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ABSTRACT
Entity Matching (EM) identifies pairs of records referring to the
same real-world entity. In practice, this is often accomplished by
employing analysts to iteratively design and maintain sets of match-
ing rules. An important task for such analysts is a “debugging”
cycle in which they make a modification to the matching rules,
apply the modified rules to a labeled subset of the data, inspect
the result, and then perhaps make another change. Our goal is to
make this process interactive by minimizing the time required to
apply the modified rules. We focus on a common setting in which
the matching function is a set of rules where each rule is in con-
junctive normal form (CNF). We propose the use of “early exit”
and “dynamic memoing” to avoid unnecessary and redundant com-
putations. These techniques create a new optimization problem,
and accordingly we develop a cost model and study the optimal
ordering of rules and predicates in this context. We also provide
techniques to reuse previous results and limit the computation re-
quired to apply incremental changes. Through experiments on six
real-world data sets we demonstrate that our approach can yield a
significant reduction in matching time and provide interactive re-
sponse times.

1. INTRODUCTION
Entity matching (EM) identifies pairs of records that refer to

the same real-world entity. For example, the records (Matthew
Richardson, 206-453-1978) and (Matt W. Richardson, 453 1978)
may refer to the same person, and (Apple, Cupertino CA) and (Ap-
ple Corp, California) refer to the same company. Entity matching
is crucial for data integration and data cleaning.

Rule-based entity matching is widely used in practice [2, 13].
This involves analysts designing and maintaining sets of rules. An-
alysts typically follow an iterative debugging process, as depicted
in Figure 1. For example, imagine an e-commerce marketplace
that sells products from different vendors. When a vendor submits
products from a new category, the analyst writes a set of rules de-
signed to match these products with existing products. He or she
then applies these rules to a labeled subset of the data and waits
for the results. If the analyst finds errors in the matching output,
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title: Sony Black Cyber-shot RX100 II with 
20.2 Megapixels and 3.6x Zoom
modelno: DSCRX100
price: $555

title: Sony DSC-RX100 20.2 MP Exmor
CMOS Sensor Camera with 3.6x Zoom
modelno: DSCRX100/B
price: $448

Record id: A20

Sample records to be matched

Jaccard(title, title) ≥ 0.9 ∧
Jaro(modelno, modelno) ≥ 0.9 
⇒Match

W3-A20 
do not match

Add rule
Normalize data

W3-A20
should be 
matched!

Write initial rules Run EM Analyze Refine

Matching workflow

Record id: W3

Figure 1: A typical matching workflow for analysts.

he or she will refine the rules and re-run them, repeating the above
process until the result is of sufficiently high quality.

Our goal is to make this process interactive. This naturally intro-
duces two challenges:

• Efficiency. The time that an analyst is idle in the “Run EM”
step has to be short. Research shows that when interacting
with software, if the response time is greater than one second,
the analyst’s flow of thought will be interrupted, and if it is
greater than 10 seconds, the user will turn their attention to
other tasks [12]. Therefore, it is imperative to reduce the idle
“waiting” time as much as possible.

• Maintainability. The refinement made by the analyst is con-
ceivably incremental. It is therefore desirable for an interac-
tive rule-based entity matching system to maintain matching
states between consecutive runs of “Run EM.” Although a
“stateless” system is easier to implement, e.g., it could just
rerun the whole matching algorithm again from the scratch
upon each refinement of the rules, it is clearly suboptimal in
terms of both runtime efficiency and resource utilization.

In this paper, we take a first step towards interactive debugging of
rule-based entity matching. Typically, rule-based entity matching is
accomplished by evaluating a boolean matching function for each
candidate record pair (for example, B1 in Figure 2). In this paper,
we follow the approach we have encountered in practice in which
this matching function is in Disjunctive Normal Form (DNF). Each
disjunction is a rule, and each rule is a conjunction of a set of pred-
icates that evaluate the similarity of two records on one or more
attributes, using a similarity function (such as Jaccard or TF-IDF).
For example, Jaccard(a.name, b.name) > 0.7 is a predicate,
where Jaccard(a.name, b.name) is a feature. A record pair is
a match if it matches at least one rule.

As was pointed out by Benjelloun et al. [2], and confirmed in
our experiments, computing similarity function values dominates
the matching time. In view of this, our basic idea is to minimize



the number of similarity function computations as the analyst de-
fines new rules and/or refines existing rules. Specifically, we save
all computed similarity function values in memory to avoid redun-
dant computation. We then exploit natural properties of DNF/CNF
rule sets that enable “early exit” evaluation to eliminate the need
for evaluating many rules and/or predicates for a given candidate
pair of records. Moreover, we use “dynamic memoing”: we only
compute (and save the result of) a feature (i.e., a similarity score) if
that predicate result is required by the matching function. (Because
of early exit, not all features need to be computed.) This “lazy fea-
ture computation” strategy can thus save significant computation
cost when there are many possible features but only a few of them
are really required by the rule set/data set under consideration.

Although techniques such as “early exit” and “dynamic memo-
ing” are straightforward and ubiquitous in computer science, their
application in the context of rule-based entity matching raises an
interesting, challenging issue: different evaluation orders of the
predicates and rules may lead to significant differences in computa-
tional cost. It is then natural to ask the question of optimal ordering
of predicates and rules. We further study this problem in detail. We
show that the optimization problem under our setting is NP-hard,
and we propose two greedy solutions based on heuristic optimiza-
tion criteria. In our experiments with six real-world datasets, we
show that the greedy solutions can indeed produce orderings that
significantly reduce runtime compared to random ones.

So far, we have been focusing on the “efficiency” aspect of in-
teractive entity matching. Since the elements (e.g., features, pred-
icates, or rules) involved in matching change frequently as the an-
alyst iteratively refines the rule set, the “maintainability” aspect
is of equal importance. We therefore further develop incremen-
tal matching techniques to avoid rerunning matching from scratch
after each change. Specifically, we discuss four fundamental cases:
add/remove a predicate and add/remove a rule. We show how easy
it is to integrate incremental matching into our framework. We
also show via experiments that our incremental solutions can re-
duce matching time by orders of magnitude.

1.1 Related Work
Our work differs from previous work in several ways. Previous

work on efficiently running rule-based entity resolution [2] assumes
that each predicate is a black box, and thus memoing of similarity
function results is not possible. In our experience in an industrial
setting, these predicates are often not black boxes — rather, they
are explicitly presented in terms of similarity functions, attributes,
and thresholds. On the other hand, the traditional definition of the
EM workflow, as described in [3, 5], assumes that all similarity val-
ues for all pairs are precomputed before the matching step begins.
This makes sense in a batch setting in which a static matching func-
tion has been adopted, and the task is to apply this function to a set
of candidate record pairs. However, in this paper we are concerned
with the exploratory stage of rule generation, where at the outset
the matching function is substantially unknown. In such settings
the combinatorial explosion of potential attributes pairs, potential
similarity functions, and candidate pairs can render such full pre-
computation infeasible.

