. p.b&p’.b= p.b
then p is a duplication of p’.

Similar to many existing pattern growth methods, the infrequent
pattern set Ck-Fk is used to filter the candidate pattern set in terms
of the downward closure property. The pruning procedure is
described from line 8-13 in Algorithm 4.

5. Pattern Matching As a White Box
Generally, pattern matching is not the focus of most of the

existing graph mining system. While in PPI networks mining
application, we need to consider the process of pattern matching
process, because of the semantics of the label of the node. In
Figure 10, when pattern 1P grows into 4P , the pattern matching
of 4P doesn’t start from the scratch, but start from 1P ’s matched
state. Out of this observation, it is rational for us to unfold the
SHD procedure and integrate it into the mining procedure.
Algorithm 5 NodeDisjointSHD_WB (G1,G2,l,h)
Input: G1,G2: vertex labeled graphs, l :minimal path length,
h :maximal path length ;
Output: If G1 is a (,)l h topology minor of G2 return true and
return the first found node disjoint subgraph homeomorphism (f,
g), otherwise return false.
Method:
 // Initialize the basic data structures
1. Initial(M, G1)
2. Initial(R, G1)
3. s←GetState(G1,S) //initialize state as the matched state
4. s←NodeMappingSearch(s,M,R) //node mapping space search
5. If not IsValid(s) return false else
6. s ←EdgePathMappingSearch(s,M,R)
7. S=S∪{s}
8. return true;

 However, not all the algorithm of pattern matching is convenient
for the implementation of this idea. Luckily, two-level state space
searching based pattern matching can be adapted to implement the
idea in little difficulties. Moreover, the only thing we need to do is
to modify ndSHD, as described in Algorithm 2, while the whole
algorithm framework: Apriori-CSMiner, as described in
Algorithm 1, can retain without any change. The modified
ndSHD , denoted as NodeDisjointSHD_WB, is desciribed in
Algorithm 5. In the algorithm, we need a set S to save all the
matched state of pattern matching between pattern graph G1 and
data graph G2. S can be implemented as a hash table and each
entry in the table is the pair <<PID, GID>, MS>, where PID is the
pattern id of G1, and GID is the id of the data graph G2, and MS is
the matching state.

6. Performance and Mining Result
We use the PPI networks of Saccharomyces Cerevisiae(which

has 2187 nodes and 4837 edges after preprocessed, as shown in
Figure1) and Drosophila Melanogaster(which has 404 nodes and
481 edges after preprocessed) to show the mining result of the
alignment algorithm.

First, using BLAST[18], we perform protein sequences
alignment between the protein from Saccharomyces Cerevisiae,
and Drosophila Melanogaster. Thenwe get a similarity score table
filled with the similarity value of these protein pairs. The
distribution of the similarity score value is shown in Figure 11.
The mean value of the similarity score is 31 (shown as the red line
in Figure 11). We use x- X >d to filter out those protein pairs that
is relatively less similar to each other. If we set d=9, then we get
x>40, which is shown as the upper line above the mean line in
Figure 11. Of course, d or α can be parameterized to tune the
result of the alignment.

Figure 11:Protein Sequence Similarity Distribution
Let α =50, l=1, h=4, we found a conserved topological pattern

as shown in Figure 12(a). Let α =40, l=2, h=3, we found a more
complex conserved topological patterns as shown in Figure 12(b).
We also perform a series of experiments; part of results about the
performance of our system is listed in Figure 12 (c).

 (a) (b) (c)

Figure 12: Resulting Conserved Topological Structures and
Performance Experiment Results

The above experiments are performed on a PC with 1.2GHZ
Intel CPU and 1,128M-memory and all the code of the CSMiner
system are compiled by the Visual C++.NET compiler.

7. Related Works
Recently, frequent graph pattern mining has received broad

research attentions. Many efficient subgraph mining algorithms
have emerged, and these algorithms can be roughly classified into
two categories according to the search strategy: Apriori based
level-wise strategy and depth first search strategy. AGM[1] and
FSG[2] are the earliest published algorithms employing the level-
wise search scheme to enumerate the recurrent subgraph patterns.
Hereafter, a variety of DFS based algorithms has been proposed,
including MoFa[3],gSpan[4], FFSM[5],Gaston[6].

