Understanding and Detecting Query Performance Regression
in Practical Index Tuning: [Experiments & Analysis]

WENTAO WU, Microsoft Research, USA
ANSHUMAN DUTT, Microsoft Research, USA
GAOXIANG XU, Microsoft Research, USA

VIVEK NARASAYYA, Microsoft Research, USA
SURAJIT CHAUDHURI, Microsoft Research, USA

Existing index tuners typically rely on the “what if” API provided by the query optimizer to estimate the
execution cost of a query on top of an index configuration. Such cost estimates can be inaccurate and
may therefore lead to significant query performance regression (QPR) once the recommended indexes are
materialized. This becomes a serious problem for cloud database providers, such as Microsoft’s Azure SQL
Database, that offer index tuning as an automated service (a.k.a. “auto-indexing”). Previous work has explored
use of supervised machine learning (ML) to reduce the likelihood of QPR. However, the trained ML models have
limited generalization capability when applied to new databases and workloads. We propose an alternative
approach where we analyze the query plan pairs with significant QPRs and look for structural changes due to
the new index configuration that could explain the QPR. We perform such study for index tuning data across
many benchmark and real-world database workloads, for multiple realistic index tuning scenarios. Our study
reveals that most of the significant QPRs can be attributed to a small number of common “regression patterns”
characterizing the structural plan changes, and we further propose a pattern-based QPR detector accordingly.
Our experimental evaluation shows that the pattern-based QPR detector can significantly outperform existing
ML-based QPR detectors.

CCS Concepts: « Information systems — Query optimization; Autonomous database administration.
Additional Key Words and Phrases: Index tuning, Query performance regression, Pattern-based detection

ACM Reference Format:

Wentao Wu, Anshuman Dutt, Gaoxiang Xu, Vivek Narasayya, and Surajit Chaudhuri. 2025. Understanding
and Detecting Query Performance Regression in Practical Index Tuning: [Experiments & Analysis]. Proc. ACM
Manag. Data 3, 6 (SIGMOD), Article 374 (December 2025), 26 pages. https://doi.org/10.1145/3769839

1 Introduction

Index tuning is critical to accelerating query execution in modern database systems. Existing index
tuners typically rely on the “what-if” API provided by the query optimizer [5, 6, 46], as illustrated in
Figure 1, that allows for estimating the execution cost of a query given a configuration (i.e., a set) of
proposed hypothetical indexes, as well as their associated statistics, without actually materializing
the indexes. However, what-if cost estimation is still based on query optimizer’s cost model, which
can be inaccurate for reasons such as cardinality estimation (CE) errors and may therefore lead to
significant query performance regression (QPR) when the recommended indexes are eventually

Authors’ Contact Information: Wentao Wu, Microsoft Research, Redmond, USA, wentao.wu@microsoft.com; Anshuman
Dutt, Microsoft Research, Redmond, USA, andut@microsoft.com; Gaoxiang Xu, Microsoft Research, Redmond, USA,
gxu@microsoft.com; Vivek Narasayya, Microsoft Research, Redmond, USA, viveknar@microsoft.com; Surajit Chaudhuri,
Microsoft Research, Redmond, USA, surajitc@microsoft.com.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/12-ART374

https://doi.org/10.1145/3769839

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

https://doi.org/10.1145/3769839
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3769839

(q,€% h

Index —— What-If Query
D ——— 8 f
Tuner Pa(q,C), API Optlmlzer/

cost(P%)

¢

v’ No QPR
P(q, Cl;)' QPR ————————> | Database
cost(P?) Detection Materialize C Server

Fig. 1. The architecture of cost-based index tuning with what-if query optimizer calls and QPR detection.
[Notation: ¢, a SQL query; CP, the existing index configuration (i.e., “before configuration”); C?, the index
configuration recommended by the index tuner (i.e., “after configuration”); P, the “before plan” of ¢ on top
of C?; P2, the “after plan” of ¢ on top of C%.]

deployed [7, 59]. That is, the execution of a query becomes much slower by using the recommended
indexes. QPR has been a serious problem for cloud database providers that offer index tuning as an
automated service (a.k.a. “auto-indexing”). As was reported by [7], around 11% of the indexes that
were created by the auto-indexing service offered by Microsoft’s Azure SQL Database [29] had to
be reverted due to QPR. Therefore, detecting QPR before materializing the recommended indexes
can help significantly reduce the operational cost of cloud auto-indexing service.

We aim to develop a low-overhead technique for QPR detection. Specifically, consider a query ¢
and the existing configuration, i.e., “before configuration”, C?, for which the index tuner proposes a
new configuration, i.e., “after configuration”, C?. Even before deploying C%, we can make a what-if
call (g, C?) to the query optimizer that returns the query plan of g for the “after configuration” C¢,
as shown in Figure 1. We call this query plan the “after plan” and denote it with P?, to distinguish
it from the “before plan” P’ of ¢ on top of the existing configuration C? that the index tuner aims
to improve over. The goal of QPR detection is to decide whether the execution time of P¢ will be
significantly higher than that of P? without executing P%, though the execution information of P?
is presumed available. If no QPR is detected, the configuration C* can then be materialized for
accelerating the execution of q. There has been recent work on QPR detection and reduction in the
context of index tuning [10, 40, 52, 60]. Most of this work applies supervised machine learning (ML)
to build classification or regression models to predict/detect QPR. However, ML-based QPR detectors
often exhibit poor generalization capability when evaluated on new databases and workloads that
are not included in the training data, notwithstanding their nontrivial overhead.

In this paper we propose an alternative approach where we analyze the query plan pairs with
significant QPRs and look for structural changes due to the new index configuration that could
explain the QPR. We perform such study for index tuning data collected offline across many
benchmark and real-world database workloads. Our study reveals that most of the significant
QPRs can be attributed to a small number of common “regression patterns” characterizing the
structural plan changes, and we further propose a pattern-based QPR detector accordingly. Our
experimental evaluation shows that the pattern-based QPR detector can significantly outperform
existing ML-based QPR detectors.

Collection of Index Tuning Data. In the classical sense, index tuner tunes a given query/workload
by recommending a configuration including all indexes that can improve the execution perfor-
mance at once. We use the term one-shot tuning to represent this classic index tuning scenario
that has been studied extensively in the literature, e.g., [4, 5, 46, 51]. However, in modern cloud
database services, such as Microsoft’s Azure SQL Database [29], indexes need to be optimized
in a continuous manner [7] to adapt to evolving workloads and manage storage constraints. We
therefore also collect data from two more scenarios that represent real-world index tuning ap-
plications: (1) incremental tuning, which constrains the index tuner in terms of the number of

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

indexes it should return and performs tuning in an incremental manner until no more indexes
can be recommended; and (2) evolutionary tuning, which simulates index evolution (e.g., deletion
of existing indexes or introduction of new indexes) from a well-tuned database for reasons such
as storage constraints. These two scenarios aim at capturing more QPRs that could emerge from
such dynamic environments as in cloud auto-indexing services. We collect 1.2 million data points
following these tuning setups, where each data point represents a pair of “before plan” P? and
“after plan” P?. As expected, index recommendations are beneficial for a large number of plan pairs,
and we highlight representative examples of such benefits in the full version of the paper [55].
However, this paper focuses primarily on the regressed cases (QPRs).

Analysis of QPRs. We then analyze the QPRs that appear in the collected index tuning data to
understand their root causes. Surprisingly, we find that most of the QPRs can be attributed to a small
set of regression patterns that are simple and easy to understand. A regression pattern characterizes
some “local” change or transformation in terms of query plan structure. For example, the regressed
“after plan" misses the pushdown of an aggregation (ref. Figure 4) or a bitmap filter (ref. Figure 5)
that is performance critical. We further develop a taxonomy that categorizes regression patterns
into two general categories: (c1) QPRs due to problematic change of access path between P? and P¢,
and (c2) QPRs due to critical optimizations that were present in P? but missing in P%. The simplicity
of the identified QPR patterns is a strength that makes it easier to design simple (and therefore
computationally more efficient) but effective pattern-based QPR detectors. The fact that there are
only a handful of major QPR patterns also makes the overall task of pattern-based QPR detection
addressable and manageable. More importantly, we observe that most of the significant QPRs can
be accounted for by regression patterns from the category (c1) where the regressed “after plan” P*
contains an “expensive” nested-loop join (NLJ) operator that does not appear in the “before plan” P
(ref. Figure 2). The emergence of such expensive NLJ is typically due to cardinality underestimation
errors made by the query optimizer [22]: the availability of the new indexes inadvertently makes the
NLJ look attractive to the query optimizer in terms of estimated cost. Although better cardinality
estimation could improve query plan quality and therefore reduce the chance of QPR, the problem of
accurate cardinality estimation has not yet been settled despite decades of research efforts (see [48]).
State-of-the-art ML-based cardinality estimators [48] could improve cardinality estimation but with
no guarantee on the accuracy. Moreover, they also incur nontrivial overhead of data collection
and model training [48]. Therefore, while it may be an interesting direction for future work, we
deliberately avoid using these ML-based cardinality estimators and make progress in QPR detection
through an approach that can work with existing erroneous cardinality estimates.

Pattern-based QPR Detector. Motivated by the above observations, we develop a pattern-based
QPR detector to identify the “expensive NLJ” regression patterns before the “after plan” P* is
executed. This remains a challenging problem, as we need to precisely characterize such regression
patterns to distinguish harmful NL]Js from those that are indeed beneficial. In particular, we need
to estimate (1) the expensiveness of an NLJ without executing P* and (2) the degree of cardinality
underestimation errors rooted in the expensive NLJ, which are the primary culprit for QPR. To
address (1), we develop two metrics, local expensiveness and global expensiveness. To address (2),
we leverage true cardinality information contained by the “before plan” P?, which is presumably
available in the context of QPR detection for index tuning. Specifically, we develop a metric, cost
inflation factors, to quantify the degree of cardinality underestimation errors of the left/outer and
right/inner inputs of the NL]J. We then use the cost inflation factors to recost the NLJ as well as
the entire plan [12, 54, 56]. We further try to match the logically equivalent join in P?, and if we
find such a join we recost it as well. Finally, we recompute the plan costs based on the recosted
joins and infer QPRs based on the new costs. Albeit a relatively simple approach, our experimental

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

evaluation shows that it can significantly outperform existing ML-based QPR detectors, which
currently do not use the true cardinality information of the “before plan” P?. It is non-trivial to
extend existing ML model designs to include this information, which might be interesting future
work. Our evaluation shows that, even without the use of sophisticated ML-based cardinality
estimators, our low-overhead approach based on cost inflation factors can already detect most
QPRs successfully (Section 5). ML-based cardinality estimators would further improve the results
reported in this paper if their overheads could be reduced.