Even in small problem instances in which full precomputation
may be feasible, it can impose a substantial lag time between the
presentation of a new matching task and the time when the analyst
can begin working. This lag time may not be acceptable in practical
settings where tens of matching tasks may be created every day [7]
and the analyst wants to start working on high priority tasks im-
mediately. Finally, during the matching process, an analyst may
perform cleaning operations, normalization, and attribute extrac-

Id	 Name	 Street	 Zip	 Phone	

a1	 John	 Dayton	 54321	 123-4567	

a2	 Bob	 Regent	 53706	 121-1212	

Table	A	
Id	 Name	 Street	 Zip	 Phone	

b1	 John	 Dayton	 54321	 987-6543	

b2	 John	 Bascom	 11111	 258-3524	

Table	B	

B1:	(p1name	∧	pzip)	∨	(pphone	∧	p2name)	→		
B2:	(p1name	∧	pzip	∧	pstreet)	∨	(pphone	∧	p2name)	

Matching	func>on	evolu>on	

Figure 2: Tables A, B to be matched and example matching func-
tions. Function B1 evolves to B2.

tions on the two input tables. The analyst might also introduce new
similarity functions. In any of these situations, it is not possible to
precompute all features a priori.

Previous work on incrementally evaluating the matching func-
tion when the logic evolves assumes that we evaluate all predicates
for all pairs and materialize the matching result for each predi-
cate [15]. Because we use early exit, our information about the
matching results for each predicate is not complete. As a result,
this solution is not directly applicable in our setting.

In other related work, Dedoop (abbreviation for “Deduplication
with Hadoop”) [9] seeks to improve performance for general, large,
batch entity matching tasks through the exploitation of parallelism
available in Hadoop. By contrast, our work focuses on interactive
response for rule-based entity matching where the matching func-
tion is composed of many rules that evolve over time. Exploring
the application of parallelism as explored in Dedoop to our context
is an interesting area for future work.

Our work is also related to [14]. In that work, the user provides a
set of rule templates and a set of labeled matches and non-matches,
the system then efficiently searches a large space of rules (that in-
stantiate the rule templates) to find rules that perform best on the
labeled set (according to an objective function). That work also ex-
ploits the similarities among the rules in the space. But it does so
to search for the best set of rules efficiently. In contrast, we exploit
rule similarities to support interactive debugging.

Finally, our work is related to the Magellan project, also at UW-
Madison [10]. That project proposes to perform entity matching in
two stages. In the development stage, the user iteratively experi-
ments with data samples to find an accurate EM workflow. Then in
the production stage the user executes that workflow on the entirety
of data. If the user has decided to use a rule-based approach to EM,
then in the development stage he or she will often have to debug the
rules, which is the focus of this paper. This work thus fits squarely
into the development stage of the Magellan approach.

In the following we start with a motivating example, describe our
approach to try to achieve interactive response times, and present
experimental results of our techniques on real world data sets.

2. MOTIVATING EXAMPLE
To motivate and give an overview of our approach, consider the

following example. Our task is to match Table A and Table B
shown in Figure 2 to find records that refer to the same person. We
have four candidate pairs of records: {a1b1, a1b2, a2b1, a2b2}.
Assume our matching function is B1. Intuitively, B1 says that
if the name and zipcode of two records are similar, or if the phone
number and name of two records are similar, then they match. Here
p1name and p2name, for example, compute the similarity score
Jaccard(a.name, b.name) and then compare this value to differ-
ent thresholds, respectively, as we will see below.1 For this ex-
1In practice we often compute Jaccard over the sets of q-grams of
the two names, e.g., where q = 3; here for ease of exposition we



ample, B1 will return true for a1b1 and false for the rest of the
candidate pairs.

A simple way to accomplish matching is to evaluate every pred-
icate for every candidate pair. To evaluate a predicate, we compute
the value of the similarity function associated with that predicate
and compare it to a threshold. For the candidate pair a2b1, we
would compute 4 similarity values.

This is unnecessary because once a predicate in a rule evaluates
to false, we can skip the remaining predicates. Similarly, once a
rule evaluates to true, we can skip the rest of the rules and there-
fore finish matching for that pair. We call this strategy “early exit,”
which saves unnecessary predicate evaluations. For instance, con-
sider the candidate pair a2b1 again. Suppose that the predicate
p1name is

Jaccard(a.name, b.name) ≥ 0.9.

Since the Jaccard similarity of the two names is 0, p1name will
return false for this candidate pair. Further assume that pphone per-
forms an equality check and thus returns 0 as well. We then do not
need to evaluate pzip and p2name to make a decision for this pair.
Therefore, for this candidate pair, “early exit” reduces the number
of similarity computations from 4 to 2.

Since the same similarity function may be applied to a candidate
pair in multiple rules and predicates, we “memo” each similarity
value once it has been computed. If a similarity function appears in
multiple predicates, only the first evaluation of the predicate incurs
a computation cost, while subsequent evaluations only incur (much
cheaper) lookup costs. We call this strategy “dynamic memoing.”
Continuing with our example, suppose p2name is

Jaccard(a.name, b.name) ≥ 0.7.

Then for a1b2 this predicate only involves a lookup cost.
When using early exit and dynamic memoing, different orders of

the predicates/rules will make a difference in the overall matching
cost. Once again consider the candidate pair a2b1. If we change
the order of predicates in B1 to

(p1name ∧ pzip) ∨ (p2name ∧ pphone),

the output of the matching function will not change. However, it
reduces the matching cost to one computation for p1name plus one
lookup for p2name. This raises a novel optimization problem that
we study in Section 5.

Finally, we take into account the fact that, as the matching func-
tion’s logic evolves, the changes to the function are often incremen-
tal. We can then store results of a previous EM run, and as the EM
logic evolves, use those to save redundant work for the next EM
iterations. As an example, imagine the case where the matching
function B1 evolves to B2. Since B2 is stricter than B1, we only
need to evaluate pstreet for the pairs that were matched by B1 to
verify if they still match. For our example, this means that we only
need to evaluate B1 for a1b1 among the four pairs.

3. PRELIMINARIES
The input to the entity matching (EM) workflow is two tables A,

B with a set of records {a1 . . . an}, {b1 . . . bm} respectively. The
goal of EM is to find all record pairs aibj that refer to the same
entity. Given table A with m records and table B with n records,
there arem×n potential matches. Even with moderate-size tables,
the total number of potential matches could be very large. Many
potential matches obviously do not match and can be eliminated

will assume that Jaccard scores are computed over the set of words
of the two names.

from consideration easily. That is the purpose of a blocking step,
which typically precedes a more detailed matching phase.

For example, suppose that each product has a category attribute
(e.g., clothing or electronics). We can assume that products from
different categories are non-matches. This reduces the task to find-
ing matching products within the same category. We refer to the
set of potential matches left after the blocking step as the candidate
record pairs or candidate pairs in the rest of this paper.

Each candidate record pair is evaluated by a Boolean matching
function B, which takes in two records and returns true or false.
We assume that B is commutative, i.e.,

∀aibj , B(ai, bj) = B(bj , ai).

We assume that each matching function is in disjunctive normal
form (DNF). We refer to each disjunct as a rule. For example, our
matching function B1 (Figure 2) is composed of two rules.

Such a matching function is composed of only “positive” rules,
as they say what matches, not what does not match. In our ex-
perience, this is a common form of matching function used in the
industry. Reasons for using only positive rules include ease of rule
generation, comprehensibility, ease of debugging, and commutativ-
ity of rule application.

Each rule is a conjunction of a set of predicates. Each predicate
compares the value of a feature for a candidate pair with a thresh-
old. A feature in our context is a similarity function computed over
attributes from the two tables. Similarity functions can be as simple
as exact equality, or as complex as arbitrary user-defined functions
requiring complex pre-processing and logic.

