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¶Microsoft Research

Abstract—Streaming (machine) learning (SML) can capture
dynamic changes in real-time data and perform continuous
updates. It has been widely applied in real-world scenarios such
as network security, financial regulation, and energy supply. How-
ever, due to the sensitivity and lightweight nature of SML models,
existing work suffers from low robustness, sudden decline, and
catastrophic forgetting when facing unexpected data distribution
drifts. Previous studies have attempted to enhance the stability
of SML through methods such as data selection, replay, and
constraints. However, these methods are typically designed for
specific feature spaces and specific ML algorithms. In this paper,
we introduce a shift graph based on the distances between data
distributions and define three distinct data shift patterns. For
these three patterns, we design three adaptive mechanisms, (a)
multi-time granularity models, (b) coherent experience clustering,
and (c) historical knowledge reuse, that are triggered by a
strategy selector, with the goal of enhancing the accuracy and
stability of SML. We implement an adaptive and stable SML
framework, FreewayML, on top of PyTorch, which is suitable for
most SML models. Experimental results show that FreewayML
significantly outperforms existing SML systems in both stability
and accuracy, with a comparable throughput and latency.

I. INTRODUCTION

Data mining techniques have been applied in various do-
mains to extract insights from real-time data generated by IoT
sensors, web clicks, and other sources [1]–[4]. For example,
users can detect cyber attacks through network traffic and
connection types; power plants can supply energy based on
real-time user consumption; and economists can forecast eco-
nomic development trends according to financial markets [5]–
[8]. Continuously arriving data are instrumental in developing
robust and accurate AI-driven systems.

Existing work [9], [10] has already identified that data
streams exhibit dynamic changes with non-iid distributions,
attributed to the randomness of data generation, fluctuations
of data quality, and the evolving trend of data distribution. As
Figure 1a shows, traditional batch learning [11], [12] stores
real-time data and conducts periodic training updates. This
mode tends to face significant challenges when dealing with
dynamically changing data, as its update frequency is relatively
low and unable to promptly capture emerging patterns.

Unlike batch machine learning, streaming learning [13],
[14] (SML) performs continuous incremental training on real-
time data, discarding data once it is used, thus reducing
memory space overhead and model update costs. Additionally,
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Fig. 1: Comparison between batch and streaming ML.

it naturally learns evolving data distribution trends, which, to
a certain extent, can address the issue of dynamic changes. As
Figure 1b shows, when labeled batch (Bt−2, yt−2) flows in,
SML incrementally updates the model using the mini-batch
data Bt−2, capturing the new data distribution characteristics
of the current moment. Although batch learning can also adopt
the online-offline paradigm, it requires manual selection of
update times and training data. Changes in data streams are
often difficult to detect manually in a timely manner, and
the continuous updating of SML naturally allows for quicker
acquisition of new knowledge. SML frameworks, such as Flink
ML [15], River [16], and Alink [17], have been developed and
are widely used.

Given the high ingestion rates and dynamic changes of
data streams, current research and implementations of SML
primarily focus on sensitive and lightweight models, such
as Streaming Logistic Regression and Streaming MLP based
on mini-batch SGD. These models possess efficient process-
ing and updating capabilities, meeting the practical demands
of real-world scenarios. However, their sensitivity reduces
model stability, and their lightweight structure diminishes
generalization performance. We have identified the following
shortcomings of existing methods:

(SC1) Low Robustness. For non-IID streaming data, a
general challenge is how to improve model stability [18],
[19] (i.e., reducing accuracy fluctuations). Slight shift in data
distribution can cause decrease in accuracy. For example, since
the data Bt at time t differs slightly from the previous Bt−1

and model parameters θt−1 are not fully suitable for Bt,
the model’s inference accuracy at the current moment can



decrease.
(SC2) Sudden Decline. A major challenge in SML is

how to handle the sudden severe shifts [20], [21] quickly,
because the previously trained model is no longer applicable.
For example, data Bt+1 appears with a distribution that is
significantly different from several previous distributions. At
this point, the trained θt is completely unsuitable, resulting in
a sharp decline of model accuracy.

(SC3) Catastrophic Forgetting. Forgetting is an unavoid-
able issue in SML [22]–[24] since models are updated incre-
mentally. When old knowledge reoccurs, the model still needs
to relearn, resulting in computational overhead and a decrease
in accuracy. For example, if data Bt−2 appears after Bt+1, the
model parameters θt+1 are not fully suitable for Bt−2 .

To understand the impact of data distribution drifts better,
we perform an empirical study on three real-world datasets
(Section III). We find that three types of data shifts can lead
to the low accuracy of current SML approaches: (a) slight shift,
(b) sudden shift, and (c) reoccurring shift. Based on our find-
ings, we propose three strategies to improve the accuracy and
stability of SML, including (a) multi-time granularity models
for slight shift, (b) coherent experience clustering for sudden
shift, and (c) historical knowledge reuse for reoccurring shift
(Section IV). We implement our approaches in a prototype
framework, FreewayML (Section V). Our evaluation shows
that FreewayML outperforms existing SML systems in terms
of both stability and accuracy while achieving comparable
throughput and latency (Section VI). For instance, we obtain
improvement of accuracy by an average of 3.8% across six
datasets, with maximum improvement of 7.3%, and Free-
wayML demonstrated higher stability.

We summarize our contributions in this paper as follows:

• We empirically find three common data distribution drift
patterns that affect accuracy, and conduct an in-depth
study including: pattern extraction (by analyzing the
correlation between data distribution shifts and accuracy
trends), pattern classification (by measuring the shift
severity and shift range), and formal definitions of shift
patterns.

• We design three adaptive mechanisms to enhance the
stability and accuracy of SML in the presence of the
three patterns defined, including (a) multi-time granular-
ity models, (b) coherent experience clustering, and (c)
historical knowledge reuse.

• We implement the proposed adaptive mechanisms in
FreewayML. We develop a novel data structure called
adaptive streaming window as well as other optimizations
to improve the performance of FreewayML. 1

• We conduct extensive experiments and thorough analysis
that demonstrate the effectiveness of FreewayML. It
outperforms existing SML systems in both stability and
accuracy, with comparable throughput and latency.

1The source code of FreewayML are available at https://github.com/
AnonymousforA/FreewayML

II. BACKGROUND AND RELATED WORK

A. Streaming learning

1) Mini-batch: For streaming learning, the size of the mini-
batch determine the frequency of inferences and model up-
dates. If the mini-batch size is set to 1, each new piece of data
that flows in will trigger inference or model update, resulting
in lower latency and more sensitive updating. Conversely,
setting a larger mini-batch size increases processing latency
but reduces computational and communication overhead.