Contributions, Limitations, and Future Work. In summary, the contributions of this paper are:

(C1) We conduct an empirical QPR analysis using large amount of data collected from practical
index tuning scenarios (Sections 2). To the best of our knowledge, we are not aware of any previous
work on systematically understanding QPRs based on large-scale data generated by following real
industrial index tuning applications.

(C2) We find that most of the QPRs can be attributed to a small set of regression patterns char-
acterizing the structural changes between the “before plan” and the “after plan”, and we further
present a taxonomy of the regression patterns (Section 3).

(C3) We develop a pattern-based QPR detector based on the observation that the majority of the
significant QPRs found in our data can be attributed to the emergence of expensive NLTs in the “after
plan” (Section 4), and our experimental evaluation results demonstrate that the pattern-based QPR
detector can significantly outperform state-of-the-art ML-based QPR detectors (Section 5).

While the list of regression patterns presented in this paper is based on the large-scale index
tuning data we collected, it is by no means an exhaustive list—we do not rule out emergence of
new regression patterns given new databases and workloads. Also, a case-by-case approach may
be required to apply each specific regression pattern to practical QPR detection. For instance, if
aggregation or bitmap filter pushdown appears to be the major regression pattern on a particular
database workload, then one may want to design a QPR detector that focuses on finding such missed
pushdowns. In this spirit, the pattern-based QPR detector developed in this paper that focuses
on detecting expensive NLJs serves as such an example. Moreover, the regression patterns also
provide useful clues for correcting the corresponding QPRs. For example, with the notation used in
Figure 1, if an index I € C is the culprit of introducing a slow nested-loop join in P? that results in
a QPR of P? over P?, then one may hint the query optimizer [33] to not use the problematic index
I. Exploration of such more advanced “QPR correction” mechanisms (beyond the naive mechanism
of reverting all recommended indexes upon QPR [7]) is beyond the scope of this paper, which can
be fertile ground for future research.

Availability. Some of the artifacts, e.g., QPR details of the public benchmark workloads used in
our study and experimental evaluation, are available at [55].

2 Index Tuning Data Generation

Let A be an index tuner, D be a database, and W be a (multi-query) workload. Let Cy be the
initial configuration of the database D. Unlike most of the previous work that mainly concerns with
indexes, the term “configuration” in this paper refers to both indexes and statistics. This is motivated
by the observation that some index tuners, such as the Database Tuning Advisor (DTA) developed
for Microsoft SQL Server [4], recommend both indexes and statistics with the contract that the
estimated benefits of the recommended indexes are based on creating the recommended statistics
simultaneously. Moreover, some database systems, such as Microsoft SQL Server, automatically
update the corresponding statistics when an index is created [30]. As a result, indexes and statistics
are indispensable counterparts in practical index tuning applications.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

[Name [DB Size [# Queries [# Tables [# Joins [# Scans

TPC-H sf=10 22 8 2.8 3.7
DSB sf=10 67 24 7.7 8.8
JOB 9.2GB 108 21 7.9 2.5
STATS 223MB 91 8 33 4.3
Real-DY 587GB 29 7912 15.6 17
Real-LO 108GB 31 1151 8.1 8.9
Real-MS$S 26GB 39 474 20.2 21.7
Real-RE 100GB 21 20 6.5 7.2
Real-DW 13GB 107 20 6.3 6.9
Real-ED 210GB 36 23 8.8 8.2
Real-MP 2.9GB 127 8 1.6 2.9
Real-SE 256GB 19 3391 5.9 6.9
Real-RM 60GB 15 7 1.9 2.9
Real-SA 40GB 12 32 7.3 9.7

Table 1. Summary of database and workload properties.

Workload | #Queries | #OneShot | #Inc. #Evol.
TPC-H 22 22 49 1,156
DSB 65 67 191 543,198
JOB 108 108 199 189,320
STATS 91 91 184 38,773
Real-DY 29 29 140 143,255
Real-LO 31 31 42 12,779
Real-MS$S 39 39 47 199,415
Real-RE 21 21 44 2,704
Real-DW 107 107 37 17,916
Real-ED 36 36 12 875
Real-MP 127 127 12 9,583
Real-SE 19 19 17 9,224
Real-RM 15 15 6 55
Real-SA 12 12 8 6
Total 724 724 988 | 1,168,259

Table 2. Summary of the index tuning data collected.

2.1 Index Tuning Scenarios

We focus on the following setups that emerge from practical index tuning scenarios for collecting in-
dex tuning data. Each data point collected represents a pair of “before plan” and “after plan” returned
by the query optimizer on top of the existing configuration and the recommended configuration.
2.1.1 One-shot Index Tuning. For each query q € W, we run the index tuner A to tune the query
q on top of the initial configuration Cy. Let C be the configuration returned by A after tuning.
Moreover, let the two query plans of g on top of Cy and C be Py and P, respectively. We run q on top
of both Cy and C to record the execution time t, and ¢ of the two plans Py and P. We generate one
pair of plans for the query g, which is denoted as (g, Py, P, ty, t). A formal algorithmic description of
one-shot tuning is given in the full version of this paper [55]. One-shot tuning represents the classic
offline index tuning setup that has been studied intensively in the literature, e.g., [4, 5, 46, 51].

2.1.2 Incremental Index Tuning. For each query g € W, we run the index tuner A to tune the
query q in an iterative manner. In each iteration, the index tuner A is constrained to return only
one index based on the current configuration. This new index, if any, is then materialized and
included into the “current configuration” of the next iteration. The iterative tuning process ends
when A returns nothing. Let C; be the configuration returned in the i-th iteration by the index
tuner, and let P; be the plan of g on top of C; and #; be the recorded execution time of P;. We
generate one pair of plans (P;_1, P;) for the query q in each iteration i = 1,2, ..., which is denoted as

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Workload | #All | #QPR | %QPR | T(P?) [T(P%) | %Impr

TPC-H 22 1 4.55% 0.04h 0.01h 85.33%
DSB 67 2 2.99% 0.05h 0.02h | 63.49%
JOB 108 14 | 12.96% 0.33h 0.22h 33.04%
STATS 91 3 3.30% 0.23h 0.24h -5.95%
Real-DY 29 4 | 13.79% 0.58h 0.62h -5.82%
Real-LO 31 3 9.68% 0.03h 0.02h | 36.13%
Real-MS$S 39 1 2.56% 0.0%h 0.05h 44.26%
Real-RE 21 4 | 19.05% 0.23h 0.27h | -17.35%
Real-DW 107 4 3.74% 0.32h 0.31h 3.14%
Real-ED 36 0 0.00% 2.43h 0.2%h | 88.12%
Real-MP 127 10 7.87% 0.42h 0.41h 2.38%
Real-SE 19 0 0.00% 0.00h 0.00h | 80.28%
Real-RM 15 0 0.00% 0.47h 0.23h 50.58%
Real-SA 12 0 0.00% 0.22h 0.1%h 13.41%
Total 724 46 | 6.35% 5.44h | 2.88h | 47.16%
Table 3. QPRs emerging in one-shot index tuning. [#All, the total number of plan pairs; #QPR, the number

of plan pairs with QPRs; %QPR, the percentage of QPR, defined as % X 100%; T(P?), the total execution

time of all “before plan” P?; T(P?), the total execution time of all “after plan” P% %Impr, the percentage

T(P%)
T(Pb)) x 100%.]

(g, Pi—1, Pj, ti—1, t;). A formal algorithmic description of incremental tuning can be found in the full
version [55]. Incremental tuning is useful when index tuning has to be done concurrently while
the database server is also processing queries, to reduce the inference or interruption of normal
query processing [7].

improvement defined as (1 -

2.1.3 Evolutionary Index Tuning. For each query q € W, we run the index tuner A to tune the
query g on top of the initial configuration Cy. We then materialize the configuration C returned by
A. For each subset S of C, we obtain the query plan of q on top of S and record its execution time.
We include a pair of plans (g, Py, Py, t1, t;) for two different subsets S; and S; of C by ensuring that
the query optimizer’s estimated cost of P? is no less than that of P, where t, and t, are the execution
time of P? and P?, respectively. See [55] for a formal algorithmic description of evolutionary tuning.
The evolutionary index tuning setup is motivated by a common scenario that we have seen in
practice: index evolution from a well-tuned database. Index evolution includes dropping indexes
and creating new indexes, due to reasons such as changes on storage constraints. Index evolution,
e.g., deletion of existing indexes, may result in QPR, and evolutionary index tuning simulates
all possible outcomes of index evolution. Note that we have intentionally enforced (optimizer
estimated) cost(P;) > cost(P;); otherwise, a reasonable index tuner would not even recommend
the configuration corresponding to P®. A similar setup was used in [10] to generate training data
for ML-based QPR detectors, though the constraint cost(P;) > cost(P;) was not forced.
2.1.4 Discussion. We focused on single-query tuning in our empirical study to avoid complexity
that can emerge when tuning a multi-query workload, which is a more common scenario in practice.
However, it typically requires placing more constraints on the recommended indexes, such as the
maximum number of indexes allowed or the maximum storage space that can be taken. These
extra constraints can significantly increase the exploration space of a controlled empirical study.
Our single-query tuning setups can be thought of as tuning a multi-query workload without such
constraints. As a result, it actually has higher coverage in terms of the identified regression patterns
(see Section 3), some of which may not appear or appear less frequently when tuning a multi-query
workload with constraints. Index interaction has also been covered by single-query tuning, since
the index tuning algorithm (e.g., a classic two-phase greedy search algorithm that is implemented
inside DTA [4]) used for enumerating index configurations works in the same way of tuning a
multi-query workload.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Workload | #All | #QPR | %QPR | T(P?) | T(P%) %Impr
TPC-H 49 5 10.20% 0.33h 0.30h 7.96%
DSB 191 18 9.42% 0.11h 0.07h 29.97%
JOB 199 28 14.07% 0.61h 0.47h 21.81%
STATS 184 9 4.89% 0.10h 0.11h -12.81%
Real-DY 140 20 14.29% 8.73h 13.32h -52.53%
Real-LO 42 3 7.14% 0.04h 0.02h 33.19%
Real-MS 47 5 10.64% 0.0%h 0.06h 34.91%
Real-RE 44 7 15.91% 0.31h 0.27h 14.34%
Real-DW 37 3 8.11% 0.25h 0.21h 13.68%
Real-ED 12 0 0.00% 0.20h 0.02h 90.51%
Real-MP 12 2 16.67% 0.01h 0.01h -56.32%
Real-SE 17 0 0.00% 0.00h 0.00h 38.75%
Real-RM 6 1 16.67% 0.23h 0.13h 42.43%
Real-SA 8 0 0.00% 0.12h 0.08h 31.73%
Total 988 101 | 10.22% | 11.12h | 15.10h | -35.77%

Table 4. QPRs emerging in incremental index tuning.
2.2 Results of Index Tuning Data Collected

We use standard benchmarks as well as real customer workloads in our experiments. For benchmark
workloads, we use (1) a skewed version [32] of the TPC-H benchmark, (2) DSB [9], a variant of
the TPC-DS benchmark with more variety on the data distribution, (3) the “Join Order Bench-
mark” (JOB) [23], and (4) the “Cardinality Estimation Benchmark” (STATS) [14]. We also use 10
real workloads. Table 1 summarizes some basic properties of the workloads, in terms of schema
complexity (e.g., the number of tables), query complexity (e.g., the average number of joins and
table scans contained by a query), and database/workload size. We use Microsoft SQL Server 2022
as the DBMS and use DTA as the index tuner.