The matching result is composed of the return value of the match-
ing function for each of the candidate pairs. In order to evaluate
the quality of matching, typically a sample of the candidate pairs
is chosen and manually labeled as match or non-match based on
domain knowledge. The matching results for the sample is then
compared with the correct labels to get an estimate of the quality of
matching (e.g., precision and recall).

4. EARLY EXIT + DYNAMIC MEMOING
In this section, we first briefly present the details of early exit

and dynamic memoing. Although the ideas are pretty straightfor-
ward, we choose to describe them in an algorithmic way for clarity.
The notation used in describing these algorithms will also be used
throughout the rest of the paper when we discuss optimal predi-
cate/rule ordering and incremental algorithms. To analyze the costs
of various algorithms covered in this section, we further develop a
cost model. It is also the basis for the next section when we study
the optimal predicate/rule ordering problem.

4.1 Baselines
We study two baseline approaches in this subsection. In the fol-

lowing, for a given rule r, we use predicate(r) and feature(r) to
denote the set of predicates and features r includes.

4.1.1 The Rudimentary Baseline
The first baseline algorithm simply evaluates every predicate in

the matching function for every candidate pair. Each predicate is
considered as a black box and any similarity value used in the pred-
icate is computed from scratch. The results of the predicates (true
or false) are then passed on to the rules, and the outputs of the rules
passed on to the matching function to determine the matching sta-
tus. Algorithm 1 presents the details of this baseline.



Algorithm 1: The rudimentary baseline.
Input: B, the matching function; C, candidate pairs
Output: {(c, x)}, where c ∈ C and x ∈ {M,U} (M means a

match and U means an unmatch)
1 LetR be the CNF rules in B;
2 Mark all c ∈ C with U ;
3 foreach c ∈ C do
4 foreach r ∈ R do
5 foreach p ∈ predicate(r) do
6 Evaluate p;
7 end
8 Evaluate r =

∧
p∈predicate(r) p;

9 end
10 Mark c with M if B =

∨
r∈R r is true;

11 end

4.1.2 The Precomputation Baseline
This algorithm precomputes all feature values involved in the

predicates before performing matching. Algorithm 2 presents the
details. As noted in the introduction, full precomputation may not
be feasible or desirable in practice, but we present it here as a point
of comparison. We store precomputed values as a hash table map-
ping pairs of attribute values to similarity function outputs.

Algorithm 2: The precomputation baseline.
Input: B, the matching function; C, candidate pairs
Output: {(c, x)}, where c ∈ C and x ∈ {M,U} (M means a

match and U means an unmatch)
1 LetR be the CNF rules in B;
2 Let F =

⋃
r∈R feature(r);

3 Let Γ = {(c, f, v)} be a |C| × |F| array that stores the value v
of each f ∈ F for each c ∈ C;

4 foreach c ∈ C do
5 foreach f ∈ F do
6 Compute v and store (c, f, v) in Γ;
7 end
8 end
9 Run Algorithm 1 by looking up feature values from Γ when

evaluating predicates;

4.2 Early Exit
Both baselines discussed above ignore the properties of the match-

ing function B. Given that B is in DNF, if one of the rules returns
true, B will return true. Similarly, because each rule in B is in
CNF, a rule will return false if one of its predicate returns false.
Therefore, we do not need to evaluate all the predicates and rules.
Algorithm 3 uses this idea. The “breaks” in lines 8 and 12 are the
“early exits” in this algorithm.

4.3 Dynamic Memoing
We can combine the precomputation of the second baseline with

early exit. That is, instead of precomputing everything up front,
we postpone the computation of a feature until it is encountered
during matching. Once we have computed the value of a feature,
we store it so following references of this feature only incur lookup
costs. We call this strategy “dynamic memoing,” or “lazy feature
computation.” Algorithm 4 presents the details.

4.4 Cost Modeling and Analysis
In this subsection, we develop simple cost models to use in rule

and predicate ordering decisions studied in Section 5. In the fol-

Algorithm 3: Early exit.
Input: B, the matching function; C, candidate pairs
Output: {(c, x)}, where c ∈ C and x ∈ {M,U} (M means a

match and U means an unmatch)
1 LetR be the CNF rules in B;
2 Mark all c ∈ C with U ;
3 foreach c ∈ C do
4 foreach r ∈ R do
5 r is true;
6 foreach p ∈ predicate(r) do
7 if p is false then
8 r is false; break;
9 end

10 end
11 if r is true then
12 Mark c with M ; break;
13 end
14 end
15 end

lowing discussion, we use cost(p) to denote the cost of evaluating
a predicate p. Let C be the set of all candidate pairs. Moreover,
let F be the set of all features involved in the matching function,
and we use cost(f) to denote the computation cost of a feature f .
Furthermore, we use δ to represent the lookup cost.

4.4.1 The Rudimentary Baseline
The cost of Algorithm 1 can be represented as:

C1 =
∑

c∈C

∑
r∈R

∑
p∈predicate(r)

cost(p).

In our running example in the introduction, the cost of making a
decision for the pair a1b2 is then

cost(p1name) + cost(pzip) + cost(pphone) + cost(p2name).

4.4.2 The Precomputation Baseline
Suppose that each feature f appears freq(f) times in the match-

ing function. Then the cost of the precomputation baseline (Algo-
rithm 2) is

C2 =
∑

c∈C

∑
f∈F

(cost(f) + freq(f)δ).

In our running example this means that, for pair a1b2 and match-
ing functionB1, we would need to precompute three similarity val-
ues and look up four. Note that this requires knowing cost(f) —
in our implementation, as discussed in our experimental results, we
use an estimate of cost(f) obtained by evaluating f over a sample
of the candidate pairs.

4.4.3 Early Exit
To compute the cost of early exit (Algorithm 3), we further in-

troduce the probability sel(p) that the predicate p will return true
for a given candidate pair (i.e., the selectivity of p). In our imple-
mentation, we use an estimate of sel(p) obtained by evaluating p
over a sample of the candidate pairs.

Given this estimate for sel(p), suppose that we have a rule r
withm predicates p1, ..., pm. The expected cost of evaluating r for
a (randomly picked) candidate pair is then

cost(r) = cost(p1) + sel(p1) cost(p2) + · · · (1)

+ sel(
∧m−1

j=1
pj) cost(pm),



Algorithm 4: Early exit with dynamic memoing.
Input: B, the matching function; C, candidate pairs
Output: {(c, x)}, where c ∈ C and x ∈ {M,U} (M means a

match and U means an unmatch)
1 LetR be the CNF rules in B;
2 Let Γ be the feature values computed; Γ← ∅;
3 Mark all c ∈ C with U ;
4 foreach c ∈ C do
5 foreach r ∈ R do
6 r is true;
7 foreach p ∈ predicate(r) do
8 Let f be the feature in p;
9 if f 6∈ Γ then

10 Compute f ; Γ← Γ ∪ {f};
11 else
12 Read the value of f from Γ;
13 end
14 if p is false then
15 r is false; break;
16 end
17 end
18 if r is true then
19 Mark c with M ; break;
20 end
21 end
22 end

because we only need to evaluate pj if p1, ..., pj−1 are all evaluated
to be true. Similarly, we can define the selectivity of the rule r as

sel(r) = sel(
∧m

j=1
pj).

Suppose that we have n rules r1, ..., rn. The expected cost of the
early exit strategy (Algorithm 3) is then

C3 = cost(r1) + (1− sel(r1)) cost(r2) + · · ·

+(1− sel(
∨n−1

i=1
ri)) cost(rn).