2) Inference and update: In streaming learning, inferences
and updates occur in real time. Popular SML frameworks, such
as Flink ML and River, separate the inference streams and
training streams for individual processing. Once data reaches
the size of a mini-batch, subsequent inferences or model
updates are conducted. In terms of incremental model updates,
algorithms based on mini-batch SGD are commonly used.

3) Shifts and forgetting: Due to dynamic changes of real-
time data, data distribution shifts are extremely common in
streaming scenarios. These shifts often accompany changes
in rules of classification, posing significant challenges to
both model inferences and updates. On the other hand, the
problem of forgetting is a common and inevitable issue in
SML. Limited generalization capability of models can lead
to forgetting old knowledge because of incremental updates,
which poses serious challenges to the usability of SML.

Data distribution shifts and catastrophic forgetting are two
widely discussed problems in the field of streaming learning.
Resolving these issues can effectively enhance the stability
and accuracy of streaming learning.

B. Related work

Existing work primarily focuses on three aspects: (1) adap-
tive models, (2) data selection and replay, and (3) constrained
learning. Adaptive models typically employ drift detection
for full or incremental updates to capture characteristics of
changing data streams. However, due to the inherent unpre-
dictability, randomness, and uncertainty of changes presented
in data streams, it is challenging to balance stability and
responsiveness with this approach. Methods involving data
selection and replay typically require specific settings that only
work for certain models or parameter spaces and lack gener-
ality. Methods based on constrained learning and updating are
influenced by model’s generalization ability and struggle to
accommodate fast-paced variation of data streams. Below, we
discuss related work in more detail from these aspects.

1) Model adaptation: It has been extensively studied to
improve the stability of models under dynamic changes [25].
Existing research [8], [20] has indicated that dynamic changes
in data streams may have serious impact on model accuracy.
Some previous work focused on designing concept drift detec-
tors that capture potential data changes using methods based
on accuracy or distribution, though these methods suffer from
significant latency and uncertainty [26].

Popular model adaptation methods include [27]: (a) peri-
odically training a new model using all available data [28],



(b) periodically fine-tuning existing models with newly added
data [29], [30], and (c) continuously training models with
streaming learning [15]–[17]. However, due to the inherent un-
certainty of data streams, it is challenging for these approaches
to balance between stability and sensitivity [31], [32].

T-SaS [33] improves accuracy on streaming data by employ-
ing a neural network architecture with a Bayesian approach
to selectively activate subsets of the network. T-SaS focuses
on handling reoccurring distribution shifts, which does not
make targeted optimizations when facing slight shifts and new
distribution. Similarly, SEED [34] selects an optimal domain
network to handle specific tasks and fine-tunes this expert
using data from the task. SEED represents each category
using a Gaussian distribution and chooses the optimal domain
network based on the similarity of these distributions.

2) Data selection and replay: Data selection [35]–[37] has
been proposed to enhance stability and reduce computational
overhead by selecting high-quality streaming data. The con-
cept of data selection is often studied for specific types of ML
models such as clustering [38], [39], linear regression [40],
logistic regression [41], and Gaussian mixture models [42]. It
is challenging to develop a general data selection method [18]
that can be used for all ML algorithms.

On the other hand, data replay [43]–[45] is widely used
to mitigate catastrophic forgetting. The core idea is to pe-
riodically retrain the current model with past data, thereby
preserving previous knowledge. Early methods used random
sampling for periodic replay, which can preserve memory to
some extent. However, this approach can lead to decrease
in the accuracy of SML, as such data often acts as noise.
Recent work [46], [47] maintained a replay buffer for data
augmentation, which enhances data quality by sampling real-
time data and selecting more similar data from the buffer for
data replay. On the other hand, our proposed framework in
this work, FreewayML, selectively employs appropriate opti-
mization mechanisms based on the degree of data distribution
shifts, which is more suitable for a wide range of SML models.

3) Constrained learning: When data streams change dy-
namically, constraint-based methods [48], [49] retain past
experience while learning new knowledge by imposing certain
constraints on parameter updates. These methods can also
mitigate performance fluctuations caused by low-quality data
to some extent. EWC [23] introduced a parameter-constraint
method that incorporates an additional regularization loss re-
lated to the parameters. GEM [50] updated only the parameters
for new tasks without interfering with those of old tasks.
GEM modified the gradient update direction for new tasks
using inequality constraints, aiming for minimizing the loss
of new tasks without increasing the loss of old tasks. A-
GEM [51] reduced the computational burden associated with
GEM, making it more practical for scenarios with a large
number of tasks or when computational resource is restricted.
Due to limited generalization capability of ML models, such
methods often encounter performance bottlenecks. Moreover,
because parameter updates are constrained, their ability to
capture dynamic changes also diminishes.

III. STUDY ON DATA DISTRIBUTION SHIFTS

Since streaming data is non-IID, streaming ML (SML)
models tend to suffer from unstable or low accuracy as
data distribution shifts. In this Section, to identify which
types of shifts significantly affect the model accuracy, we
use a graph-based visualization to analyze the correlation
between distribution shifts and accuracy trends. According to
the shift severity and shift range, we identify three primary
shift patterns associated with accuracy fluctuations and drops.

A. Experimental setups

Existing SML frameworks, such as Flink ML, Spark
Streaming, and River, predominantly employ mini-batch SGD
for incremental updates of ML models. We therefore use the
commonly used mini-batch StreamingMLP with the batch size
of 1024 and test its accuracy in a single-machine environment.

We conduct our experimental evaluation on three represen-
tative real-world datasets: (1) electricity load, (2) stock price
trend, and (3) solar irradiance.

We use real-time accuracy (acc) as our evaluation met-
ric [52]. When each batch of data flows in, we first use
the existing model to make predictions, and the prediction
accuracy for that batch is referred to as the real-time accuracy
(acc). In detail, The real-time accuracy (acc) of Batch j can be
calculated as Equation 1 shows, where yji is the actual label
of the i-th sample in the batch, and ŷji is the prediction.

accj =

∑k
i=1 I(yji = ŷji)

k
(1)

B. Correlation between accuracy and distribution

Streaming data is dynamic and non-iid distributed. Existing
research has indicated that changes in data distribution can
impact the accuracy of streaming learning models. To more
intuitively explore the correlation, we constructed a data shift
graph with PCA. We reduce each batch from 3 real-world
datasets to a point, and Figure 2a, 2b, and 2c presents the
results. We connect the two-dimensional points in chronolog-
ical order, and the line connecting two points represents a
data shift. Through these steps, we obtain a shift graph that
represents the changes in data distribution.