Table 2 presents the statistics of the index tuning data collected. We have the same number of
plan pairs as that of queries in one-shot tuning, whereas the number of plan pairs in incremental
tuning increases by 36.5%. On the other hand, the number of plan pairs obtained from evolutionary
tuning is significantly large, due to the exponential explosion of subset enumeration.

2.3 Distributions of QPR

We use the notation (g, P?, P4, t?, t%) to denote a general plan pair in the index tuning data collected,
regardless of the specific index tuning scenarios, where P? and P? represent the “before plan” and
“after plan” as defined in Figure 1, and t” and t* represent the execution time of P® and P%.

A plan pair (g, pb pa b t?) is classified as a QPR if ;—Z — 1 > 7, where 7 is a regression threshold
that measures the degree of QPR. We set 7 = 0.5 in our analysis, i.e., the elapsed query execution
time of P? is at least 50% longer than that of P.

Tables 3 and 4 present the distributions of QPRs emerging in one-shot and incremental index
tuning, where we see around 6.3% and 10.2% QPRs repectively. While this may seem to suggest that
the chance of QPR is relatively low in practice, it does not mean that such QPRs are insignificant. To
the contrary, some QPRs can be considerable. To demonstrate this, Tables 3 and 4 further present
the total execution time T(P?) and T(P?) of P and P for all plan pairs (P?, P%) in each workload as
well as the percentage improvement at workload level. A negative improvement means a workload-
level regression. We observe significant slowdown of the execution on certain workloads albeit a
small QPR rate. For example, for incremental tuning on Real-DY, although the percentage of QPR
is only around 15%, the total workload execution time is increased from 8 hours to 13.3 hours, i.e.,
a 52% regression.

Table 5 further presents the distribution of QPRs emerging in evolutionary index tuning. We
observe around 7.4% QPR overall, which is in line with the QPR rates observed from one-shot

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Workload #All | #QPR | %QPR | T(P?) | T(P%) | %Impr
TPC-H 1,156 36 3.11% 3.32h 1.06h 68.22%
DSB 543,198 13,784 2.54% 406h 28%h 28.98%
JOB 189,320 55,155 | 29.13% 188h 344h | -83.12%
STATS 38,773 2,743 7.07% | 85.73h | 87.12h -1.62%
Real-DY 143,255 649 0.45% 5562h 3230h 41.93%
Real-LO 12,779 1,429 | 11.18% | 71.15h | 18.57h 73.91%
Real-MS 199,415 9,592 4.81% 594h 273h 53.92%
Real-RE 2,704 0 0.00% 176h 171h 2.60%
Real-DW 17,916 2,348 | 13.11% 113h 107h 5.14%
Real-ED 875 20 2.29% | 40.61h | 18.31h 54.90%
Real-MP 9,583 945 9.86% 12.29h 7.20h 41.38%
Real-SE 9,224 261 2.83% | 17.65h 6.14h 65.19%
Real-RM 55 0 0.00% 4.81h 4.01h 16.79%
Real-SA 6 4 | 66.67% 0.04h 0.06h | -38.91%
Total 1.17m | 86,966 7.44% | 7277h | 4559h | 37.35%

Table 5. QPRs emerging in evolutionary index tuning.
and incremental tuning. We also observe flip of improvement/regression on some workloads. For
example, while Real-DY regresses in one-shot and incremental tuning, it improves significantly in
evolutionary tuning. On the other hand, JOB improves in one-shot and incremental tuning, but it
regresses dramatically in evolutionary tuning.

Summary. While the chance of QPR is around 10% to 15% based on our evaluation, the impact on
query execution time can be much higher. As shown in Tables 4 and 5, QPR can result in around 50%
to 80% regression in terms of query execution time for certain databases and workloads. Therefore,
detecting and correcting QPR is important for practical index tuning. A more complete overview of
found QPRs can be found in the full version [55].

3 Regression Pattern Analysis

We analyze QPRs using the data generated by one-shot tuning and incremental tuning. The goal of
this investigation is to understand the root causes of QPRs and whether there are recurring, ubiquitous
patterns across the databases and workloads. Table 6 presents a taxonomy of the regression patterns
that we found for the QPRs.

3.1 Taxonomy of Regression Patterns

We categorize the QPRs into two categories: (c1) QPRs due to problematic change of access path
between P? and P?, and (c2) QPRs due to missing critical optimizations that were present in P’
3.1.1 Problematic Change of Access Path (c1). By “change of access path”, we mean one of the
following situations: (1) a table access operator (e.g., a table scan, an index scan, or an index seek)
in P’ has been changed in P?; (2) the same table access operator is used but its usage pattern is
changed between P? and P?, e.g., it serves as the inner child of a nested-loop join in P instead of a
hash join in P?; or (3) both a table access operator and its usage pattern are changed. There is a
significant number of QPRs whose root causes can be attributed to some problematic change of
access path. We see two primary patterns for QPRs that fall into this category:

o (RP-1a) P? introduces a new expensive nested-loop join (NL]J) due to a new index seek that serves
as its right/inner child;
o (RP-1b) P? introduces a new expensive NL]J due to its reduced estimated cost by the optimizer.

We next present examples of these regression patterns.

ExampLE 1 (RP-1A). Figure 2 presents an example of RP-1a. The QPR comes from the query Q-3 of
Real-LO with one-shot index tuning. The “before plan” P® does not contain any NLJ. The “after plan”
P introduces the node 19, which is an index-based NLJ that becomes the bottleneck of query execution.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Category | ID Description
(c1) RP-1a | Expensive NL]J due to new inner index seek
RP-1b | Expensive NLJ due to reduced estimated cost
(c2) RP-2 Missing critical aggregation pushdown
RP-3 Missing critical bitmap filter pushdown

Table 6. Taxonomy of regression patterns found.

| |
5 Est:14.8K, !
bk e

- 8: HashJoin
11: HashJoin

ET: 1.9s OptE:80.0 B
Est8.6K,

Est:52.9K,
Act:68.7K

17: StreamAgg

ET: 5.25s OptE:72.4,

Act:8.6K
Est:8.6K,
Act8.6K g

21: T_Scan(8.6K)

4 Est:52.9K,

Act:68.7K
22: HashAgg

16: T_Scan(8.6K)
ET: 0.15s OptE:0.6
W_PRODUCT_DH] [T32153

N

ET: 0.17s OptE:0.5 |
ET: 1.6s OptE:79.3 Est:52.9K, |
W_PRODUCT_DH] [T32153 Lp_) et v
Es29K,

. Est:52.9K,
23: Filter Est2, Act4AM
Act:2
ET: 1.5s OptE:79.3 28:1_Seek(10M)
20: Merge Interval
Est:52.9K, T omomr0] |_ET41s OptE0
ET: Oms tE:
Act4.4M P [W_ORDERITEM_F]
—— ; \
24:1_Scan(10M) Estl, Est:1

Actl Actly

ET: 1.4s OptE:78.4

[W_ORDERITEM_F]
(a) Before plan P?

ﬁs: Constant Scmﬂ (27: Constant Scmﬁ
(ET: 0ms OptE:0.0) (ET: 0ms OptE:0.0)

(b) After plan P¢

Fig. 2. Illustration of regression pattern RP-1a. [Annotation of each operator node in a query plan tree: (1) Est,
estimated cardinality; (2)Act, actual cardinality; (3) ET, execution time; (4) OptE, optimizer’s estimated cost.]
Its right/inner input has huge CE error (estimated 52.9K vs. actual 4.4M rows). The NLY is introduced
due to the availability of a new inner index seek (i.e., the node 28) in P°.

From Example 1, QPRs come with not only change of access path but also CE errors. Intuitively,
the introduction of new indexes should not affect cardinality estimation. However, since our
configuration may contain new statistics as well, they may have impact on cardinality estimation. It
then raises an interesting question: Is the QPR caused by only the new statistics, only the new indexes,
or both the new statistics and new indexes? To better understand this, we propose the following
ablation study:

PROCEDURE 1 (ABLATION STUDY). Let C = (I, S) be the configuration that results in the regressed
plan P® of a query q, where I represents the new indexes and S represents the new statistics. We only
create the new statistics S without the new indexes I and let the query optimizer re-optimize the
query q. We call the plan returned by the query optimizer the intermediate plan and denote it by P

For Example 1, we observed PP returned by the ablation study is very different from either the
“before plan” P or the “after plan” P%. Indeed, P? is even slower than P with a different nested-loop
join as the bottleneck of query execution. P improves over P? by removing that more problematic
nested-loop join and utilizing a recommended index, though it remains much slower than P?. Since
PY is indeed the internal view of P? seen by some index tuners (e.g., DTA), such index tuners would
think of P as an improvement over P? and therefore, incorrectly, recommend the corresponding
indexes (and statistics). This example demonstrates that the introduction of new statistics can have
significant impact on query optimizer’s cardinality estimation and therefore plan choice as well.

ExamPLE 2 (RP-1B). Figure 3 presents an example of RP-1b. The QPR comes from the query Q-3
of Real-DY with incremental index tuning. One bottleneck of the “after plan” P% is the node 10 that

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

24: MergeJoin
ET: 11.8s OptE:50.7

’

Est:721,
Act:676 Est2, |

Hﬁ Acti81.5K
71: T_Scan(101.6K)

Est:2,

’
’
Act:81.5K

oLy
ET: 1ms OptE:1.8
ET: 11.85 OptE:48.8) ————————
[INVENTITE... [T4] Est2, Est721,
Act:81.5K

AB!:SS.]M‘
Est:1.2K, (o) 36:TSpool)

’

’

: Act:99.8M
. o (€387 optEzary) (T 1135 opiEi2.0)
- 68: T_Scan(1.2K) Esti1. 2K, Esti721,
32: MergeJoin Est1, Ag::ﬂ?.xM A::‘l 676,
ET: 1.0s OptE:0.0 Act81.5K
ET: 10.1s OptE:35.9, (JS:T,Scan(l,zKﬂ (ﬂ:'r Smn(ml.(mﬂ
, N LOGISTICS... [T3 — | ET:29.55 OptE:0.0 | | ET: 18ms Opik:19 |
, ET:3.3s OptE:41.1 kLL STI TJ) LL — l)
, Est:541, ; OGISTICS..] [T3]) \[INVENTITE...] [T4
Aﬁ;:‘z‘SK / Pkiadid Exs79, Bst1,
Sl i W 79, s
24 INLS 62: T_Scan(101.5K) Acsioy ALK,
3 19:1_Seek(101.5K 34: T_Scan(26
([emu) ET: 97ms OptE:9.4 (19 Lseckar015K)) (cnz0))
ET: 8.0s OptE:26 4, | ET:15ms OptE:00 | [ET:0.765 OptE:0.0 |
\INVENTTAB... [T1}) unvenTTAB.[T1) ([DATAAREA](T1])
(a) Before plan P” (b) After plan P

Fig. 3. lllustration of regression pattern RP-1b.
represents an NLJ, which is much slower than the corresponding (logically equivalent) merge join (i.e.,
the node 24) in the “before plan” P. The execution time of the two operators is 53.8s and 11.8s.