4.4.4 Early Exit with Dynamic Memoing
The expected cost of early exit with dynamic memoing (Algo-

rithm 4) can be estimated in a similar way. The only difference
is that we need to further know the probability that a feature is
present in the memo. Specifically, suppose that a feature can ap-
pear at most once in a rule. Let α(f, ri) be the probability that a
feature f is present in the memo after evaluating ri. The expected
cost of computing f when evaluating ri is then

E[cost(f)] = (1− α(f, ri−1) cost(f) + α(f, ri−1)δ. (2)

The expected cost C4 of Algorithm 4 is obtained by replacing all
cost(p)’s in Equation 1 by their expected costs in Equation 2.

Let prev(f, ri) be the predicates in the rule ri that appear before
f . We then have

α(f, ri) = (1− α(f, ri−1)) sel(
∧

p∈prev(f,ri)
p) + α(f, ri−1).

Based on our assumption, different predicates in the same rule con-
tain different features. If we further assume that predicates with
different features are independent, it then follows that

α(f, ri) = (1− α(f, ri−1))
∏

p∈prev(f,ri)
sel(p) + α(f, ri−1).

Notation Description
cost(X) cost of X (X is a feature/predicate/rule)
δ the lookup cost
freq(f) frequency of feature f
predicate(r) predicates of rule r
feature(X) features of X (X can be a predicate/rule)
sel(X) selectivity of X (X can be a predicate/rule)
prev(f, r) features/predicates in rule r before feature f
predicate(f, r) predicates in rule r that have feature f
reduction(r) overall cost reduction by execution of rule r
cache(f, r) chance that f is in the memo after running r

Table 1: Notation used in cost modeling and optimal rule ordering.

Note that the initial condition satisfies

α(f, r1) =
∏

p∈prev(f,r1)
sel(p).

We therefore have obtained an inductive procedure for estimating
α(f, ri) (1 ≤ i ≤ n). Clearly, α(f, ri) = α(f, ri−1) if f 6∈
feature(ri−1). So we can focus on the rules that contain f .

5. OPTIMAL ORDERING
Our goal in this section is to develop techniques to order rule and

predicate evaluation to minimize the total cost of matching function
evaluation. This may sound familiar, and indeed it is — closely
related problems have been studied previously in related settings
(see, for example, [1, 8]). However, our problem is different and
unfortunately more challenging due to the interaction of early exit
evaluation with dynamic memoing.

5.1 Notation
Table 1 summarizes notation used in this section. Some of the

notation has been used when discussing the cost models.

5.2 Problem Formulation
We briefly recap an abstract version of the problem. We have a

set of rulesR = {r1, ..., rn}. Each rule is in CNF, with each clause
containing exactly one predicate. A pair of records is a match if any
rule inR evaluates to true. Therefore,R is a disjunction of rules:

R = r1 ∨ r2 ∨ · · · ∨ rn.

Consider a single rule

r = p1 ∧ p2 ∧ · · · ∧ pm.

We are interested in the minimum expected cost of evaluating r
with respect to different orders (i.e., permutations) of the predicates
p1, ..., pm.

Given a specific order of the predicates, the expected cost of r
can be expressed as

cost(r) = cost(p1) + sel(p1) cost(p2) + · · · (3)

+ sel(
∧m−1

j=1
pj) cost(pm).

Similarly, given a specific order of the rules, the expected cost of
evaluating R, as was in Section 4.4.3, is

cost(R) = cost(r1) + (1− sel(r1)) cost(r2) + · · · (4)

+(1− sel(
∨n−1

i=1
ri)) cost(rn).

We want to minimize cost(R).



5.3 Independent Predicates and Rules
The optimal ordering problem is not difficult when independence

of predicates/rules holds. We start by considering the optimal or-
dering of the predicates in a single rule r. If the predicates are
independent, Equation 3 reduces to

cost(r) = cost(p1) + sel(p1) cost(p2) + · · ·
+ sel(p1) · · · sel(pm−1) cost(pm).

The following lemma is well known for this case (e.g., see Lemma
1 of [8]):

LEMMA 1. Assume that the predicates in a rule r are indepen-
dent. cost(r) is minimized by evaluating the predicates in ascend-
ing order of the metric:

rank(pi) = (sel(pi)− 1)/ cost(pi) (for 1 ≤ i ≤ m).

We next consider the optimal ordering of the rules by assuming
that the rules are independent. We have the following similar result.

THEOREM 1. Assume that the predicates in all the rules are
independent. cost(R) is minimized by evaluating the rules in as-
cending order of the metric:

rank(rj) = − sel(rj)

cost(rj)
= −

∏
p∈predicate(rj) sel(p)

cost(rj)
.

Here cost(rj) is computed by using Equation 3 with respect to the
order of predicates specified in Lemma 1.

PROOF. By De Morgan’s laws, we have

R = r1 ∨ · · · ∨ rn = ¬(r̄1 ∧ · · · ∧ r̄n).

Define r′j = r̄j for 1 ≤ j ≤ n and R′ = ¬R. It follows that

R′ = r′1 ∧ · · · ∧ r′n.

This means, to evaluate R, we only need to evaluate R′, and
then take the negation. Since R′ is in CNF, based on Lemma 1, the
optimal order is based on

rank(r′j) = (sel(r′j)− 1)/ cost(r′j) (for 1 ≤ j ≤ n).

We next compute sel(r′j) and cost(r′j). First, we have

sel(r′j) = 1− sel(rj) = 1−
∏

p∈predicate(rj)
sel(p),

by the independence of the predicates. Moreover, we simply have
cost(r′j) = cost(rj), because we can evaluate r′j by first evaluat-
ing rj and then taking the negation. Therefore, it follows that

rank(rj) = rank(r′j) = − sel(rj)

cost(rj)
= −

∏
p∈predicate(rj) sel(p)

cost(rj)
.

This completes the proof of the theorem.

Recall that in our implementation we compute feature costs and
selectivity by sampling a set of record pairs and compute the costs
and selectivities on the sample. So far, we have implicitly assumed
that memoing is not used.

5.4 Correlated Predicates and Rules
We now consider the question when memoing is used. This in-

troduces dependencies so Lemma 1 and Theorem 1 no longer hold.
Let us start with one single rule r. We introduce a canonical form

of r by “grouping” together predicates that share common features.

Formally, for a predicate p, let feature(p) be the feature it refers
to. Furthermore, define

feature(r) = ∪p∈predicate(r){feature(p)}.

Given a rule r and a feature f ∈ feature(r), let

predicate(f, r) =
∧

p∈predicate(r)∧feature(p)=f
p.

We can then write the rule r as

r =
∧

f∈feature(r)
predicate(f, r). (5)

Since we only consider predicates of the form A ≥ a or A ≤ a
where A is a feature and a is a constant threshold, it is reason-
able to assume that each rule does not contain redundant predi-
cates/features. As a result, each group predicate(f, r) can contain
at most one predicate of the form A ≥ a and/or A ≤ a. Based on
this observation, we have the following simple result.

LEMMA 2. cost(predicate(f, r)) is minimized by evaluating
the predicates in ascending order of their selectivities.

PROOF. Remember that predicate(f, r) contains at most two
predicates p1 and p2. Note that, the costs of the predicates follow
the pattern c, c′ if memoing is used, regardless of the order of the
predicates in predicate(f, r). Here c and c′ are the costs of directly
computing the feature or looking it up from the memo (c > c′).
As a result, we need to decide which predicate to evaluate first.
This should be the predicate with the lower selectivity. To see this,
without loss of generality let us assume sel(p1) < sel(p2). The
overall cost of evaluating p1 before p2 is then

C1 = c+ sel(p1)c′,

whereas the cost of evaluating p2 before p1 is

C2 = c+ sel(p2)c′.