In Figure 2, the greater the linear distance between two
points is, the larger the shift in data distribution is. We first
observe that streaming data exhibits uncertain patterns of
change; at times, the changes are minor, while at other times,
they are significant. Consequently, we seek to examine how
the accuracy of streaming learning models varies with different
magnitudes of changes.

Accordingly, we catch several typical phenomena: (Phe-
nomenon A) slight data distribution shifts, (Phenomenon B)
severe data distribution shifts, and (Phenomenon C) severe
shifts where the distribution has previously occurred, which
is a special case. For phenomenon A, there are two sub-
categories: (1) a directional slight shift, referred to as A1, and
(2) a localized slight shift, referred to as A2.
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Fig. 2: Visualization of data distribution shifts and model
accuracy under typical shifts.

Experimental results show a strong correlation between the
degree of accuracy changes and the magnitude of shifts as
Figure 2d shows. Simply put, when data shifts are minor, the
decrease in model accuracy is also small; when data shifts are
significant, the model accuracy decreases drastically, which is
consistent with the assumptions made in existing research.

C. Patterns of data distribution shifts

Pattern Classification Rationale with Examples. Fur-
thermore, we aim to extract useful pattern information from
these phenomena to guide more stable streaming learning. We
classify shift patterns based on two key factors: shift severity
and shift range. We first identify two primary patterns by shift
severity: Pattern A (slight shifts from Phenomenon A) and
Pattern B (severe shifts from Phenomenon B and C). Pattern
A generally causes accuracy fluctuations, whereas Pattern B
often leads to significant accuracy drops. Within each category,
we further differentiate patterns by shift range.

1) Slight Shifts
• Pattern A1 (Directional Shift): Data distribution grad-

ually shifts in a new direction over time. This pattern is
common in applications such as traffic flow, where the number
or direction of vehicles increases or decreases in real-time.
Pattern A1 reflects evolving trends, requiring frequent SML
model updates to track directional changes. Therefore, a short-
time granularity model is preferred to adapt to these shifts.

• Pattern A2 (Localized Shift): The data distribution shifts
within a small, stable range, preserving existing patterns rather
than evolving into new ones. Examples include slight daily
temperature variations, minor fluctuations in energy consump-
tion, or gradual changes in customer engagement metrics
during regular business cycles. For Pattern A2, a long-time
granularity model is preferred to stabilize the accuracy within
this narrow range of variation. Here comes our Insight A:

Insight A: Slight shifts in data distribution affect accu-
racy, so we consider combining models with both long-
time and short-time granularity.

2) Severe Shifts
• Pattern B (Sudden Shift): The data distribution abruptly

transitions to a new distribution, as observed in events like
Black Friday, where transaction volumes can surge unexpect-
edly. Pattern B is challenging for pre-trained model due to the
unpredictability and magnitude of the shift. Here comes our
Insight B:

Insight B: In the presence of sudden shifts, unsupervised
clustering may demonstrate better performance compared
to SML methods that require pre-training.

• Pattern C (Reoccurring Shift): The data distribution
shifts back to a previous pattern. This may occur in scenarios
like network security, where different types of attack patterns
may alternate over time. For Pattern C, historical models or
prior knowledge can be utilized to improve accuracy, allowing
the model to anticipate and respond effectively to familiar
shifts. Here comes our Insight C:

Insight C: When data distributions are similar, the pre-
viously trained model demonstrates high accuracy.

This pattern extraction and classification inspire us to de-
sign new and adaptive model update strategies, such as the
multi-time (short and long) granularity models, the coherent
experience clustering, and historical knowledge reuse.

Quantitative Pattern Definition. To formally define the
patterns, we use Equations 2-10 to quantify data distribution
shifts. We begin by warming up a Principal Component
Analysis (PCA) model to reduce the dimensionality of the
streaming data (Equations 2-5). We then calculate the current
shift, i.e., the data distribution distance between the current
batch and the previous batch (Equations 6-7). Finally, we
evaluate the shift severity by comparing the current shift with
the previous shifts (Equations 8-10). For instance, if the current
shift is statistically significant (an outlier in statistical terms), it
is classified as Pattern B. More details about the equations are
as follows. We also add Figure 3 to illustrate these equations.

(1) Dimension reduction (Equations 2-5): To accelerate
the shift calculation and focus on the most relevant data
features, we employ Principal Component Analysis (PCA) for
dimension reduction. Initially, we train a PCA model using
a set of n initial data points. Subsequently, we form the
component matrix Pd and apply this to reduce the dimension
of incoming streaming data.

µ =
1

n

n∑
i=1

xi, (2)

Σ =
1

n

n∑
i=1

(xi − µ)(xi − µ)T , (3)

Σ = V DV T , (4)



Pd = [v1,v2, . . . ,vd]. (5)

(2) Shift distance calculation (Equations 6-7): To track
changes in data distribution after dimension reduction, we em-
ploy a simple yet effective approach: calculating the Euclidean
distance between consecutive batches. For each incoming
batch, we use the average value, ȳt, as a representation of
its data distribution, which is a commonly used approach
for simplicity and computational efficiency [53], [54]. The
current shift distance, dt, is thus computed as the Euclidean
distance between the current batch at time t and the previous
batch at time t− 1. In future work, we plan to explore more
statistical metrics, such as standard deviation, to improve the
representation of data distribution and the accuracy of shift
distance calculations.

ȳt = PT
d (µt − µ), (6)

dt = ∥ȳt − ȳt−1∥. (7)

(3) Shift severity evaluation (Equations 8-10): To evaluate
the shift severity, we compare the current shift distance to the
(statistical distribution of) previous/historical shift distances.
We first compute the weighted mean µd and standard deviation
σd of previous shift distances, assigning higher weights wi

to more recent batches. We then classify the current shift
as sudden (Pattern B) if its distance magnitude M exceeds
a statistical threshold α, typically three standard deviations
above the weighted mean (i.e., α = 1.96).

µd =

∑k
i=1 widt−i∑k

i=1 wi

, (8)

σd =

√∑k
i=1(dt−i − µd)2

k
, (9)

M =
dt − µd

σd
. (10)

To further determine if Pattern C can be applied, we
calculate the nearest distance between the current batch and
previous batches, denoted as dh, and compare it with current
shift distance dt. If dh < dt, it indicates that the current shift
is moving towards a previously observed data distribution.

We can now define data distribution shift patterns as follows:
• Pattern A Slight shift. Condition: M < α;
• Pattern B Sudden shift. Condition: M > α;
• Pattern C Reoccurring shift. Condition: M > α and
dh < dt.