Unlike Example 1, the bottleneck NLJs in P? (nodes 10 and 11) are not introduced due to the
availability of any new inner index seek—the inner side of the join remains the same table scan in
both P? and P?. However, the outer side of node 12 in P? contains a new index seek (node 19) for a
table that was accessed using table scan in P? (node 62). This new index seek indirectly leads the
query optimizer to introduce NLJ for node 10 in P¢ since the optimizer estimated cost (i.e., 43.1) is
lower than that of corresponding plan subtree rooted at node 24 in P’ (i.e., 50.7). P? is significantly
slower due to introduction of spool operator in the inner side of node 10, that creates bottleneck
for pipelined execution of both NLJs (nodes 10 and 11) due to huge underestimation in the number
of rebinds. Observe that node 35 in P is significantly slower compared to corresponding node 68
in P? despite the same access path because P uses a single thread compared to 40 threads used
by P? in Figure 3(a). This change from parallel to serial execution is a side effect of change in cost
estimates in the two cases.

To separate the impact of the new statistics and the new indexes, we repeated the ablation study

in Procedure 1. Interestingly, in this case P remains the same as P’. This means that, even though
the new statistics can affect cardinality estimation, the impact is not significant enough to change
the decision made by the query optimizer. As a result, QPR would not have occurred if we only
brought in the new statistics but not the new indexes.
3.1.2 Missing Critical Optimizations (c2). Unlike the previous category, QPRs that fall into this
category do not suffer from change in access path selection. That is, the access paths of P* may
have changed compared to P?, but these changes are not the root causes of the QPRs. Rather, some
critical optimizations that were present in P? appeared to be missing in P?. Again, we observe two
major patterns for such QPRs:

e (RP-2) P? misses a critical aggregation pushdown in P?;
e (RP-3) P* misses a critical bitmap filter pushdown in P.

Below, we again present examples of these regression patterns.

ExampLE 3 (RP-2). Figure 4 presents an example of RP-2. The QPR comes from the query Q-106 of
STATS with one-shot index tuning. The bottleneck of the “after plan” P* is the node 0 that represents
an aggregation operator. This aggregation is much faster in the “before plan” PP, thanks to the

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Est:102K, |
Act3.IM

Est:3.3K,
Act:19.2K

ET: 76ms OptE:3.4,

Est:24.8K,
Act:24.7K

Est:1.8K,

Act:5.3K L

1: HashJoin
ET: 0.25s OptE:4.2

Est:77.6K,
Act:77.5K

(3- CL Scan(174.3K))
8: CI_Scan(174.3K)

\
(s N
9: CI_Scan(79.9K)

ET: 14ms OptE:0.3
[badges] [b]

3: MergeJoin

ET: 17ms OptE:0.7

ET: 52ms OptE:2.4,

L 1le])
,
’ Est:40.3K,
Est:1.8K, Act:40.3K
Act:53K
7: CI_Scan(40.3K)

0: ScalarStreamAgg

ET: 42.7s OptE:1.9

Est:19.8K,
Act:537.4M

1: HashJoin
ET: 26.0s OptE:1.9,

Est:77.6K,
Act:77.5K

Est:6.4K,
Act:2.1IM
8:1_Seck(79.9K)
2: HashJoin e ———
ET: 10ms OptE:0.3

[badges] [b]

Est:40.3K,
Act:40.3K

7:1_Seek(40.3K)

Est:6.4K,
Act:2.1IM

5: HashAgg

ET: 40ms OptE:2.0,

ET: 7ms OptE:0.2
[users] [u]

Est:33.4K,
Act:33.7K

6: CI_Scan(328.1K)
ET: 31ms OptE:1.4
[votes] [v]

3: HashJoin

ET: 0.17s OptE:0.8,

/
Est:248K, / Est:33.7K,

ET: 5ms OptE:0.1
[users] [u]

Act247K p/

Ac|:33.7K‘

5:1_Seek(174.3K)

6:1_Seek(328.1K)

ET: 3ms OptE:0.1

ET: 5ms OptE:0.1

N [comments] [c]

N [votes] [v]

(a) Before plan P? (b) After plan P¢
p p

Fig. 4. lllustration of regression pattern RP-2.

aggregation pushdown introduced by the node 5. The main cause of this bad decision made by the
query optimizer on eliminating the aggregation pushdown is the CE errors at the join nodes 3 (6.4K
estimated vs. 2.1M actual, i.e., 328X underestimation), 2 (6.4K estimated vs. 2.1M actual, i.e., 328X
underestimation), and 1 (19.8K estimated vs. 0.5B actual, i.e., 25,252X underestimation) in P*. While
cardinality underestimation does present in PY as well, it is at a much smaller scale. As a result, the
amplified cardinality underestimation made the query optimizer think that the aggregation operator
is cheap enough and is not worth a pushdown.

One may ask why cardinality underestimation is amplified in the “after plan” P? for the ag-
gregation operator. We attribute this to the new statistics brought in by the new indexes being
recommended, as the new indexes themselves should not impact cardinality estimation. We also
notice that the join order and join operator choice of P* are different from that of the “before
plan” P?, though they are not the performance bottleneck of P. Again, we further performed the
ablation study in Procedure 1. Interestingly, it turns out that the “before plan” P again remains the
choice of the query optimizer in this case (i.e., P = P?). This suggests that the amplified cardinality
underestimation itself does not result in QPR—the aggregation pushdown remains worthwhile. It
is the new indexes that further reduced the estimated cost of P%, which misled the query optimizer
to change its decision on aggregation pushdown.

ExAMPLE 4 (RP-3). Figure 5 presents an example of RP-3. The QPR comes from the query Q-147 of
Real-MP with one-shot index tuning. Modern query optimizers use bitmap filter pushdowns [31] in
hash join or merge join to reduce the number of rows that need to be fetched from the inner side (of the
join) that match the outer side (of the join). The decision of whether a bitmap filter should be pushed
down is made by the query optimizer based on its estimated selectivity. The “before plan” P’ contains a
bitmap filter pushdown on the clustered index scan over the table “MainTable,” and the actual output
cardinality is 86K after bitmap filter pushdown. This bitmap filter is missing in the “after plan” P¢,
and the actual output cardinality goes up to 1.0M.

Unlike the previous examples, we do not observe significant cardinality underestimation in the
“after plan” P* of Example 4. To the contrary, there is significant cardinality overestimation in P%,
which suggests that the actual cost of P should be even less. Interestingly, there is cardinality
underestimation on the merge join (node 5) of the “before plan” P’ (i.e., 4.6K estimated output

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Est:4.6K, |
Act:250.9K

5: MergelJoin
ET:0.71s OptE:73.8

Est:100K, Est: 1M,
Act:100K Act:86K
X

Est:1.8M, ‘
(6: Sort \ (10: Sort \ Ac::250.9K
(ET:0.175 OptE:63) (ET: 0.44s OptE:66.5) 5: Mergeloin
T T .
, | e ET: 2.1s OptE:42.7

Est:100K, | ActRead: 1M
Act:100K /—‘— Est:100K, Est:IM,
/—% 12: CI_Scan(1M) Act:100K p Act:1IM
9: CI_Scan(100K) - N o ~
ET: 0.34s OptE:35.4 7:1_Scan(100K) 9:1_Scan(1M)
ET: 25ms OptE:3.6 . —
- — Bitmap1005 ET: 16ms OptE:2.3 ET: 0.13s OptE:24.4
MainTableNonPartition] [b -
[MainTable] [a]) KLMainTablcNonPartition] [bJ, _ [MainTable] [a] Y,
(a) Before plan pb (b) After plan P¢

Fig. 5. lllustration of regression pattern RP-3.

rows vs. 250.9K actual rows), and the introduction of the new statistics helps “fix” it; however,
this fix goes too far that ends up with significant cardinality overestimation on the same merge
join (i.e., 1.8M estimated output rows vs. 250.9K actual rows). As a result, creating (and pushing
down) a bitmap filter based on a much higher estimated selectivity/cardinality is not attractive.
To validate this, we further preformed the ablation study in Procedure 1. The PY turned out to
be a “transitioning plan”—its only difference from P? is the removal of that bitmap filter. This
confirms that the missed bitmap filter pushdown optimization is indeed caused by the cardinality
overestimation due to the introduction of the new statistics.

3.2 Summary and Discussion

We have the following observations based on our analysis.

OBSERVATION 1. Most of the significant QPRs can be attributed to some regression pattern that is
simple and easy to understand.

Although our list of regression patterns in Table 6 is by no means exhaustive, it covers most of
the significant QPRs observed in our data. Tables 7 and 8 further present the breakdowns of QPRs
covered by individual regression patterns across the workloads, where we use RP-1 to refer to the
regression pattern RP-1a or RP-1b, as they both characterize the existence of an expensive NLJ.

OBSERVATION 2. Regression patterns typically characterize some “local change” or “local transfor-
mation” in the plan structure.

For example, RP-1 (including both RP-1a and RP-1b) asserts the presence of a new expensive
nested-loop join. RP-2 asserts the decision of pushing down an aggregation or not; similarly, RP-3
asserts the decision of pushing down a bitmap filter or not. Once a regression pattern has been
detected, it is straightforward to reverse the harmful change indicated by the pattern. For example,
if RP-1 is detected, we may hint the query optimizer [33] to not use the problematic index. On
the other hand, if RP-2 or RP-3 is detected, we can simply force pushing down the corresponding
aggregation or bitmap filter that is critical to the query performance, by using mechanisms such as
plan forcing [28]. Although in this paper we do not explore potential ways of correcting QPR once
some regression pattern is detected, it is an interesting direction for future work.

OBSERVATION 3. The impact on cardinality estimation due to the introduction of new statistics can
be significant enough to change the optimization decision made by the query optimizer.