Clearly, C1 < C2. This completes the proof of the lemma.

Since the predicates in different groups are independent, by ap-
plying Lemma 1 we get the following result.

LEMMA 3. cost(r) is minimized by evaluating the predicate
groups in ascending order of the following metric:

rank(predicate(f, r)) =
sel(predicate(f, r))− 1

cost(predicate(f, r))
.

Here cost(predicate(f, r)) is computed by using Equation 3 with
respect to the order of predicates specified in Lemma 2.

Now let us move on to the case in which there are multiple rules
whose predicates are not independent. Unfortunately, this opti-
mization problem is in general NP-hard. We can prove this by
reduction from the classic traveling salesman problem (TSP) as fol-
lows. Let the rules be vertices of a complete graphG. For each pair
of rules ri and rj , define the cost c(i, j) of the edge (ri, rj) to be
the execution cost of rj if it immediately follows ri. Note that here
we have simplified our problem by assuming that the cost of rj
only depends on its predecessor ri. Under this specific setting, our
problem of finding the optimal rule order is equivalent to seeking
a Hamiltonian cycle with minimum total cost in G, which is NP-
hard. Moreover, it is known that a constant-factor approximation
algorithm for TSP is unlikely to exist unless P equals NP (e.g., see
Theorem 35.3 of [4]). Therefore, in the following we seek heuristic
approaches based on various greedy strategies.



Algorithm 5: A greedy algorithm based on expected costs of
rules.

Input: R = {r1, ..., rn}, a set of CNF rules
Output: Rπ , execution order of the rules

1 Let Q be a priority queue 〈(cost(r), r)〉 of the rules;
2 Rπ ← ∅;
3 foreach r ∈ R do
4 Order predicate(r) according to Lemma 3;
5 Compute cost(r) based on this order;
6 Insert (cost(r), r) into Q;
7 end
8 while Q is not empty do
9 rmin ← ExtractMin(Q);

10 Add rmin intoRπ;
11 foreach (cost(r), r) ∈ Q do
12 Update cost(r) by assuming that r immediately

follows rmin;
13 end
14 end
15 returnRπ;

5.4.1 Greedy Algorithms
We now need to further order the rules by considering the over-

head that can be saved by memoing. By Lemma 3, the predicates
in each rule can be locally optimally ordered. Note that each or-
der of the rules induces a global order over the (bag of) predicates.
However, the selectivities of the predicates are no longer indepen-
dent, because predicates in different rules may share the same fea-
ture. Furthermore, the costs of predicates are no longer constants
due to memoing. In fact, they even depend on the positions of the
predicates in their global order. In other words, the costs of pred-
icates depend on the order of the rules (recall the cost model in
Section 4.4.4). Hence we are not able to apply Lemma 1 or Theo-
rem 1 in this context.

Nonetheless, intuitively, a predicate should tend to have priority
if it is very selective (returns true for very few pairs) and small cost,
since it will eliminate many pairs cheaply. On the other hand, a rule
should tend to have priority if it is not very selective (returns true
for many candidate pairs) and small cost, since it contributes many
matches cheaply. Our first algorithm then uses this intuition in a
greedy strategy by picking the rule with the minimum expected
cost. The details of this algorithm are presented in Algorithm 5.
Note that when we update cost(r) at line 12, we use the cost model
developed in Section 4.4.4, which considers the effect of memoing,
by assuming that r will be the immediate successor of rmin.

Algorithm 5 only considers the expected costs of the rules if they
are the first to be run among the remaining rules. Some rules may
have slightly high expected costs but significant long-term impact
on overall cost reduction. Algorithm 5 does not consider this and
thus may overlook these rules. We therefore further consider a dif-
ferent metric that is based on the rules that can be affected if a rule
is executed. This gives our second greedy algorithm.

In the following, we use reduction(r) to represent the over-
all cost that can be saved by the execution of the rule r, and use
cache(f, r) to represent the probability that a feature f is in the
memo after the execution of r. For two features f1 and f2 in r,
we write f1 < f2 if f1 appears before f2 in the order of predicate
groups specified by Lemma 3. Following Section 4.4.4, we redefine
prev(f, r) to be the features that appear before f in r, namely,

prev(f, r) = {f ′ ∈ feature(r) ∧ f ′ < f}.

If we write r as it is in Equation 5, then

sel(prev(f, r)) =
∏

f ′∈prev(f,r)
sel(predicate(f ′, r)) (6)

is the selectivity of (conjunction of) the predicates appearing before
f in r. Here we have abused notation because prev(f, r) is a set
of features rather than a predicate. Basically, sel(prev(f, r)) is the
chance that the feature f needs to be computed (by either direct
computation or cache lookup) when executing r. We further define
prev(r) to be the rule executed right before r. It then follows that

cache(f, r) = (1− cache(f,prev(r))) sel(prev(f, r))

+ cache(f,prev(r)).

Next, define contribution(r′, r) to be the reduced cost of r′ by
executing the rule r before the rule r′. Define contribution(r′, r, f)
to be the reduced cost due to the feature f . Let feature(r′, r) =
feature(r′) ∩ feature(r). Clearly,

contribution(r′, r) =
∑

f∈feature(r′,r)
contribution(r′, r, f).

We now consider how to compute contribution(r′, r, f). If we do
not run r before r′, the expected cost of evaluating f in r′ is then

cost1(f, r′) = sel(prev(f, r′))
[

cache(f,prev(r))δ

+(1− cache(f,prev(r))) cost(f)
]
,

whereas if we run r before r′ the cost becomes

cost2(f, r′) = sel(prev(f, r′))
[

cache(f, r)δ

+(1− cache(f, r)) cost(f)
]
.

It then follows that

contribution(r′, r, f) = cost1(f, r′)− cost2(f, r′)

= sel(prev(f, r′))∆(cost(f)− δ),

where ∆ = cache(f, r)− cache(f,prev(r)).
Based on the above formulation, we have

reduction(r) =
∑

r′ 6=r
contribution(r′, r).

Our second greedy strategy simply picks the rule r that maximizes
reduction(r) as the next rule to be executed. Algorithm 6 presents
the details of the idea. It is more costly than Algorithm 5 because
update of reduction(r) at line 21 requires O(n) rather than O(1)
time, where n is the number of rules.

Note that the computations of cost(r) and reduction(r) are still
based on local decisions, namely, the immediate effect if a rule is
executed. The actual effect, however, depends on the actual order-
ing of all rules and cannot be estimated accurately without finishing
execution of all rules (or, enumerating all possible rule orders).

5.4.2 Discussion
If we only employ early exit without dynamic memoing, the op-

timal ordering problem remains NP-hard when the predicates/rules
are correlated. However, we can have a greedy 4-approximation al-
gorithm [1, 11]. The difference in this context is that the costs of the
predicates no longer depend on the order of the rules. Rather, they
are constants so approximation is easier. One might then wonder if
combining early exit with precomputation (but not dynamic mem-
oing) would make the problem even tractable, for now the costs of
the predicates become the same (i.e., the lookup cost). Unfortu-
nately, the problem remains NP-hard even for uniform costs when
correlation is present [6].



Algorithm 6: A greedy algorithm based on expected overall
cost reduction.