The three patterns of data distribution shifts defined above
cover the entire lifecycle of data streams, and they allow for a
more abstract and simplified definition of streaming trends. In
the data pattern phase, FreewayML calculates the shift distance
for each batch and compares it with previous shifts, as shown
in Equations 2-10. The time complexity for shift distance
calculation is O(nd), where n is the number of data points
in each batch, and d is the feature dimension. The comparison
with the past k batches (Equations 8-10) has time complexity

Fig. 3: The measurement of data distribution shift.

of O(k). Space complexity is minimal, requiring storage of
statistical values such as ȳt and the matrix Pd, totaling O(d2)

IV. THE DESIGN OF FREEWAYML

In Section III, we introduced the shift graph and observed
that accuracy of SML suffers from fluctuations under three
different shift patterns. We have designed specific optimization
mechanisms for different patterns, and in this section we
propose FreewayML, an adaptive and stable SML framework.
We start by an overview of FreewayML, which includes three
different optimization mechanisms as Figure 4 shows. Subse-
quently, we detail the design of each optimization mechanism.

A. Overview of FreewayML

1) Multi-time granularity models: We design a multi-time
granularity model to enhance the stability and accuracy of
streaming learning when facing slight shifts, including direc-
tional shifts (i.e., Pattern A1) and localized shifts (i.e., Pattern
A2). For A1, models with short-time granularity can learn
new distribution more sensitively and quickly. Conversely, for
A2, models with long-time granularity are less affected by
fluctuations and exhibit better stability.

Therefore, we design a mechanism with multi-time gran-
ularity models, where each model possesses different update
granularity and data selection methods. During update, short-
time granularity model utilizes the entire batch and updates at
a fixed frequency. For long-time granularity model, we develop
a new data structure named adaptive streaming window (ASW)
for maintaining data with a balance of low overhead and high
value. Specifically, we innovatively defined the disorder of this
adaptive streaming window to facilitate decay maintenance,
effectively reducing unnecessary overhead. During inference,
FreewayML integrates multiple models based on the distribu-
tion distance between models and data, and outputs the results
accordingly. We include the detailed design in Section IV-B.

2) Coherent experience clustering: We design a coherent
experience clustering (CEC) to temporarily replace deployed
SML models when sudden distribution shifts occur and pre-
trained models are not suitable. Unsupervised clustering can
make predictions based on the current data distribution without
the need for model warm-up. However, it lacks specific
label information to map clusters into labels. Streaming data
inherently possesses continuity, not only in terms of time but
also in its distribution. Here, we have made the following
Hypothesis:

(Hypothesis) Data that is continuous over time also exhibits
continuity in its distribution.
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Fig. 4: Overview of FreewayML.
Our innovation leverages adjacent labeled data as coherent

experience, grounded in the continuity of streaming data
distribution. This approach guides the clustering of current
batch data and maps unlabeled clusters to labeled categories,
enhancing model accuracy. We include the detailed design in
Section IV-C.

3) Historical knowledge reuse: We propose historical
knowledge reuse that includes knowledge preservation and
knowledge match to handle reoccurring shifts. Based on
the disorder in the ASW, we selectively preserve more sta-
ble knowledge (e.g., long-time granularity mode) to balance
knowledge coverage and knowledge quality. Furthermore,
when an old data distribution reappears, we introduce a
distance measurement to match the available historical knowl-
edge. We include the detailed design in Section IV-D.

B. Details of multi-time granularity models
Multi-time granularity models are proposed to achieve bet-

ter prediction accuracy under the slight shifts. Each model
possesses different update granularity. We aim to establish
more stable models with minimal computational overhead,
which presents the following technical challenges: (1) How
to determine the update granularity for different models? (2)
How to ensemble multiple models to enhance overall stability?
We propose (1) a model construction method based on ASW
and (2) a model ensemble method based on distance to address
these two technical challenges.

ASW-based model construction: For short-time granu-
larity model, update granularity tends to be fixed (e.g., one
minute or one hour), as developers aim for swift capture of
potential changes. To reach a balance between sensitivity and
stability for long-time granularity model, we propose a new
data structure, adaptive streaming window (ASW) for training

data management, as illustrated in Figure 5. ASW can adjust
the update granularity in an adaptive manner based on the
real-time distribution shift pattern.

In ASW, long-time granularity model starts an update when
the window reaches the maximum number of batches or
window size. Before it reaches the preset batches or size, when
a new batch flows in, existing batches in the window have to
be decayed.

d3,2>d3,1

d4,2>d4,3>d4,1

Time 1

Time 2

Time 3

Time 4

d2,1
(x10,y10) (x9,y9)

(x1,y1)(x2,y2)(x3,y3)(x4,y4)......(x8,y8)
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(x25,y25)(x26,y26)(x27,y27)(x28,y28)......(x32,y32)

Distance Ranking

Decay Time

Fig. 5: Adaptive streaming window based on shift.

The decay takes into account not only the time but also
the shift range of the data within the window. Shift range
represents the changes in data distribution over a period
of time, it imposes different requirements on the model’s
updates. Therefore, we defined disorder value order using the
following Equation 11 to assist in quantitatively calculating
the shift range. Here, τ represents the distance ranking at
the current moment. Figure 7 is a typical example, when the
disorder is low, the model may be in Pattern A1, whereas when
the disorder is high, the model may be in Pattern A2.

order(τ) = |{(i, j) : i < j and τi > τj}|. (11)

This reduces unnecessary computational and space over-
head. Data management in ASW adheres to the following two



principles:
1) When a new batch flows in, its shift distances from ex-

isting batches are calculated and ranked; and the smaller
the distance is, the less the decay rate is. Hence, by using
a sorting decay based on shift severity, the window can
align with the current data distribution more closely.

2) If the distance ranking shows a high disorder, the decay
rate will be increased, because data may be localized and
thus model update is not urgent. On the other hand, if the
disorder is low, the data may be experiencing a directional
shift, necessitating a faster update to be aligned with the
new data distribution.

As illustrated in Figure 5, different colored lines represent
decayed data at different time points. At time point 4, the data
exhibits the greatest shift from time point 2, while it shows
less shift from time points 3 and 1. This results in the most
significant decay of data from time point 2. In addition, when
focusing on data from time points 1 and 3, current data shifts
less from time point 1, which does not indicate a directed drift
but potentially indicates an localized one. A higher decay rate
in such cases can reduce unnecessary update overhead. The
specific calculation process is summarized in Algorithm 1.