This observation is affirmed by the ablation study in Procedure 1 that highlights the impact
of the new statistics. It has two possible outcomes: (1) the “intermediate plan” P? remains the

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Pattern | Workload | #QPR | T(P?) | T(P%)

RP-1 Real-LO 13.08s 31.47s
RP-1 Real-MP 1.55s 13.85s
RP-2 STATS 0.53s 49.40s

RP-2 Real-RM 83.21s | 124.33s

RP-3 Real-MP 1.24s 3.72s
RP-3 Real-DY 1| 63.02s | 128.59s

Table 7. Regression patterns in one-shot index tuning.

== == w

same as the “before plan” PY: and (2) PY is different from P?. If P? = pb , it implies that the new
statistics do not change the plan returned by the query optimizer, even if the new statistics may
have impacted cardinality estimation. On the other hand, if P® # PP, the impact on cardinality
estimation is significant enough to change the query optimizer’s plan choice. We have seen QPR
examples of both cardinality underestimation and cardinality overestimation with the new statistics.
While it is intuitive that cardinality underestimation can result in QPRs, the QPRs due to cardinality
overestimation are subtle (e.g., Example 4). Nevertheless, the implication here is that a regression
pattern needs to account for not only change of access paths (due to availability of new indexes) but
also cardinality estimation errors (due to availability of new statistics).

OBSERVATION 4. The majority of the significant QPRs are attributed to the regression pattern RP-1
(including both RP-1a and RP-1b), namely, the emergence of a new expensive nested-loop join in the
regressed query plan.

This observation is evident from Tables 7 and 8, where RP-1 accounts for 23 of the QPRs while
the other patterns account for 5 QPRs in total. Moreover, we further looked into the degree of QPRs
in terms of their actual execution time, and we found that the QPRs due to RP-1 are much more
significant compared to the others. Therefore, in the rest of this paper we focus on addressing QPRs
that can be accounted for by RP-1. The popularity of RP-1 QPRs in the context of index tuning is
not a coincidence, as it is attractive for the query optimizer to choose a nested-loop join in the
presence of new indexes. Nested-loop join is powerful for accelerating query execution when there
is indeed only a small number of rows that need to be fetched via index seeks. However, it becomes
a risky choice in the presence of significant cardinality underestimation.

4 Pattern-based QPR Detector

We present a pattern-based QPR detector, based on Observation 4, namely, the majority of the
significant QPRs in index tuning can be attributed to the emergence of new expensive NLJs.
Although this detector is dedicated to detecting QPRs with new expensive NLJs, its underlying
design principles can be applied to develop QPR detectors for other regression patterns as well (see
Section 4.4 for a more detailed discussion).

We start with a formal characterization of such expensive NLJs (Section 4.1). We then develop
an algorithmic framework to detect expensive NLJ in an automated manner (Sections 4.2 and 4.3).

4.1 Characterization of Expensive NLJ

Observation 4 itself is far from actionable for QPR detection in practice. Indeed, a naive solution
here could be to forbid the use of nested-loop joins. However, this will forfeit most of the benefits
brought in by index tuning as well. Clearly, not all nested-loop joins are harmful, and the challenge
is to identify which ones are problematic or risky without executing the “after plan” P%.

To estimate the expensiveness of a nested-loop join, we define two metrics, local expensiveness
and global expensiveness, as follows.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Pattern | Workload | #QPR | T(P?) T(P%)
RP-1 Real-DY 8 | 495.67s | 11824.84s
RP-1 Real-ED 1 2.85s 5.77s
RP-1 JOB 2 4.23s 12.36s
RP-1 Real-LO 3| 13.32s 33.67s
RP-1 Real-RE 3 1.32s 14.63s
RP-1 STATS 1 0.37s 3.34s
RP-1 Real-MP 1 4.00s 25.80s
[RP-2 [STATS [1] 053] 3957s |

Table 8. Regression patterns in incremental index tuning.
DEFINITION 1 (LOCAL EXPENSIVENESS). Let J be a nested-loop join contained by the “after plan” P*
in QPR detection. The local expensiveness of] is defined as [(J, P*) = cf;;it(gj) , where cost(J) represents
the estimated cost of the plan subtree under the join J.

A nested-loop join J is locally expensive if 1(J, P*) > 1;, where 0 < 7; < 1 is some threshold.
Local expensiveness characterizes how significant the execution cost of a nested-loop join is inside
the query plan. Ideally, one should use the actual execution time instead of query optimizer’s
estimated cost. Unfortunately, this is impossible in practice because the execution time of the “after
plan” P4 is unknown when QPR detection needs to be performed. Thus, local expensiveness can
be inaccurate. For example, we may miss a locally expensive NLJ J if cost(J) is underestimated
and a relatively expensive operation follows. However, in general, we would expect a bottom-up
propagation of cost estimation errors [16]. That is, if cost(J) is underestimated, then the costs of
higher-level operations are likely underestimated too. If so, the ratio between cost(J) and cost(P?),
i.e., the local expensiveness of J, will be relatively stable.

DEFINITION 2 (GLOBAL EXPENSIVENESS). Let J be a locally expensive nested-loop join, and let q
be the corresponding query in the workload W where] comes from. Let t*(q) be the execution time
of the “before plan” P? of q, which is presumably available before QPR detection starts. The global
expensiveness of J is defined as g(J, q) = percentile(t®(q), {t”(q’)}q/ew).

A nested-loop join J is globally expensive if the corresponding query q satisfies g(J, q) > 7, where
0 < 7, < 1is some threshold. Intuitively, global expensiveness measures the relative execution
cost of a query at workload level. Specifically, t”(g’) means the execution time of the “before
plan” of ¢/, which is presumed available when performing QPR detection. {t’(q’)} represents the
distribution of the “before plan” execution time w.r.t. all queries of a workload W. Essentially, we
use the percentile of t?(q) in this “before plan” execution time distribution as our definition of the
global expensiveness of q. On the other hand, it is possible that a query q is globally expensive but
actually not so under the new configuration, i.e., when considering the distribution of the “after
plan” execution time of all workload queries. Unfortunately, this latter “after plan” execution time
distribution is unknown when performing QPR detection. This is indeed a limitation of our current
definition of global expensiveness, which we leave for future work.

4.2 Regression Pattern by Expensive NLJ

We define the regression pattern based on expensive NLJ as | = P (P?, P?) over a pair of “before
plan” P? and “after plan” P4, with respect to a given local expensiveness threshold 7; and a given
global expensiveness threshold z,:

(1) The nested-loop join J appears in P but not in P?;

(2) The nested-loop join J is both locally and globally expensive;

(3) The right/inner side of the nested-loop join is a table access operator (with perhaps filters but
no other operators, e.g., join, on top of it), i.e., it is a “left deep” nested-loop join.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

depth 0

depth 1

Fig. 6. lllustration of the expensive NLJ pattern.

If there are multiple expensive nested-loop joins in P4, we will only return the “deepest” one in the
plan tree (where the root node of the plan tree receives a depth of zero).

ExaMmpLE 5 (EXPENSIVE NLJ PATTERN). Figure 6 presents an example query plan that contains three
nested-loop joins NL,, NLF,, and NLJ;. Suppose that all of them pass the local and global expensiveness
thresholds. NLJ; does not match the expensive NL7 pattern because it is not “left deep.” Both NL}, and
NL3, are “left deep,” but only NLJ, matches the pattern as it is the “deepest” one in the query plan.

We choose to focus on “left deep” nested-loop join following the observations on the simplicity
(i.e., Observation 1) and locality (i.e., Observation 2) of regression patterns. Compared to more
complicated “bushy” nested-loop join (e.g., NLJ; in Example 5), “left deep” nested-loop join is easier
to define and detect. The impact of an index is also more direct on “left deep” nested-loop join,
which makes it easier to understand and correct the corresponding QPR with remediation actions.
Moreover, we choose to focus on the deepest expensive “left deep” nested-loop join if there are
multiple candidates, because the (local) expensiveness of higher-level joins may be a consequence
of expensive joins below.

Algorithm 1 presents the details of automating the process of matching the expensive NL] pattern
in a given plan pair (P?, P%) of a query g. We start by looking for all nested-loop joins that appear
in the plan P? (line 2). For each of the nested-loop joins J found, we simply check whether (1) J is
“left deep.” (2) J does not appear in the plan P?, and (3) J is expensive; if so, we only keep the one
with the maximum depth (lines 3 to 9).

4.3 QPR Detection Algorithm

Our QPR detection algorithm based on the expensive NLJ pattern can be broken down into three
major steps: (1) match the expensive NL]J pattern using Algorithm 1; (2) measure the degree of
potential QPR based on the notion of cost inflation factors; and (3) recost the “before plan” and “after
plan” using the cost inflation factors and predict QPR based on the recomputed plan costs.
4.3.1 Cost Inflation Factors. Formally, let J be an expensive nested-loop join operator found in the
“after plan” P¢, and let O; and O, be its left/outer and right/inner input operators. Moreover, let O}
and O be the corresponding match (i.e., logically equivalent operator) of O; and O, in the “before
plan” P?, respectively.

DEFINITION 3 (CosT INFLATION FACTORS). The cost inflation factors of the left and right inputs of
J are defined as

ActCard(O]") ActCard(O")
EstCard(O}")” EstCard(O™)’

Here, EstCard and ActCard represent the estimated and actual cardinality, respectively. Intuitively,
cost inflation factors measure, in an approximate way, the impact of cardinality underestimation on

fi = max{ 1} and f, = max{ 1}.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Algorithm 1: MatchExpensiveNL](gq, Pb, P%).

Input: (P?, P%), a pair of plans to detect QPR; g, the corresponding query in the workload W; 7;, the
threshold for local expensiveness; 7,4, the threshold for global expensiveness.
Output: J, the expensive nested-loop join found.
1 J <« null
2 J <« GetAlINL]Js(P%);
3 foreach nested-loop join J' € J do
4 if J' is “left deep” and J' ¢ P® then

s 1, PY) — s

6 9(J'.q) — percentile(t’(q), {t"(q') }qew);
7 if I(J', P%) > 1y and g(J', q) > 7, then

8 if depth(J’) > depth(J) then

9 | T T

10 return J;

the execution cost of the join. Moreover, once again we assume that we have obtained execution
information (in particular, true cardinality information) of the “before plan” P.

4.3.2 Recosting of the Join and the Plan. The presence of cardinality underestimation makes it
necessary to recompute the costs of the “before plan” and the “after plan” to reevaluate the likelihood
of QPR. We conduct this recosting process [12, 54, 56] based on the cost inflation factors obtained
by Algorithm 2.

Specifically, Algorithm 3 presents the details of plan recosting, which employs Algorithm 4 as
a subroutine to recost the join operators. We start by seeking a match (i.e., logically equivalent
operator) of the expensive NLJ operator J in P’ (line 2). If such a match J’ is found, we call
Algorithm 4 to recost J’ based on its own cost inflation factors f and f;’, and we recompute the
cost of P? by replacing the old cost of J’ with its new cost (lines 3 to 8). Similarly, we recost J based
on the given cost inflation factors f; and f, and recompute the cost of P* accordingly (lines 9 to 11).