Input: R = {r1, ..., rn}, a set of CNF rules
Output: Rπ , execution order of the rules

1 Let Q be a priority queue 〈(reduction(r), r)〉 of the rules;
2 Rπ ← ∅;
3 foreach r ∈ R do
4 Order predicate(r) according to Lemma 3;
5 end
6 foreach r ∈ R do
7 reduction(r)← 0;
8 foreach r′ ∈ R such that r′ 6= r do
9 foreach f ∈ feature(r′) do

10 if f ∈ feature(r) then
11 reduction(r)←

reduction(r) + contribution(r′, r, f);
12 end
13 end
14 end
15 Insert (reduction(r), r) into Q;
16 end
17 while Q is not empty do
18 rmax ← ExtractMax(Q);
19 Add rmax intoRπ;
20 foreach (reduction(r), r) ∈ Q do
21 Update reduction(r) by assuming that r immediately

follows rmax;
22 end
23 end
24 returnRπ;

5.4.3 Optimization: Check Cache First
We have proposed two greedy algorithms for ordering rules and

predicates in each rule. The order is computed before running any
rule and remains the same during matching. However, the greedy
strategies we proposed are based on the “expected” rather than ac-
tual costs of the predicates. In practice, once we start evaluating
the rules, it becomes clear that a feature is in the memo or not.
One could then further consider dynamically adjusting the order
of the remaining rules based on the current content of the memo.
This incurs nontrivial overhead, though: we basically have to re-
run the greedy algorithms each time we finish evaluating a rule.
So in our current implementation we do not use this optimization.
Nonetheless, we are able to reorder the predicates inside each rule
at runtime based on the content of the memo. Specifically, we first
evaluate predicates for which we have their features in the memo,
and we still rely on Lemma 3 to order the remaining predicates.

5.5 Putting It All Together
The basic idea in this section is to order the rules such that we can

decide on the output of the matching function with lowest compu-
tation cost for each pair. To order the rules we use a small random
sample of the candidate pairs and estimate feature costs and selec-
tivities for each predicate and rule. We then use Algorithm 5 or
Algorithm 6 to order the rules. These two algorithms consider two
different factors that affect the overall cost: 1) the expected cost of
each rule, and 2) the expected overall cost reduction that executing
this rule will have if the features computed for this rule are repeated
in the following rules. We further evaluate the performance of both
algorithms in our experiments.

6. INCREMENTAL MATCHING
So far we have discussed how to perform matching for a fixed

set of fixed rules. We now turn to consider incremental matching
in the context of an evolving set of rules.

6.1 Materialization Cost
To perform incremental matching, we materialize the following

information during each iteration:

• For each pair: For each feature that was computed for this
pair, we store the calculated score. Note that because we use
lazy feature computation, we may not need to compute all
feature values.

• For each rule: Store all pairs for which this rule is true.

• For each predicate: Store all pairs for which this predicate
evaluated to false.

We show in our experiments that if we use straightforward tech-
niques such as storing bitmaps of pairs that pass rules or predicates,
the total memory needed to store this information for our data sets
is less than 1GB.

6.2 Types of Matching Function Changes
An analyst often applies a single change to the matching func-

tion, re-runs EM, examines the output, then applies another change.
We study different types of changes to the matching function and
present our incremental matching algorithm for each type.

6.2.1 Add a Predicate / Tighten a Predicate

Algorithm 7: Add a predicate.
Input: R, the set of CNF rules; r, the rule that was changed;

p, the predicate added to r
1 Let M(r) be the previously matched pairs by r;
2 Let X be the unmatched pairs by p; X ← ∅;
3 foreach c ∈M(r) do
4 if p returns false for c then
5 X ← X ∪ {c};
6 end
7 end
8 LetR′ be the rules inR after r;
9 foreach c ∈ X do

10 Mark c as an unmatch;
11 foreach r′ ∈ R′ do
12 if r′ returns true for c then
13 Mark c as a match; break;
14 end
15 end
16 end

If a matching result contains pairs that should not actually match,
the analyst can make the rules that matched such a pair more “strict”
by either adding predicates, or making existing predicates more
strict. For example, consider the following predicate

Jaccard(a.name, b.name) ≥ 0.7.

We can make this more strict by changing it to

Jaccard(a.name, b.name) ≥ 0.8.

In this case, we can obtain the new matching results incrementally
by evaluating this modified predicate only for the pairs that were



evaluated and matched by the rule we made stricter. Consider such
a previously matched pair:

• If the modified predicate returns true, the pair is still matched.

• If the modified predicate returns false, the current rule no
longer matches this pair. However, other rules in the match-
ing function may match this pair, so we must evaluate the
pair with the other rules until either a rule returns true or all
rules return false.

We can use the same approach for adding a new predicate to a rule,
because that can be viewed as making an empty predicate that al-
ways evaluates to true more strict. Algorithm 7 illustrates the pro-
cedure for adding a predicate.

6.2.2 Remove a Predicate / Relax a Predicate

Algorithm 8: Make a predicate less strict.
Input: r, the rule that was changed; p, the predicate of r that

was made less strict
1 Let U(p) be the pairs for which p returned false;
2 Let Y be the pairs p now returns true; Y ← ∅;
3 foreach c ∈ U(p) and c was an unmatch do
4 if p returns true for c then
5 Y ← Y ∪ {c};
6 end
7 end
8 foreach c ∈ Y do
9 Mark c as a match;

10 foreach p′ ∈ predicate(r) and p′ 6= p do
11 if p′ returns false for c then
12 Mark c as an unmatch; break;
13 end
14 end
15 end

In the case where pairs that should match are missing from the
result, we might be able to fix the problem by either removing a
predicate or making an existing predicate less strict. Consider again
the predicate

Jaccard(a.name, b.name) ≥ 0.7.

We can make it less strict by changing it to

Jaccard(a.name, b.name) ≥ 0.6.

In both cases, all pairs for which this predicate returned false need
to be re-evaluated. Consider such a previously unmatched pair:

• If the new predicate is false, the pair remains unmatched.

• If the new predicate is true, we will evaluate the other pred-
icates in the rule.2 If any of these predicates returns false,
then the pair remains a non-match. Otherwise, this rule will
return true for this pair, and it will be declared a match.

Algorithm 8 illustrates the details of the procedure for updating
the matching result after making a predicate less strict. Removing
a predicate follows similar logic and is omitted for brevity.

6.2.3 Remove a Rule
2Note that, because we use the “check-cache-first” optimization,
the order of the predicates within the rule is no longer fixed. In
other words, different pairs may observe different orders. So we
cannot just evaluate predicates that “follow” the changed one.

Algorithm 9: Remove a rule.
Input: R, the set of CNF rules; r, the rule removed

1 Let M(r) be the previously matched pairs by r;
2 LetR′ be the rules inR after r;
3 foreach c ∈M(r) do
4 Mark c as an unmatch;
5 foreach r′ ∈ R′ do
6 if r′ returns true for c then
7 Mark c as a match; break;
8 end
9 end

10 end

We may decide to remove a rule if it returns true for pairs that
should not match. In such a case, we can re-evaluate the matching
function for all pairs that were matched by this rule. Either another
rule will declare this pair a match or the matching function will
return false. Algorithm 9 illustrates this procedure.