Algorithm 1 Adaptive Streaming Window Processing

1: ASW: window with max batches and max items
2: procedure PROCESSING(batch now, window)
3: if window.batches ≥ max batches OR window.items
≥ max items then

4: Use window for updating
5: end if
6: shifts← []
7: for each batchi in window do
8: shift← SHIFTSEVERITY(batch now, batchi)
9: shifts.append(shift)

10: end for
11: sorted shifts← SORT(shifts)
12: order ← DISORDER(sorted shifts)
13: for each batchi in window do
14: decay rate← f(ranki, order)
15: DECAY(batch i, decay rate)
16: end for
17: end procedure

Distance-based adaptive ensemble: For model ensemble,
we further extend shift distance to model shift distance D
as Equations 12 and 13 below show. D represents the shift
between the existing model and the real-time data. Intuitively,
the smaller the value of D is, the higher the match between
the model and the current data is.

DShort = ∥ȳn − ȳn−1∥, (12)

DLong = ∥ȳn − ȳASW ∥. (13)

We can calculate the distance from the last batch for short-
time granularity models, while long-time granularity model
requires computing the distance from data in their ASW. Since

D represents the degree of match between the model and the
current data, we incorporate it as a weighting factor in model
ensemble with Gaussian kernel, as Equation 14 shows:

y =
K(DShort, σ) · yShort +K(DLong, σ) · yLong

K(DShort, σ) +K(DLong, σ)
. (14)

By default, FreewayML employs two models for constructing
multi-time granularity models. However, user can customize
the number of models without extra implementation effort.

FreewayML includes both short and long-time granularity
models, with the help of ASW. The time complexity of the
ASW is O(w logw), which includes calculating distances,
sorting the w batches of n data points with d dimensions
within the window, and decaying the data. The space com-
plexity of ASW is O(wnd) for storing w batches. As model
updates for different time granularities can be parallelized in
FreewayML, the time complexity of model update is similar
to traditional SML.

C. Details of coherent experience clustering

Unsupervised clustering may offer unexpected advantages
as they focus more on the features of the current data itself,
without requirement for prior training. Therefore, when a
sudden shift occurs, we replace the original model with K-
means clustering and output the corresponding clusters.

However, a challenge arises here: streaming clustering meth-
ods can only output unlabeled data as distinct clusters, and
there is no direct correspondence between clusters and labels.
Therefore, such clusters cannot be directly presented as results
to user.

However, streaming data inherently possesses continuity,
not only in terms of time but also in its distribution. Specif-
ically, it is impossible to perfectly segment different data
distributions with each batch. Therefore, when we detect a
sudden shift, this distribution often has already occurred at
the end of the previous batch. Based on this hypothesis, we
can use a small subset of labeled data that is closest to the
current batch to map clusters to labels, assuming that it shares
a similar distribution.
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Fig. 6: Example of coherent experience clustering.

For this sake, we introduce coherent experience clustering
(CEC) to map clusters to labels. Specifically, it includes the
most recent m labeled data points as additional guidance. We



cluster the current batch of data together with these m data
points and map the clusters to their most probable labels based
on the clustering results of the labeled data. As Figure 6 shows,
although the current data has been divided into three unlabeled
clusters A, B, and C, when we introduce some labeled data
(Ri, yi) the label information within each cluster can help map
the clusters to the labels.

CEC groups m data points with d dimensions from the
previous batch and n data points from the current batch into c
clusters (where c is the number of labels), with time complex-
ity of O((m+ n)cd). The corresponding space complexity is
O(md), as only m additional data points are stored.

D. Details of historical knowledge reuse

If historical knowledge can be preserved and effectively
reused when a previous distribution reoccurs, it can then
significantly enhance the accuracy of the model. However,
this still faces two challenges: (1) Which knowledge and when
should it be preserved? (2) Which historical knowledge should
we use when a distribution reoccurs?

1) Knowledge preservation: For knowledge preservation,
there are two main issues: (a) what to save and (b) when to
save. The solution to (a) is relatively straightforward. We can
construct a mapping relationship between data distributions
and model parameters. As a result, the knowledge i to be pre-
served is stored in the form of (di, ki), where di represents the
distribution and ki represents the reusable model information.

The solution to (b) is not so obvious and is worth discussing.
Clearly, it is impractical to preserve knowledge from all
moments, which would incur considerable space overhead
and computational cost during knowledge selection. Moreover,
not all models from each moment are effective enough and
therefore are worth preserving. Therefore, we aim to select and
preserve relatively stable models, (e.g., long-time granularity
models). However, the long-time granularity models some-
times miss distribution information of certain batches within
the ASW.

The disorder of a window is an effective indicator for
distinguishing different situations, because it reflects the shift
ranges in ASW. When disorder is high, as Figure 7 shows,
it indicates a high frequency of localized data. Under these
conditions, long-time granularity models tend to be more sta-
ble, whereas short-time granularity models are not necessarily
stable. Conversely, when disorder is low, it suggests that the
data stream may be undergoing an orderly directional shift
which means that the stabilized data distribution after the shift
is more valuable. In this scenario, while long-time granularity
models may lose some information, short-time granularity
models with information lacked are therefore worth preserving
as well.

Therefore, we set a threshold β for the disorder. At the end
of ASW i, if the disorder exceeds β, then the distribution of
ASW and the parameters of the long-time granularity model
are preserved in the form of (di, ki). On the other hand, if
the disorder is less than β, then the parameters of the short-
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Fig. 7: Streams with different disorders in ASW.

time granularity model and its data distribution at the current
moment are also saved.

Knowledge match: We have stored knowledge pairs in
the form of (di, ki), where di represents the distribution cor-
responding to the knowledge ki. Therefore, when severe shift
occurs, we calculate the shift between the current inference
data and the historical distributions, and we then select the di
with the smallest distance. This shift is then compared with
the shift distance between the current data and the last batch.
If the di is smaller, the knowledge ki is reused.

With h historical stable models, the storage complexity is
O(hs), where s represents the number of model parameters.
Regarding time complexity, identifying the nearest data distri-
bution is performed during the pattern detection phase, which
has a time complexity of O(k). Retrieving the corresponding
historical model from the key-value store is efficient, with a
time complexity of O(1) due to hashing.

V. IMPLEMENTATION

We implement FreewayML based on PyTorch. Our im-
plementation provides a simple interface for users to invoke
FreewayML, with the following template:

SML = Learner (Model = model, ModelNum = 2,

MiniBatch = 1024, KdgBuffer = 20, ExpBuffer

= 10, α = 1.96)

This interface is similar to that offered by existing Streaming
ML frameworks such as River and Flink ML. FreewayML
outputs various metrics after each epoch, such as training loss,
accuracy, and execution time.