The most related work to this paper in graph mining area is
TSMiner[8]. Although TSMiner has utilized the topology minor to
solve the fuzzy matching problem, the pattern matching of
TSMiner is still based on subgraph isomorphism. The key idea of
TSMiner is to find frequent subgraph pattern first, then test
whether the found subgraph pattern can be transformed into a
topology minor pattern through performing (l,h) subdivision
operation on the subgraph pattern. Obviously, TSMiner can not
go beyond the influence of the exact graph matching.

In the network alignment research area, Kelley et al.[11] first
introduced an efficient computational procedure for aligning two
PPI networks to identify their conserved interaction pathways,
called as PathBLAST[11]. PathBlast introduce the concept of gaps
and mismatches to handle the inexact matching characteristic of
PPI network alignment. Sharan et al. [12] focus on finding
conserved complexes (clique-like patterns) by comparative
analysis of a pair of PPI networks. Jason et al. [13] propose a
general and robust alignment algorithm framework: Graemin,
which is scalable to find conserved function modules from large
dense interaction networks.

8. Conclusion
In this paper, we propose an Apriori based algorithm

framework CSMiner to mine conserved topological structures
from multi PPI networks, so that multi PPI network alignment can
be efficiently performed. We also discuss the technique to
improve the performance of process.

As future work, we will carry out extensive experiments to

explore the characteristics of CSMiner. Moreover, we will
perform comprehensive comparison between CSMiner and
TSMiner, the benchmark of inexact graph pattern mining.

9. REFERENCES
[1] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based
algorithm for mining frequent substructures from graph data. In
PKDD'00, pages 13-23, Lyon, France, Sept. 2000.
[2] M. Kuramochi and G. Karypis. Frequent subgraph discovery.
In ICDM'01, pages 313-320, San Jose, CA,Nov. 2001.
[3]. C. Borgelt and M. R. Berthold. Mining molecular fragments:
Finding relevant substructures of molecules. In ICDM, pages 51–
58, 2002.
[4] Y. Yan and J. Han. gspan: Graph-based substructure pattern
mining. In ICDM'02, Maebashi, Japan,December 2002.
[5]J. Huan, W. Wang, and J. Prins. Efficient mining of frequent
subgraphs in the presence of isomorphism. In ICDM, pages 549–
552, 2003.
[6]S. Nijssen and J. N. Kok. A quickstart in frequent structure
mining can make a difference. In KDD, pages 647–652, 2004.
[7]J. Huan, W. Wang, J. Prins, and J.Yang. Spin: mining maximal
frequent subgraphs from graph databases. In KDD’04, pages 581–
586, Seattle,USA, Aug,2004.
[8]R. Jin, C.Wang, D. Polshakov, S. Parthasarathy, G. Agrawal:
Discovering frequent topological structures from graph datasets.
In KDD’05, pages 606-611, Chicago,USA,Aug,2005.
[9]J.Chen, W.Hsu, M.Li lee, S. Ng, NeMoFiner: Dissecting
gonome-wide protein-protein interactions with meso-scale
networks motifs. In KDD’06, pages 106-115, USA,Aug, 2006
[10] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,
and U. Alon. Network motifs: Simple building blocks of complex
networks. Science,298:824–827, 2002.
[11]R.B. Kelley, R. Sharan, R. Karp, T. Sittler, D. Root, B.
Stockwell, and T. Ideker. Conserved pathways within bacteria and
yeast as revealed by global protein network alignment.
PNAS,100(20): 11394-11399 ,2003
[12]R. Sharan, T. Ideker, B.P. Kelley, R. Shamir, and R.M. Karp.
Identification of protein complexes by comparative analysis of
yeast and bacterial protein interaction data. In RECOMB ’04:
pages 282–289, USA, 2004.
[13] J. Flannick, A. Novak, B. S. Srinivasan, H. H. McAdams, and
S. Batzoglou: Graemlin: General and robust alignment of multiple
large interaction networks. Genome Res. 16, 1169-1181, 2006
[14] DIP:http://dip.doe-mbi.ucla.edu/
[15]H. Bunke and K. Shearer: A graph distance metric based on
the maximal common subgraph. Pattern Recognition Letters,
Vol.19 (1998) \255-259.
[16] N.J. Nilsson: Principles of Artificial Intelligence. Springer-
Verlag,(1982).
[17]Reinhard Diestel. Graph Theory, Springer-Verlag.(2000).
[18] Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman J. Mol. Biol. 215 (1990): 403-410
[19]Neil Robertson and P.D.Seymour: Graph minors. XIII: The
disjoint paths problem, Journal of Combinatorial Theory. Vol.63
(1995) 65-110.