6.2.4 Add a Rule

Algorithm 10: Add a rule.
Input: R, the set of CNF rules; r, the rule added

1 Let U(r) be the previously unmatched pairs byR;
2 foreach c ∈ U(r) do
3 Mark c as a match;
4 foreach p ∈ predicate(r) do
5 if p returns false for c then
6 Mark c as an unmatch; break;
7 end
8 end
9 end

One way to match pairs that are missed by a current matching
function is to add a rule that returns true for them. In this case,
inevitably, all non-matched pairs need to be evaluated by this rule.
However, note that only the newly added rule will be evaluated for
the non-matched pairs, which can be substantial savings over re-
evaluating all rules. Algorithm 10 demonstrates this procedure.

7. EXPERIMENTAL EVALUATION
In this section we explore the impact of our techniques on the

performance of various basic and incremental matching tasks. We
ran experiments on a Linux machine with eight 2.80 GHz proces-
sors (each with 8 MB of cache) and 8 GB of main memory. We
implemented our algorithms in Java. We used six real-world data
sets as described below.

7.1 Datasets and Matching Functions
We evaluated our solutions on six real-world data sets. One data

set was obtained from an industrial EM team. The remaining five
data sets were created by students in a graduate-level class as part
of their class project, where they had to crawl the Web to obtain,
clean, and match data from two Web sites. Table 2 describes these
six data sets. For ease of exposition, and due to space constraints,
in the rest of this section we will describe experiments with the first
(and largest) data set. Experiments with the remaining five data sets
show similar results and are therefore omitted.

We obtained the Walmart/Amazon data set used in [7] from the
authors of that paper. The dataset domain is electronics items from



Data set Source 1 Source 2 Table1 size Table2 size Candidate pairs Rules Used features Total features

Products Walmart Amazon 2554 22074 291649 255 32 33

Restaurants Yelp Foursquare 3279 25376 24965 32 21 34

Books Amazon Barnes & Noble 3099 3560 28540 10 8 32

Breakfast Walmart Amazon 3669 4165 73297 59 14 18

Movies Amazon Bestbuy 5526 4373 17725 55 33 39

Video games TheGamesDB MobyGames 3742 6739 22697 34 23 32

Table 2: Real-world data sets used in the experiments.
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Figure 3: (A) Run time for different sizes of matching function for rudimentary baseline (R), early exit (EE), production precomputation
baseline + early exit (PPR + EE), full precomputation baseline + early exit (FPR + EE), and dynamic memoing + early exit (DM + EE).
(B) Zoom-in of A to compare methods that use precomputation/dynamic memoing. (C) Run time for different orderings of the set of
rules/predicates: Random ordering, order by Algorithm 5, and order by Algorithm 6.

Function Walmart Amazon µs

Exact Match modelno modelno 0.2

Jaro modelno modelno 0.5

Jaro Winkler modelno modelno 0.77

Levenshtein modelno modelno 1.22

Cosine modelno title 3.37

Trigram modelno modelno 4.79

Jaccard modelno title 6.75

Soundex modelno modelno 8.77

Jaccard title title 10.54

TF-IDF modelno title 12.18

TF-IDF title title 18.92

Soft TF-IDF modelno title 21.89

Soft TF-IDF title title 66.06

Table 3: Computation costs for features in the products data set

Walmart.com and Amazon.com. After the blocking step, we have
291, 649 candidate pairs. Gokhale et al. [7] have generated the
ground truth for these pairs.

We generated 33 features using a variety of similarity functions
based on heuristics that take into account the length and type of
the attributes. Table 3 shows a subset of these features and their
associated average computation times. The computation times of
features vary widely.

Using a combination of manual and semi-automatic approaches,
analysts from the EM team that originally created the data set have

R1 Jaro Winkler(m, m) ≥ 0.97 ∧ Jaro(m, m) ≥ 0.95
∧ Soft TF-IDF(m, t) < 0.28
∧ TF-IDF(m, t) < 0.25 ∧ Cosine(t, t) ≥ 0.69

R2 Jaccard(t, t) < 0.4 ∧ TF-IDF(t, t) < 0.55
∧ Soft TF-IDF(t, t) ≥ 0.63 ∧ Jaccard ≥ 0.34
∧ Levenshtein(m, m) < 0.72
∧ Jaro Winkler(m, m) < 0.05

Figure 4: Sample rules extracted from the random forest. m, t
stand for modelno and title respectively.

created a total of 255 matching rules. We will use this rule set as
a basis from which to create and evaluate a variety of matching
functions. Figure 4 shows two sample rules for this data set.

7.2 Early Exit + Dynamic Memoing
Figure 3A shows the effect of early exit and precomputing (mem-

oing) feature values on matching time as we use an increasingly
larger rule set. For example, to generate the data point correspond-
ing to 20 rules, we randomly selected 20 rules and measured the
time to apply them to the data set. For each data point we report
the average running time over three such random sets of rules.

We compare the run time for baseline, early exit, production
precomputation + early exit, full precomputation + early exit, and
dynamic memoing + early exit. For production precomputation,
which we described as one of our baselines in Section 4.1.2, we
assume that we know all the features used in the rules. We call this
“production precomputation” because it is feasible only if the set
of rules for matching is already finalized. In full precomputation,
we know a superset of features that the analyst will choose from
to make the rule set. In such a case, we may precompute values
for features that will never be used. We compare these approaches
with dynamic memoing + early exit proposed in this paper.



We can see that the rudimentary baseline has a very steep slope,
and around 20 rules, it takes more than 10 minutes to complete. The
early exit curve shows significant improvement over baseline, how-
ever, it is still slow compared to either the precomputation base-
line or early exit with dynamic memoing. Figure 3B zooms in
and shows the curves for the full and production precomputation
baselines and dynamic memoing. We can see that using dynamic
memoing + early exit can significantly reduce matching time.

In this subsection, we have not considered the optimal ordering
problem, and we ran dynamic memoing with a random ordering of
the rules and predicates in each rule. In the next subsection, we fur-
ther study the effectiveness of our greedy algorithms on optimizing
orderings of predicates/rules.

7.3 Optimal Ordering
Figure 3C shows runtime as we increase the number of rules for

“dynamic memoing + early exit” with random ordering of pred-
icates/rules, as well as that with orderings produced by the two
greedy strategies presented in Algorithm 5 and Algorithm 6. Each
data point was generated using the same approach described in the
previous subsection. We used a random sample consisting of 1%
of the candidate pairs for estimating feature costs and predicate se-
lectivities. We can see that the orderings produced by both of these
algorithms are superior to the random ordering.

We further observe that Algorithm 6 is faster than Algorithm 5,
perhaps due to the fact that its decision is based on a global opti-
mization metric that considers the overall cost reduction by placing
a rule before other rules. As the number of rules increases, the
impact is less significant, because most of the features have to be
computed. Nonetheless, matching using Algorithm 6 is still faster
even when we use 240 rules in the matching function.

7.4 Memory Consumption
We store the similarity values in a two dimensional array. We as-

sign each pair an index based on their order in the input table. Sim-
ilarly, we assign each feature a random order and an index based
on the order. In the case of the precomputation baseline, this memo
is completely filled with feature values before we start matching.
In the case of dynamic memoing, we fill in the memo as we run
matching and the analyst makes changes to the rule set. Therefore,
the memory consumption of both approaches is the same. For this
dataset, if we use all rules, the two-dimensional array takes 22 MB
of space, which includes the space for storing the actual floats as
well as the bookkeeping overhead for the array in Java. For incre-
mental matching, we store a bitmap for each rule as well as for each
predicate. In our implementation, we use a boolean array for each
bitmap. For this dataset, we have 255 rules and a total of 1, 688
predicates. These bitmaps occupy 542 MB.