A. Pipeline of FreewayML

Figure 8 illustrates the pipeline of FreewayML. FreewayML
makes no assumptions about data streams. It supports the input
of both inference and training data, with different modules
processing them accordingly. When FreewayML is deployed
and connected to real-time data, the data comes in a single
stream and is divided into inference and training streams based
on whether it is labeled.

When training stream flows in, multiple models are incre-
mentally updated according to their granularity. The model is
saved periodically based on the degree of shift disorder.

When inference stream flows in, the shift distance is calcu-
lated to determine the shift pattern. For slight shifts, the more
stable multi-time granularity models are used for prediction;
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Fig. 8: Pipeline of FreewayML.

for sudden shifts, coherent experience clustering is utilized;
and for reoccurring patterns, historical knowledge reuse is
employed.

It is important to note that, for the training stream, the updat-
ing of multi-time granularity model is always enabled, which
uses different granularities for incremental training. However,
for the inference stream, only one strategy is selected and
executed based on the shift pattern of the current batch. We
develop a strategy selector based on the pattern classifier
introduced in Section III.

1) Multi-time granularity models: The management of
window and synchronization of models can significantly im-
pact the performance and accuracy of multi-time granularity
models. We have developed an Adaptive Window operator
leveraging PyTorch’s DataLoader. This operator sorts incom-
ing batches by distance and computes disorder after each
batch, enabling automated decay. Once the window reaches a
specified number of batches or items, it triggers an update of
the long-time granularity model. FreewayML employs a multi-
process architecture with independently managed processes
and asynchronous updates, ensuring non-blocking inference
execution. By utilizing inter-process locks, it maintains update
atomicity, enhancing concurrency and reducing latency.

2) Coherent experience clustering: Additional data and
labels need to be stored for coherent experience clustering. In
FreewayML, we offer the ExpBuffer interface, which allows
users to customize the amount they wish to retain. FreewayML
systematically saves the data in memory w.r.t. batch order.
In addition, the expiration time is set to remove outdated
experiences.

3) Historical knowledge reuse: As historical knowledge
accumulates over time, FreewayML offers the KdgBuffer
interface to customize the maximum number of knowledge
maintained. When knowledge reaches the size, FreewayML
saves the first half to local storage and clears it from memory.

B. Optimization

Pre-computing window mechanism. To reduce the com-
putational latency of updating, we have designed a pre-
computing mechanism within the window. Our method in-
volves incrementally calculating the gradient for subsets of
data and accumulating them, rather than computing the gradi-
ent for the entire batch in the end. When using pre-computing,
we divide the original window data into n subsets, where the
gradient calculated from the ith subsets is denoted as ∇θi. For
model updating, it is only necessary to calculate the gradient
for the last subset and aggregate it with the previously com-
puted gradients. This method efficiently computes and stores
corresponding gradients while waiting for data, effectively
reducing processing latency.

Rate-aware Adjuster. Inference and training can compete
for resources, particularly during high-speed data streams. To
mitigate this, we have optimized the inference and training
frequencies as follows.

Inference frequency controller adaptively adjusts the infer-
ence frequency based on real-time data flow rate and window
pressure. When the data flow rate is low and the window
pressure is minimal, we increase the inference frequency to
quickly consume the pending data. Update frequency adjust-
ment increases the decay rate of the training window (adaptive
streaming window) when the data flow rate exceeds a certain
threshold. This reduces the frequency of model updates to
lower resource competition.

VI. EXPERIEMENTAL EVALUATION

We conduct extensive experiments to evaluate FreewayML.
We aim to answer the following questions:

(RQ1) How good is the accuracy and stability of Free-
wayML when compared with existing methods?

(RQ2) How does FreewayML perform with its three mech-
anisms based on the data distribution shift patterns?



TABLE I: Accuracy and stability of different streaming learning frameworks on six datasets.

Model Frameworks Hyperplane SEA Airlines Covertype NSL-KDD Electricity
Gacc SI Gacc SI Gacc SI Gacc SI Gacc SI Gacc SI

StreamingLR

Flink ML 81.51% 0.932 82.54% 0.926 62.17% 0.861 58.78% 0.843 80.72% 0.908 77.54% 0.894
Spark MLlib 81.74% 0.928 82.68% 0.929 62.30% 0.858 59.12% 0.850 80.98% 0.906 77.27% 0.892

Alink 83.25% 0.935 82.02% 0.924 63.08% 0.862 58.61% 0.838 82.04% 0.912 78.12% 0.898
FreewayML 88.69% 0.948 84.62% 0.935 65.12% 0.914 62.46% 0.892 86.52% 0.926 81.38% 0.915

StreamingMLP

River 81.14% 0.935 82.06% 0.928 62.28% 0.858 62.57% 0.882 81.43% 0.910 83.11% 0.906
Camel 84.82% 0.938 82.14% 0.929 64.37% 0.872 63.85% 0.894 82.21% 0.913 83.57% 0.906

A-GEM 84.60% 0.934 81.98% 0.917 64.54% 0.890 62.14% 0.891 82.38% 0.920 83.33% 0.902
FreewayML 88.47% 0.946 84.80% 0.930 66.70% 0.918 65.78% 0.905 87.10% 0.937 85.91% 0.921

(RQ3) What is the processing performance of FreewayML
compared with existing methods?

A. Datasets and baselines

We conducted our experiments on six datasets, which in-
clude two synthetic datasets, Hyperplane [55] and SEA [56],
as well as four real-world datasets Airlines [57], Cover-
Type [58], NSL-KDD [59], and Electricity [60]. These
datasets cover typical streaming learning scenarios in practical
applications such as network security, power scheduling, and
flight forecasting.

To validate the effectiveness of FreewayML, we conduct
comprehensive comparisons against a range of competitive
baselines, including Flink ML [15], Spark MLlib [14],
Alink [17], River [16], Camel [18] and A-GEM [51].

Given the ML models supported by existing work, we select
two models that are commonly support and are representatives
of linear and nonlinear ML models with batch size of 1024:
(1) Streaming Logistic Regression and (2) Streaming MLP.
For FreewayML, we set α = 1.96 for the sake of classifying
different shift patterns.