The recosting of the join operators J and J’, as illustrated in Algorithm 4, works as follows. We
recompute the cost of a join based on its type. If it is a nested-loop join, we increase the cost of
the right/inner side and the residual cost (i.e., the cost of the join operator itself excluding the
costs of the left and right inputs) by a factor of f; - f,, while keeping the cost of the left/outer side
unchanged (line 3). This is easy to understand, as the cost inflation factors quantify the degree of
cardinality underestimation on the left and right inputs of the join. Therefore, for each iteration of
the nested-loop join, the cost of the inner side is roughly increased by a factor of f;. On the other
hand, the number of iterations is boosted by a factor of f;. This justifies the recosting formula of
the nested-loop join. Meanwhile, for other types of join, such as hash join or merge join, that do
not require multiple accesses of the right/inner side, we increase only the residual cost of the join
by a factor of f; - f; but not the cost of the right/inner side.

4.3.3 Putting It Together. Algorithm 5 presents the details of the pattern-based QPR detection
algorithm. We start by matching the expensive NLJ pattern using Algorithm 1 (line 1). We report
no QPR if we fail to find any expensive NLJ (lines 2 to 3). Otherwise, we compute the cost inflation
factors using Algorithm 2. We again report no QPR if there is no cardinality underestimation, i.e.,
fi <1and f; < 1 (lines 4 to 6). Otherwise, we recost both plans P? and P? with the cost inflation
factors, using Algorithm 3, and we report QPR if recost(P%) > recost(P?) (lines 7 to 12).

Discussion. The QPR detection algorithm in Algorithm 5 is limited by the fact that it relies on
finding matches in the “before plan” P?. It can result in both false positives and false negatives:

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Algorithm 2: ComputeCostInflationFactors(J, Pb P?).

Input: (Pb, P?), the plan pair; J, the expensive NLJ found in P%.

Output: fj, the cost inflation factor of the left/outer input of J; f;, the cost inflation factor of the
right/inner input of J.

O; « LeftChild(J), O, « RightChild(J);

2 fie—1,f «1;

O « Match(Oy, P?), O™ — Match(O,, P");

if O" is not null then

ActCard(Olm) .
‘ Ji = max{ ggcaaomy s 1
¢ if O is not null then

ActCard(O7") .
| e max{EEG s 1

return fj, f;;

-

©

'

[

®

o (False Positives) Consider a case where we have either f; > 1 or f, > 1 but we cannot find a match
for J in PY. As a result, the cost of P? is increased after plan recosting, whereas P? cannot be
recosted by Algorithm 3 and thus cost(P?) remains the same. However, it is likely that cost(P?)
should have been increased, too, as the existence of cardinality underestimation in P suggests
that there may be cardinality underestimation in P? as well. This possibility is currently ignored
by Algorithm 5. Consequently, if Algorithm 5 reports QPR in this case, it may be a false positive
due to the potential underestimation of cost(P?).

o (False Negatives) Consider another case where we cannot find a match for either O; or O,. As a
result, we may miss potential cardinality underestimation and therefore the recomputed cost of
J may be less than it should have been. When this happens, if we can find a match J’ in P? for
J, then it creates an unfair situation as we can use actual cardinality for recosting J’ but not J.
Therefore, we may make the cost of J’ (and thus the plan P?) higher but not the cost of J (and
thus the plan P?). Consequently, if Algorithm 5 reports no QPR in this case, it may be a false
negative due to the potential underestimation of cost(P¢).

4.4 Other Regression Patterns

While it is not our goal in this paper to provide a comprehensive list of regression patterns and
their corresponding pattern-based QPR detectors, the principles and techniques developed can be
applied to the development of QPR detectors based on regression patterns other than RP-1. For
example, a QPR detector based on RP-2 or RP-3 would be to monitor any aggregation or bitmap
filter pushdowns that were present in P? but missing in P?, while also considering the degree of
cardinality estimation (CE) errors.

Although this case-by-case approach is effective for the QPR patterns covered in the present
study, a more general approach remains interesting. There are two basic elements in such a general
approach: (1) specification of the structural change between the “before plan” and the “after plan” and
(2) quantification of the CE error. From this point of view, we can retain the skeleton of Algorithm 5
and only replace the function calls MatchExpensiveNLJ (), ComputeCostInflationFactors(),
and RecostPlan() with implementations customized for detecting different QPR patterns. On the
other hand, one can further ask for a different approach that is more general than the one proposed
in this paper, which is an interesting but more challenging question. An idea could be to fully
automate the QPR pattern mining or discovery process, which may be a direction for future work.

5 Experimental Evaluation

We evaluate the pattern-based QPR detector proposed in Section 4 and report the experimental
evaluation results in this section.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Algorithm 3: RecostPlan(J, Pb, P%).

Input: (P?, P%), the plan pair; J, the expensive NLJ operator.

Output: recost(P?), the recomputed cost of plan P?; recost(P%), the recomputed cost of plan P4.
recost(P?) « cost(P?), recost(P?) « cost(P?);

2 J' « Match(J, P?);

3 if J' is not null then

4 O] « LeftChild(J’), O; « RightChild(J’);

ActCard(O)) ActCard(O}.)
4 i £ ’ oAt) .
s | e maxl gy U o mad o 1

6 recost(J’) < RecostJoin(J’", f/, f);

7 residual(P?) « cost(P?) — cost(J");

8 recost(P?) « residual(P?) + recost(J’);
recost(J) < RecostJoin(]J, fi, f;);

10 residual(P?) « cost(P?) — cost(J);
recost(P?) « residual(P?) + recost(J);

12 return recost(P?), recost(P%);

[

©

1

oy

Algorithm 4: RecostJoin(J, fi, f+).
Input: J, the join operator; fj, the cost inflation factor of the left/outer child of J; f;, the cost inflation
factor of the right/inner child of J.
Output: recost(J), the new cost of J.
1 residual(J) « cost(J) — outerChildCost(J) — innerChildCost(J);
2 if J is nested-loop join then
3 ‘ recost(J) « outerChildCost(J) + f; - f; - innerChildCost(J) + f; - f; - residual(J);
4 else
5 ‘ recost(J) « outerChildCost(J) + innerChildCost(J) + f; - f; - residual(J);
6 return recost(J);

5.1 Experiment Settings

We focus on detection of significant QPRs emerging in one-shot, incremental, and evolutionary
tuning by setting the regression threshold 7 = 0.5 (i.e., 50% QPR).

5.1.1 Evaluation Metrics. We use the following metrics to evaluate a QPR detector.

The first set of metrics are standard based on the viewpoint of treating QPR detection as a binary
classification problem: (1) precision, (2) recall, (3) accuracy, and (4) F1 score.

The second set of metrics are to address the limitation of the binary classification view of QPR
detection, as some QPRs can be much worse than the others: (1) time of the “before plan” P?, (2) time
of the “after plan” P, (3) time of Ppreq, and (4) time of Ppeg;. Here, Ppreq is the plan chosen based on
the output of the QPR detector h. That is, Ppreq = PYifh predicts a QPR, and Pyreq = P¢ otherwise.
Phest is the plan chosen based on the output of an oracle (i.e., a perfect QPR detector) that always
makes the right prediction. That is, Ppest = Pbif ¥ < 12 where t? and 12 are the execution time of
PP and P@ respectively, and Ppest = P otherwise.

5.1.2 QPR Detectors. We evaluate the pattern-based QPR detector proposed in Section 4, as well as
three state-of-the-art ML-based QPR detectors: (1) Al meets AI (AMA) [10], (2) TreeCNN (TCNN) [26],
and (3) QueryFormer (QF) [60].

5.2 ML-based QPR Detection

The main difference between the three ML-based QPR detectors AMA, TCNN, and QF lies in the
feature representation of a query plan. Specifically, AMA carefully selects features that are important

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

for characterizing the execution profiles of individual operators in the query plan (e.g., estimated
number of input and output rows, estimated number of input and output bytes, estimated execution
cost, etc.). Such operator-level features are further aggregated w.r.t. the plan tree structure to form
a vector representation of the query plan. On the other hand, both TCNN and QF adopt more
advanced technologies to encode a query plan into its vector representation. In more detail, TCNN
leverages tree convolution [34] that adapts the well-known convolutional neural network (CNN) [25]
to work for tree-structured data, whereas QF leverages tree transformer that adapts the well-known
transformer architecture [47] to encode query plan tree. Therefore, we can use a uniform framework
to evaluate all these three ML-based QPR detectors.

Given a pair of plans (Pb , P?%), we first convert PP and P? into their feature vectors P? and P¢
using the plan encoder provided by the corresponding ML-based QPR detector. Following [10], we
then take the difference X = P% — P” as the input to train a binary classifier h as the QPR detector.
For fair comparison, we use the same classifier h for AMA, TCNN, and QF plan representations.
Specifically, h is a 4-layer fully-connected deep neural network, where each hidden layer contains
64 neurons and uses ReLU as the activation function. A similar architecture has been used in [60].

5.2.1 Implementation and Evaluation Setups. We implement AMA, TCNN, and QF using PyTorch,
and we use an Nvidia RTX A6000 GPU for model training and inference. For model training, we
use the Adam optimizer [18] with 100 epochs and batch size of 32.

We use a “leave one out” setup for evaluating the ML-based technologies [10]. Specifically, let
‘W be the set of all workloads. For each workload W € ‘W, we use all index tuning data collected
for the other workloads ‘W_y, = W — {W} to train an ML model M and test it using the index
tuning data collected for W.

5.2.2 Results. Figure 7(a) and 7(b) present results on the one-shot and incremental index tuning
data in terms of prediction accuracy of the ML-based QPR detectors. We were not able to finish
training TCNN and QF within reasonable time (i.e., 48 hours) on the evolutionary index tuning
dataset. We observe that TCNN and QF perform better than AMA in terms of the “accuracy” metric.
However, it does not suggest that TCNN and QF are more effective binary classifiers, because their
F1 scores are much lower than that of AMA. In fact, in almost all cases the F1 scores of TCNN
and QF are zero, which means that they are not able to capture any QPR. In other words, they
behave the same as a degenerated QPR predictor that simply says there is no QPR. Overall, all three
ML-based QPR detectors show unsatisfactory performance. There are several potential reasons for
this observation. First, the one-shot and incremental index tuning datasets are relatively small and
therefore sophisticated plan encodings such as TCNN and QF are perhaps not worthwhile and more
likely to overfit. Second, the fact that QPR is a relatively infrequent event makes the classification
problem more challenging (e.g., a naive classifier such as the degenerated one can achieve high
accuracy but fail miserably in terms of F1 score). This is related to the well-known “learning from
imbalanced data” challenge in the literature [20]. Indeed, we have tried to “rebalance” the data
by giving the regressed cases higher weights in the loss function when training the ML-based
classifiers but we still see underwhelming results as shown in Figures 7(a) and 7(b). Third, the
“leave one out” setup is arguably the worst-case scenario for ML-based classifiers, as the training
and test datasets may not follow the same distribution. Indeed, our results here resonate with the
observations in [10], where the AMA classifier shows similar results to the degenerated classifier
under the “leave one out” setup.