For our dataset, the two-dimensional array and bitmaps fit com-
fortably in memory. For a data set where this is not true, one could
consider avoiding an array and using a hash-map for storing simi-
larity values. Since we do not compute all the feature values, this
would lead to less memory consumption, although the lookup cost
for hash-maps would be more expensive.

7.5 Cost Modeling and Analysis
To illustrate accuracy of our cost models, in Figure 5A we com-

pare the actual run time of “dynamic memoing + early exit” versus
run time estimated by the cost model for random ordering of rules
as well as rules ordered by Algorithm 6. The two curves follow
each other closely.

To compute the selectivity of each predicate, we select a sample
of the candidate pairs, evaluate each predicate for the pairs in the

sample and compute the percentage of pairs that pass each predi-
cate. In our experiments, we observed that using a 1% sample can
give relatively accurate estimates of the selectivity, and increasing
the sample size did not change the rule ordering in a major way.
We used the same small sample approach to estimate feature costs.

Figure 5B shows the actual matching time when we use all the
rules for the data set as we increase number of pairs. As we as-
sumed in our cost modeling, the matching cost increases linearly
as we increase number of pairs. Given this increase proportional to
the number of pairs (which is itself quadratic in the number of in-
put records), the importance of performance enhancing techniques
to achieve interactive response times increases with larger data sets.

7.6 Incremental Entity Matching
Our first experiment examines the “add rule” change. Adding a

rule can be expensive for incremental entity matching because we
need to evaluate the newly added rule for all the unmatched pairs.

To test how incremental matching performs for adding a new
rule, we conducted the following experiment. We start from an
empty matching function without any rules. We then add the first
rule to the matching function, run matching with this single-rule
matching function, and materialize results. Next, we add the sec-
ond rule and measure the time required for incremental matching.
In general, we run matching based on k rules, and then run incre-
mental matching for the (k+1)-th rule when it is added. We repeat
this for 1 ≤ k ≤ 240.

We consider two variations of incremental algorithm. In the pre-
computation variation, all the rules in the matching function are
evaluated. Note that we use early exit and the optimization dis-
cussed in Section 5.4.3 with this variation to reduce unnecessary
lookups. The second variation is fully incremental. In this case we
not only lookup the stored feature values, but also only evaluate
part of the matching function for the subset of candidate pairs that
will be affected by this operation. In particular, for the “add rule”
operation, all the non-matched pairs need to be evaluated by just the
new rule that is added, and all the rules in the matching function do
not need to be evaluated.

Figure 5C shows the results for the add-rule experiment. We
can see that in the first iteration, both variations are slow. This
is because there is no materialized result to use (i.e. the memo
is empty). However, from the second iteration onwards we can
see that the cost of the precomputation baseline steadily increases
whereas the cost of fully incremental is mostly constant and signifi-
cantly smaller than that of the precomputation baseline. This is be-
cause the precomputation baseline performs unnecessary lookups
and evaluates all the rules in the matching function. The incremen-
tal approach just evaluates the newly added rule and thus it does
not slow down as the number of rules increases.

In certain runs both of the variations experience a sudden in-
crease in the running time. These are the cases in which the new
rule requires many feature computations, because either there was
a new feature, or the feature was not in the memo, and this feature
was “reached” in the rule evaluation (it might not be reached, for
example, if a predicate preceding the feature evaluates to false.)

Figure 6 shows run time of incremental EM for different changes
to the matching function. To illustrate how the numbers were gen-
erated, assume that we want to measure the incremental run time
for adding a predicate. We randomly selected 100 predicates, re-
moved the predicate, ran EM and materialized the results, then
added the predicate to the rule, and measured the run time. The
rest of the numbers in the table were generated in a similar manner.

For tightening the thresholds, we randomly selected a predicate,
and for that predicate we randomly chose one of the values in



0

25

50

75

100

0 50 100 150 200 250

R
u

n
 t

im
e 

(s
)

Number of pairs (thousands)

PR + EE

DM + EE (Random)

DM + EE (Alg. 5)

DM + EE (Alg. 6)

0

20

40

60

80

0 40 80 120 160 200 240

R
u

n
 t

im
e 

(s
)

Number of rules

Random order (Actual)

Random order (Model)

Algorithm 6 (Actual)

Algorithm 6 (Model)
0

20

40

60

0 40 80 120 160 200 240

R
u

n
 t

im
e 

(s
)

Number of rules

Rerun from scratch

Precomputation

Fully incremental

CA B

Figure 5: (A) Actual run time versus run time estimated by the cost model for random ordering of rules and rules ordered by Algorithm 6.
(B) Run time as we increase number of pairs for production precomputation + early exit (PPR + EE), and dynamic memoing + early exit
(DM + EE) for random ordering of rules, rules ordered by Algorithm 5, and ordered by Algorithm 6. (C) Run time with dynamic memoing
+ early exit as we add rules one by one to the matching function in three cases: 1) Rerun matching from scratch, 2) Precomputation: lookup
memoed feature values but evaluate all rules 3) Fully incremental: lookup memoed feature values but only evaluate the newly added rule.

428 2883 902 426

0

10

20

30

40

Add
predicate

Tighten
threshold

Remove
rule

Remove
predicate

Relax
threshold

Add rule

More strict Less strict

R
u

n
 t

im
e 

(m
s)

Min Median Average Max

Figure 6: Incremental EM run time for different changes to the
matching function that make it more/less strict.

{0.1, 0.2, 0.3, 0.4, 0.5} that could be applied to the predicate. For
example, assume that the predicate is Jaccard(a.name, b.name) ≥
0.6. To tighten the threshold, we add a random value to the thresh-
old from {0.1, 0.2, 0.3, 0.4}, because adding 0.5 makes the thresh-
old larger than 1. If the predicate uses a ≥ operation we add the
value to the current threshold, and if it uses a ≤ operation we sub-
tract the value from the current threshold. The procedure is similar
for relaxing thresholds.

We can see that making the matching function more strict by
adding a predicate, tightening the threshold, and removing a rule
on average takes no more than about 6 milliseconds. On the other
hand, making the function less strict could take up to 34 millisec-
onds on average. This cost is due to the fact that we may need to
calculate new features for a fraction of candidate pairs.

8. CONCLUSIONS
We have focused on scenarios where an analyst iteratively de-

signs a set of rules for an EM task, with the goal of making this pro-
cess as interactive as possible. Our experiments with six real-world
data sets indicate that “memoing” the results of expensive similarity
functions is perhaps the single most important factor in achieving
this goal, followed closely by the implementation of “early-exit”
techniques that stop evaluation as soon as a matching decision is
determined for a given candidate pair.

In the context of rule creation and modification it may not be de-
sirable or even possible to fully precompute similarity function re-
sults in advance. Our just-in-time “memoing” approach solves this
problem, dynamically storing these results as needed; however, the

interaction of the on-demand memoing and early-exit evaluation
creates a novel rule and predicate ordering optimization problem.
Our heuristic algorithms to solve this problem provide significant
further reductions in running times over more naive approaches.

Finally, in the context of incremental rule iterative development,
we show that substantial improvements in running times are pos-
sible by remembering the results of previous iterations and on the
current iteration only computing the minimal delta required by a
given change.

From a broader perspective, this work joins a small but growing
body of literature which asserts that for matching tasks, there is of-
ten a “human analyst in the loop,” and rather than trying to remove
that human, attempts to make him more productive. Much room for
future work exists in integrating the techniques presented here with
a full system and experimenting with its impact on the analyst.
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