B. Metrics

Prequential evaluation is widely adopted when evaluating
streaming learning. In this paper, we employ two types of
accuracy: real-time accuracy (acc) introduced in Section III
and global average accuracy (G acc) as Equation 15 shows.
Both of them are widely used in streaming learning to eval-
uate the model’s real-time response/fluctuations and overall
performance. To measure accuracy fluctuations, we employ
a Stability Index (SI) derived from statistical theory. This
Stability Index (SI) is defined as the ratio of the standard
deviation of batch accuracies σacc, to the mean of the batch
accuracies µacc. For interpretability, we apply an exponential
scaling to normalize this value to a [0, 1] range, as shown in
Equation 16.

G acc =
1

m

m∑
j=1

(∑k
i=1 I(yji = ŷji)

k

)
(15)

SI = exp

(
−σacc

µacc

)
(16)

In our study, we also place significant emphasis on the
performance of FreewayML, in particular its throughput and
latency metrics when processing various data streams. At

the same time, we calculated the additional space overhead
resulting from the historical knowledge of FreewayML.

C. Accuracy and stability comparison

To answer RQ1, we evaluate the two models across the
six datasets. Table I summarizes the results, where the best-
performing methods have been highlighted.

We observe that FreewayML outperforms existing methods
in terms of both accuracy and stability across all six datasets.
When compared against Camel, one of the most robust base-
lines on top of the datasets evaluated, FreewayML achieves
an average relative improvement of 3.9% in accuracy. In
StreamingLR, our approach registers a relative improvement
of 5.8% over the widely utilized Flink ML.

In experiments conducted on top of the NSL-KDD dataset,
while existing methods have already demonstrated high accu-
racy, FreewayML still manages to achieve notable improve-
ments. Detailed analysis of the dataset reveals that the data
distribution shifts with the types of current network attacks,
often leading to significant class imbalances. Our method
significantly enhances the classification performance of the
minority classes, which, as a result, improves the overall
accuracy.

D. Effectiveness of mechanisms

To answer RQ2, we investigate the effectiveness of our
proposed mechanisms across the three data distribution shift
patterns. To evaluate the improvements brought by Free-
wayML, we list the improvement in accuracy of each shift
pattern compared with original Streaming MLP, as shown in
Table II. This underscores the effectiveness of our mecha-
nisms. For most of the time, data streams meet slight shifts,
and multi-time granularity models enhance stability. The co-
herent experience clustering and historical knowledge reuse
mechanisms improve accuracy in specific data scenarios and
mitigate potential severe issues.

TABLE II: Accuracy improvement compared with original
Streaming MLP under 3 patterns.

Dataset Slight Shifts Sudden Shifts Reoccurring Shifts
Hyperplane 5.7% 34.1% 59.3%

SEA 2.1% 10.5% 57.8%
Airlines 3.8% 8.6% 17.7%

Covertype 2.6% 11.7% 16.8%
NSL-KDD 4.4% 28.5% 41.0%
Electricity 2.3% 5.1% 18.9%
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Fig. 9: Comparative accuracy(%) analysis of FreewayML mechanisms under distribution shift patterns.
To further visually analyze the effectiveness of the Free-

wayML, we selected four real datasets, each characterized by
distinct shift patterns, to compare the accuracy of FreewayML
with Streaming MLP without the optimization mechanism. As
shown in Figure 9, the dashed line represents the baseline
version of the Streaming MLP, and the three solid lines
with different colors represent the corresponding optimiza-
tion mechanisms. Among them, multi-time granularity models
enhance overall stability and accuracy for the majority of
instances, while coherent experience clustering and historical
knowledge reuse also exhibit significant improvements of
accuracy in the presence of sudden shifts and reoccurring
shifts. This demonstrates that, based on the three effective
mechanisms, our strategy selector can accurately identify shift
patterns and apply the appropriate mechanisms.

When compared with existing methods, as shown in Fig-
ure 11, FreewayML shows improvements across all three
patterns, in particular under sudden shifts and reoccurring
shifts. This demonstrates that our three mechanisms indeed
perform well across the distribution shift patterns.

E. Performance comparison

To answer RQ3, we need to compare the performance
of FreewayML with existing methods. From a performance
perspective, our primary concerns with streaming learning
frameworks are throughput and latency metrics. In addition,
FreewayML’s historical knowledge requires storing informa-
tion, and we also focus on the extra space overhead.

To evaluate throughput and latency, we employ the same
model to first infer and then train on the simulated dataset,
Hyperplane. The most critical performance-relevant parame-
ter identified is the batch size. Consequently, we investigate
how performance varies with different batch sizes.

Regarding throughput, we vary the batch size from 256 to
2,048 Figure 10 shows. For LR models, it is evident that Free-
wayML substantially outperforms other frameworks. Notably,
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Fig. 10: Throughput of FreewayML compared to existing
methods.

the throughput of FreewayML exceeds that of Flink ML by
more than 1.4× with batch size 2,048, highlighting its superior
efficiency in processing data streams. For Streaming MLP, on
the other hand, FreewayML demonstrates a clear performance
advantage over Camel, which is based on data selection,
and A-GEM, which is based on constrained learning. This
superior performance is attributed to our design of adaptive
streaming window and disorder-based knowledge preservation,
which take performance overhead into account. Finally, the
throughput of FreewayML is comparable to the basic stream-
ing learning framework River, though the prediction accuracy
of FreewayML is significantly higher, as Table I shows.

Regarding latency, we divide the computing tasks into
inference and update phases, which are characterized by
distinct computational complexities and communication costs.
We further categorize the models into Streaming Logistic
Regression and Streaming MLP, as detailed in Table III. The
batch size is set to ranging from 512 to 4,096, as smaller
batch size typically yields lower inference latency, which
is challenging to measure accurately due to fluctuations in
network communication speed.

We observe that FreewayML achieves the lowest inference
latency of only 390 µs when using linear model with a
batch size of 512. For nonlinear model, FreewayML provides
quicker feedback compared to Camel and A-GEM, with
prediction latency comparable to that of River. Notably, with
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Fig. 11: Accuracy(%) of FreewayML compared to existing methods.

a batch size of 4,096, the prediction latency of FreewayML
is nearly equal to that of River, which indicates that Free-
wayML retains efficiency even under increased computational
demands.

TABLE III: Latency(µs) of FreewayML compared to existing
methods with various batch sizes.