5.3 Pattern-based QPR Detection

We now evaluate the pattern-based QPR detector proposed in Section 4. We set the local expensive-
ness threshold 7; = 0.1 and the global expensiveness threshold 7, = 0.1 in our evaluation, which are

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Algorithm 5: Pattern-based QPR detection.

Input: (P?, P?), the pair of plans; g, the corresponding query.
Output: true, if (P?, P?) is a QPR; false, otherwise.
J « MatchExpensiveNL](q, P, P%);
if J is null then

‘ return false;
fi, fr < ComputeCostInflationFactors(J, Pb,P“);
if fi <1and f; <1then

‘ return false;
// We have either f; > 1 or f; > 1;
recost(P?), recost(P?) « RecostPlan(J, P?, P%);
if recost(P?) > recost(P?) then

-

[T N

'S

o o

N}

o

©

10 ‘ return frue;
11 else
12 ‘ return false;
AMA-acc c——3 QF-acc ©==~3 TCNN-f1 AMA-acc c——1 QF-acc ©===3 TCNN-f1 s
TCNN-acc =<y AMA-f1 === QF -1 m— TCNN-acc =3 AMA-f1 m=== QF—f1 —
0 . — . — 0 . .
8 A aleaml @ 5 - N
3 oo NERINEEN 5k R
ooc NI NN NN | = NN N N
S T TN R
3 o b IR B 1§ e
3 ozf I ss| A I 5 ozl N iE
£ [N AT £ LN MR
S S\ < S A o
FFSEIEIEN S S FESEIENHENLE S H N
Q N 2 X XN P Q AN X ¥ 5 XN D
< PPl Q\Q,'Z’Qg, Q\Q’(b @ Qg?’QgJ ngbqg; A D% e Q\Q,{ng) Qg,'b P Qg,'ng, Qg,'Z’ng
Workload Workload
(a) One-shot Index Tuning (b) Incremental Index Tuning

Fig. 7. Comparison of ML-based regression detectors in terms of prediction accuracy and F1 score.
the default settings of the pattern-based QPR detector. We use AMA as the baseline of ML-based
detectors to compare with.

5.3.1 One-shot Index Tuning. Figure 8(a) presents the (percentage) improvement of the total
execution time by using the plan suggested by the QPR detector, i.e., Ppreq, w.r.t. to the plan over
the existing configuration, i.e., PY. for one-shot index tuning. We observe that the pattern-based
QPR detector significantly outperforms AMA on the workloads JOB, Real-RE, Real-ED, and Real-
RM, while having similar performance on the other workloads (except Real-LO, where AMA
outperforms the pattern-based QPR detector). In fact, the pattern-based QPR detector achieves
similar performance to the best possible, i.e., Ppest, on the workloads TPC-H, JOB, DSB, Real-MS,
Real-ED, Real-MP, Real-SE, Real-RM, and Real-SA. For example, the improvements on JOB by the
pattern-based QPR detector and AMA are 53% and 40%, where the best possible improvement is
59%. Meanwhile, the performance of using the plan suggested by AMA is often inferior to that of
the default approach of always using P¢, for example, on Real-ED and Real-RM.

Figure 9(a) further compares the pattern-based QPR detector with AMA in terms of the predic-
tion/classification accuracy. We observe that the pattern-based QPR detector significantly outper-
forms AMA in terms of both accuracy and F1 score on the workloads JOB, STATS, DSB, Real-LO,
Real-RE, Real-DW, Real-ED, and Real-RM. AMA has an advantage only on Real-SA in terms of
accuracy. Some F1 scores are zero (i.e., either precision or recall is zero) and thus not visible.

5.3.2 Incremental Index Tuning. Figures 8(b) and 9(b) compare the pattern-based QPR detector
against AMA for incremental index tuning. Again, the pattern-based QPR detector significantly

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

P == Pattern 0=—=x P2 =—= Pattern —=—3

AMA 3 Best ——— AMA —— Best
Q: 100 T D; 100 — —
80 |
g 80 d el
= 60 I = 40 1
[=4 f=
g g 200 40 (HH H Hmﬂ Hm Hm IS
g 2 H s 20 e u ‘
<3 S | |
s I il g -0 |
g_zox\‘ééé«oéﬂiéok@@‘ gzsoewz;@fvoe@soqq,@
v ¥
SNSRI S S D S AN A
K =) P s s Q\Q{D ¢ Q% Q¢ Qg'bqg;) Q@ Q% Q¢ Q\Q’DQ@ Q% Q¢ Qg’{ng)
Workload Workload
(a) One-shot Index Tuning (b) Incremental Index Tuning
P2 ——= Pattern ——™
AMA —— Best ——
s~ 80 — —T —TT
o 60 [T]
- o ol
= 20t
z 2 N - i
5 -20] ‘
3 -40 ‘
2 -60
E 80
N S e PR NP S
SFEEI T ENE R S5
< 0 e T P oo ¢
Workload

(c) Evolutionary Index Tuning

Fig. 8. Comparison of AMA vs. pattern-based QPR detectors in terms of improvement on plan execution time.

Accuracy (AMA) —— F1 Score (AMA) m==m=1 Accuracy (AMA) ——1 F1 Score (AMA) ===
Accuracy (Pattern) —— F1 Score (Pattern) === Accuracy (Pattern) —— F1 Score (Pattern) ===

1 ek

Accuracy / F1 Score
o o o 9o
o N A OO
y ——
N
Accuracy / F1 Score
o o o o
o v B O
Y=

D R & O Q& R & SNIRY & R &
K GG LN E K S P KGR P E RO LS
& Q¥ X0 X N 30 X N & I S A
REQTQETRE Qe E Q¥ #7 S UV QE ¥ Q87T ¥ e RS
Workload Workload
(a) One-shot Index Tuning (b) Incremental Index Tuning
Accuracy (AMA) —— F1 Score (AMA) ===
Accuracy (Pattern) —— F1 Score (Pattern) ===
o 1 ‘ -
3
» 08}
L oosl
3 o4l
8 .
3 o2}
< 0 1
RIRLOF] O QLK OR K& X
GG H SO LD
[Qg;"”Q@ Qg?’qg) e Q%'DQ@'DQ@ Qg?' Q¢
Workload

(c) Evolutionary Index Tuning

Fig. 9. Comparison of AMA vs. pattern-based QPR detectors in terms of prediction accuracy and F1 score.
outperforms AMA on workloads such as TPC-H, JOB, Real-DY, Real-LO, Real-MS, Real-RE, and Real-
MP. We also observe that AMA is sometimes even significantly worse than the default approach
of using P? (e.g., on TPC-H, Real-DY, Real-LO, and Real-MS). Meanwhile, the pattern-based QPR
detector achieves the best possible on workloads such as TPC-H, Real-RE, and Real-ED. For example,
the time improvements on Real-RE by the pattern-based QPR detector and AMA are 41.5% and
15.3%, where the best possible is 41.8%.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

5.3.3 Evolutionary Index Tuning. Figures 8(c) and 9(c) further compare the two QPR detectors in
the context of evolutionary index tuning. As shown in Figure 8(c), the pattern-based QPR detector
significantly outperforms AMA on TPC-H, JOB, Real-LO, Real-ED, and Real-SE in terms of improved
plan execution time, while their performances on the other workloads are similar. The improvement
achieved by the pattern-based QPR detector is similar to the best possible on most workloads (except
JOB). On the other hand, AMA remains inferior to the default approach of using P* on workloads
such as TPC-H, Real-LO, Real-ED, and Real-SE.

5.4 Analysis of Pattern-based QPR Detector

We further perform more detailed analysis of the pattern-based QPR detector to understand the
impact of (1) the local and global expensiveness thresholds and (2) the cost inflation factors.

5.4.1 Local and Global Expensiveness Thresholds. We are interested in the potential of the pattern-
based QPR detector by varying the local and global expensiveness thresholds. For this sake we
study the optimal settings of the thresholds. Specifically, we perform a “grid search” in the space
of (1;,75) € Lx G, where £ = G = {0.1,0.2,0.5,0.8,0.9}. Figures 10(a), 10(b), and 10(c) present
the results of the optimal thresholds for one-shot, incremental, and evolutionary index tuning,
respectively. For one-shot tuning and incremental tuning, optimal thresholds only make a significant
difference on Real-DY. On the other hand, for evolutionary tuning optimal thresholds only make
a significant difference on JOB. It remains future work to explore ways of finding the optimal
thresholds without an exhaustive search.

5.4.2 Cost Inflation Factors. Our way of computing cost inflation factors is best-effort: the cost
inflation factor of the left/right input of the expensive nested-loop join remains 1 if we cannot find
the corresponding match in the “before plan” P’. To understand the impact of this limitation, we
study a hypothetical case where we use the true left/right input cardinality to compute the cost
inflation factor if we cannot find a match. The results of using the cost inflation factors based on
true cardinality, in combination with using the optimal local and global thresholds, are presented as
‘Opt-TC’ in Figures 10(a), 10(b), and 10(c). We observe that leveraging true cardinality can further
improve the pattern-based QPR detector in certain cases, e.g., on Real-DY for incremental tuning
and JOB for evolutionary tuning. This suggests that one direction for further improvement of the
pattern-based QPR detector is to improve the cardinality estimation for those operators in the
“after plan” P* that have no match in the “before plan” P.

5.5 Other Evaluation Results

5.5.1 Generality of Regression Pattern. Some of the observations and results (in particular, the
QPR pattern due to emergence of expensive NLJs) are not restricted to Microsoft SQL Server. First,
NL]Js are supported by almost all database systems. Second, the QPR pattern related to expensive
NLJs also characterizes the roles of cardinality estimation (CE) errors, which are well-known
general issues beyond a specific database system (e.g., see [23, 56] for studies of CE errors on top
of PostgreSQL). To validate this, we create the same indexes recommended by DTA on top of
PostgreSQL databases. We then check if the QPR pattern based on the emergence of new expensive
NL]Js occurs as well. We use PostgreSQL 17.4 running on a standard Azure D16s-v3 VM.

Figure 11 presents the validation results on the four benchmark workloads TPC-H, DSB, JOB,
and STATS. Here, we compare the percentage of QPRs with new emerging expensive NLJs. We
have two main observations. First, for most of the cases tested, around 60% to 100% of the QPRs
contain new expensive NLJs. Second, this percentage coverage is consistent across PostgreSQL and
Microsoft SQL Server, demonstrating the generality of the QPR pattern.