Size of batch 512 1024 2048 4096

LRupdate

Flink ML 4500 8350 15960 31340
Spark MLlib 5320 10230 20060 39610

Alink 4800 8540 16100 31500
FreewayML 3460 6460 11880 22530

MLPupdate

River 5110 8690 16500 31780
Camel 6040 10580 19600 37640

A-GEM 6360 10910 21190 42270
FreewayML 5210 9010 16540 31850

LRinfer

Flink ML 510 920 1780 3470
Spark MLlib 590 1140 2230 4410

Alink 530 950 1800 3510
FreewayML 390 720 1320 2500

MLPinfer

River 2560 4320 8170 15780
Camel 3030 5290 9890 18900

A-GEM 3180 5440 10550 20640
FreewayML 2610 4510 8290 15920

In addition to this, FreewayML saves valuable historical
knowledge to improve accuracy when facing reoccurring
shifts. However, this also incurs additional space overhead,
which is closely related to the number of number of saved
knowledge k. Therefore, we tested the space occupied by
historical knowledge when k ranges from 1 to 100, as shown
in Table IV below. Overall, since the structure of streaming
learning models is relatively simple, even when k reaches 100,
the space occupied remains less than 2 MB. Given the rapid
data and the accuracy improvements provided, we consider
this overhead to be acceptable.

F. Limitations of FreewayML

Although experimental results indicate that coherent expe-
rience clustering effectively improves model accuracy under

TABLE IV: Space Overhead of Historical Knowledge for
Different k

k
Space Overhead(KB)

LR MLP
1 1.3 8.4
5 7.4 49.6

10 15.4 110.9
40 70.2 490.6
100 196.3 1360.8

sudden shifts, in some scenarios shown in Figure 9, the
increase in accuracy does not maintain the same high level
as before the shift. This is due to the increased challenges
faced by unsupervised clustering algorithms following a large
shift, as the data distribution itself becomes more uncertain.
As future work, we plan to further optimize FreewayML by
improving data quality and using data segmentation to enhance
accuracy under sudden shifts.

VII. CONCLUSION

In this paper, we studied the problem of robust streaming
learning in the presence of dynamic data change. We con-
ducted an empirical study that highlights three data distribution
shift patterns, namely, (1) slight shift, (2) sudden shift, and
(3) reoccurring shift, which occur throughout the lifecycle of
a data stream. We further developed FreewayML, an adaptive
and stable streaming learning framework based on optimiza-
tion mechanisms designed for the distribution shift patterns,
namely, (1) multi-time granularity models, (2) coherent ex-
perience clustering, and (3) historical knowledge reuse. Our
experimental evaluation results on top of synthetic and real-
world datasets demonstrate the effectiveness of FreewayML.
Compared to existing SML systems, FreewayML achieves
much higher prediction accuracy while maintaining similar
or better throughput and latency. As future work, we plan
to optimize the scalability of FreewayML and enhance its
performance in distributed computing environments.
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APPENDIX

A. Details of baseline

To validate the effectiveness of FreewayML, we conduct
comprehensive comparisons against a range of competitive
baselines, including Flink ML [15], Spark MLlib [14],
Alink [17], River [16], Camel [18] and A-GEM [51]

• Flink ML [15], which is built on top of Apache Flink,
enables efficient data stream processing and enhances
accuracy through its watermark mechanism.

• Spark MLlib [14] processes streaming data through
mini-batch windows and incrementally updates ML mod-
els based on average gradients.

• Alink [17] integrates FOBOS and RDA with logistic
regression to enhance model stability when dealing with
real-time data streams.

• River [16] is an efficient streaming learning framework
which provides drift detectors and model integrators to
combat potential changes in data distribution.

• Camel [18] provides effective data selection to reduce
model training cost and increase data quality.

• A-GEM [51] constrains gradient update direction to
avoid interference with previous data buffered.

B. More experiments on CNN models

To validate the effectiveness of our proposed method in
the field of multimedia data, we additionally introduced CNN
models for relevant experiments. To ensure the consistency of
the experiment, we still first used the six benchmark datasets
used in the above experiment. Furthermore, we additionally
tested the performance of CNN on the image dataset.

For our 6 benchmark datasets, we constructed a three layer
CNN architecture, including a convolutional layer with 32
convolutional kernels of size 3, a max pooling layer with a
window size of 2, and a fully connected layer for classification.

For the image datasets, we follow the methodologies from
existing work [34], utilizing the ImageNet-Subset and Flowers
datasets and transforming them into image streams. These
datasets involve tasks such as identifying types of animals
and flowers. We constructed a five-layer CNN architecture,
comprising two convolutional layers with 64 3x3 kernels, two
2x2 max pooling layers, and a fully connected layer for classi-
fication. Since image exhibits different feature representations
from value-based data, we introduced a VGG-16 to extract

features from the original images before performing coherent
experience clustering.

First, we continue to use a fixed window size to evaluate
the accuracy and stability of eight datasets through prequential
evaluation, as shown in Table V below. It can be observed
that compared to StreamingCNN without our mechanism-
s/strategies, FreewayML demonstrates superior accuracy and
stability across all eight datasets. For benchmark datasets, the
global average accuracy G acc improves by an average of
approximately 5.1 points. For image datasets, the results show
that the global average accuracy improves by an average of
approximately 4.3 points.

Furthermore, to observe the accuracy improvement of dif-
ferent strategies in FreewayML, we visualize the real-time
accuracy (acc) of FreewayML on four real datasets and two
image datasets. As shown in Figure 12, the dashed line repre-
sents the baseline, i.e., StreamingCNN. The three solid lines
with different colors represent the corresponding FreewayML’s
strategies. We can see that the three strategies are effective to
improve the baseline accuracy.

TABLE V: Accuracy comparison of StreamingCNN and Free-
wayML on different datasets.

Dataset StreamingCNN FreewayML
G acc SI G acc SI

Hyperplane 80.23% 0.928 87.18% 0.941
SEA 78.69% 0.915 83.24% 0.930

Airlines 59.25% 0.853 65.13% 0.916
Covertype 65.20% 0.895 67.24% 0.924
NSL-KDD 76.42% 0.882 84.10% 0.925
Electricity 80.14% 0.902 83.71% 0.917
Animals 86.60% 0.924 90.08% 0.935
Flowers 81.55% 0.911 86.57% 0.932

To evaluate the overhead of CNN under FreewayML’s
mechanisms. We used the same network structure and different
batch sizes to perform inference and training on the Hyper-
plane dataset as Table VI shows. The overhead introduced by
the optimization mechanism is less than 5%.

TABLE VI: Latency (µs) of CNN updates and inferences
compared to FreewayML with various batch sizes.

Size of batch 512 1024 2048 4096

CNNinfer
StreamingCNN 3070 5370 10040 19690

FreewayML 3220 5610 10380 20150

CNNupdate
StreamingCNN 6560 11550 21710 42970

FreewayML 6890 11970 22250 43670
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Fig. 12: Comparative accuracy (%) analysis of CNN with FreewayML mechanisms under distribution shift patterns.