5.5.2 Decoupling Indexes from Statistics. Following our ablation study (Procedure 1) in Section 3.1,
a “statistics only” scenario is itself interesting, as having extra data statistics available could, in

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Pattern (Default) ——= Pattern (Opt-TC) === Pattern (Default) —— Pattern (Opt-TC) ===
B Best ——

Pattern (Opt) c=—= est —— Pattern (Opt) ===
&~ 90 —— N & 100 —— : —
& 80 80
EN 2w
£ 50 T 40 ﬂ H
X R 1 111 11 1 1% 1Re
g 30 ! g g m m mﬂ
g 20 g -20 ‘ ‘
g R G 1 e I
® 10 = ® 60
RXRo S %‘oéOQ‘o@‘? RO O @& $0<2‘</\¥Y“
oo%so,\v\/o\/v@ 63 ,‘0,\‘% & 00%0‘0\/\,\\ PRI
N & o2, & i &% & N oo d® o & P &L od®
RS o ¢ P ‘2‘ ¢ Q* Q* e ee ¢ £ ¢ Q~ <2~ G
Workload Workload
(a) One-shot Index Tuning (b) Incremental Index Tuning
Pattern (Default) —— Pattern (Opt-TC) ==
Pattern (Opt) c=—= Best ——
s~ 80 T — —
o — i
s 60 - -
= -
: . —‘ H (—‘
£ 20
g 0 J H alti mﬂ
£ 20 jf
® -40 Ry
Qo;b &)OQ;\ ‘;\%\9 \/Vo\ /\&%\gio 04\ 9 /@2\/@ @ o
N S Q@"”Q\e'bng’qp'z’ Q~ an il Q?»
Workload

(c) Evolutionary Index Tuning
Fig. 10. Comparison of variants of the pattern-based QPR detector w.r.t. improvement on execution time.

ostgreSQL =—=1 reSQL === stgreSQL ===
QE) Microsoft SOL Server g Microsoft SOL Server [QE) Microsoft SOL Server —
§ 100 5 100 - § 100 -
= 8 T 80 s = 8
H 60 = 60 4 H 60
g"l:’ 40 (—‘ é’E’ 40 —l 1 § 40
& 20 & 20 1 & 20
5 0 5 0 e 0
ES TPC-H DsB JoB STATS ES TPC-H DSB JOB STATS B TPC-H DSB JoB STATS
Benchmark workload Benchmark workload Benchmark workload
(a) One-shot Index Tuning (b) Incremental Index Tuning (c) Evolutionary Index Tuning

Fig. 11. Validation of the generality of the regression pattern based on new emerging expensive NLJs.

Statistics Only (P™?) m==x3 Statistics Only (P™?) ==
Statistics + Indexes (P%) —43 Statistics + Indexes (P?) ===
s~ 100 T —T—T T T s~ 200 T T — T
e =T & s [N 2 T IR Fes
¢ ¢ 200 NN
= -100 = -400
5 200 S -600 .
5
o o -
5 —400 S -1200
E 500 E 1400
G\O_GOOQ\%Q)%*é%Q/&OQ ¢ op °\°_1600~b<2><be © LN O R Sy
o P 50&‘?6 \/0 \/V \9 N \S NG Co < & § O « \/@ NG \Q/\/‘\ \"o
N & o@® P o e,e,'?’z”’ & N %e,”’efz’e,'?’@”"be’”zq’@ &
e P e e e e (PP e P e P P oS
Workload Workload
(a) One-shot Index Tuning (b) Incremental Index Tuning

Fig. 12. Comparison of improvement in execution time with the “intermediate plan” P? and “after plan” P4.
theory, greatly improve the plans (without extra indexes). To shed some light on the sheer impact of
new statistics, we extend our ablation study to all plan pairs collected from one-shot and incremental
index tuning scenarios. Figures 12(a) and 12(b) present the time improvement by the “intermediate
plan” P? over the “before plan” P?. We also include the “after plan” P? for comparison. Interestingly,
it is not guaranteed that the availability of new statistics will result in better plans. Although P?
indeed leads to significant improvements for some workloads (e.g., JOB), it also causes significant
regressions for some other workloads (e.g., Real-LO). This raises the question of recommending
statistics to improve query execution without causing regression, which we leave for future work.

6 Related Work

Index Tuning. Much work has been devoted to index tuning in the past decades (see [43] for a
recent survey). A classic setup is offline index tuning (e.g., [2-5, 8, 17, 19, 38, 42, 44, 46, 49-51, 57]),

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

where the index tuner is given a static workload of queries and the goal is to come up with an
index configuration that minimizes the workload execution cost (subject to certain constraints
such as storage bound). Offline index tuners rely on the what-if query optimizer call to estimate
the execution cost of a query given an index configuration, which can be inaccurate and result in
QPR after the index configuration is materialized. On the other hand, there is also a prominent line
of recent work towards online index tuning (e.g. [21, 36, 37, 39]), where the index tuner needs to
deal with dynamic workloads with new queries coming from time to time. Online index tuning is a
more challenging problem and existing work has been focusing on solutions using reinforcement
learning (RL) technologies with actual query execution time as feedback to build reward functions
that guide the RL search process. Using actual query execution time reduces the chance of QPR but
is significantly more expensive compared with using what-if calls.

Query Performance Regression. QPR is an averse problem in practice. One prominent cause of QPR
is plan change due to bad plan choice made by the query optimizer. QPR emerging in index tuning,
in particular, falls into this category and is more costly given the nontrivial overhead of running the
index tuner and creating the recommended indexes in addition to the query execution time itself.
QPR after index tuning means all tuning efforts are wasted and the recommended indexes have to be
dropped to bring the query execution time back to normal [7]. Existing approaches to QPR detection
in the context of index tuning mainly adopt machine learning (ML) technologies [10, 40, 52, 60].
These approaches often suffer from limited generalization capability when facing new databases
and workloads. The pattern-based QPR detector studied in this paper provides an alternative to
these ML-based approaches with better generalizability. On the other hand, there has also been
work on QPR correction in the context of index tuning [11], an interesting but orthogonal direction.

Cardinality Estimation. The pattern-based QPR detector proposed in this paper relies on accurate
cardinality information available from execution feedback in the “before plan” Moreover, the
evaluation results in Section 5.4.2 further demonstrate the potential improvement of the pattern-
based QPR detector by fixing cardinality estimation errors. There has been extensive work in the
literature on improving cardinality/selectivity estimation accuracy, and we refer the readers to
recent benchmark studies [14, 48] for an overview of progresses in this area. As we mentioned
in Section 5.4.2, it remains interesting future work to integrate these more advanced cardinality
estimation technologies into the pattern-based QPR detector to improve the calculation of the cost
inflation factors when exact matching fails in the “before plan”

Cost Modeling. We have used query plan recosting [12, 54, 56] in the pattern-based QPR detector,
based on simple cost formulas crafted by following the execution logic of the NLJ and other join
operators. It is well-known that query optimizer’s cost modeling can be inaccurate, and there has
been considerable amount of work on improving cost modeling (e.g., [1, 13, 15, 24, 26, 27, 35, 41,
45, 53, 54, 58]). While the simple cost modeling techniques used for the pattern-based QPR detector
show reasonable results in our evaluation, it remains interesting future work to leverage more
advanced cost modeling techniques for further improvement.

7 Conclusion

We have proposed a pattern-based QPR detector based on learnings from an in-depth study of QPRs
emerging from real-world index tuning scenarios. The design of the pattern-based QPR detector
is motivated by the observation that most of the significant QPRs can be attributed to expensive
nested-loop joins with underestimated input cardinalities. We have evaluated the pattern-based QPR
detector on top of both industrial benchmarks and real customer workloads. Our evaluation results
show that the pattern-based QPR detector exhibits better generalizability than state-of-the-art
ML-based QPR detectors when applied to new databases and workloads.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

References

[1] Mert Akdere et al. 2012. Learning-based Query Performance Modeling and Prediction. In ICDE.
[2] Matteo Brucato, Tarique Siddiqui, Wentao Wu, Vivek Narasayya, and Surajit Chaudhuri. 2024. Wred: Workload
Reduction for Scalable Index Tuning. Proc. ACM Manag. Data 2, 1, Article 50 (2024), 26 pages.
[3] Nicolas Bruno and Surajit Chaudhuri. 2005. Automatic Physical Database Tuning: A Relaxation-based Approach. In
SIGMOD. 227-238.

[4] Surajit Chaudhuri et al. 2020. Anytime Algorithm of Database Tuning Advisor for Microsoft SQL Server.

Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven Index Selection Tool for Microsoft SQL

Server. In VLDB. 146-155.

Surajit Chaudhuri and Vivek R. Narasayya. 1998. AutoAdmin *"What-if” Index Analysis Utility. In SIGMOD. 367-378.

Sudipto Das et al. 2019. Automatically Indexing Millions of Databases in Microsoft Azure SQL Database. In SIGMOD.

Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. 2011. CoPhy: A Scalable, Portable, and Interactive Index

Advisor for Large Workloads. Proc. VLDB Endow. 4, 6 (2011), 362-372.

Bailu Ding, Surajit Chaudhuri, Johannes Gehrke, and Vivek R. Narasayya. 2021. DSB: A Decision Support Benchmark

for Workload-Driven and Traditional Database Systems. Proc. VLDB Endow. 14, 13 (2021), 3376-3388.

[10] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and Vivek R. Narasayya. 2019. AI Meets Al:
Leveraging Query Executions to Improve Index Recommendations. In SIGMOD. 1241-1258.

[11] Bailu Ding, Sudipto Das, Wentao Wu, Surajit Chaudhuri, and Vivek R. Narasayya. 2018. Plan Stitch: Harnessing the
Best of Many Plans. Proc. VLDB Endow. 11, 10 (2018), 1123-1136.

[12] Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2017. Leveraging Re-costing for Online Optimization of
Parameterized Queries with Guarantees. In SIGMOD. 1539-1554.

[13] Archana Ganapathi, Harumi A. Kuno, Umeshwar Dayal, Janet L. Wiener, Armando Fox, Michael I. Jordan, and David A.
Patterson. 2009. Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning. In ICDE.

[14] Yuxing Han et al. 2021. Cardinality Estimation in DBMS: A Comprehensive Benchmark Evaluation. Proc. VLDB Endow.
15, 4 (2021), 752-765.

[15] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for Out-of-the-box Learned Cost Prediction.
Proc. VLDB Endow. 15, 11 (2022), 2361-2374.

[16] Yannis E. Ioannidis et al. 1991. On the Propagation of Errors in the Size of Join Results. In SIGMOD. 268-277.

[17] Andrew Kane. 2017. Introducing Dexter, the Automatic Indexer for Postgres. https://medium.com/@ankane/
introducing-dexter-the-automatic-indexer-for-postgres-5{8fa8b28f27.

[18] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In ICLR.

[19] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020. Magic mirror in my hand, which is the best
in the land? An Experimental Evaluation of Index Selection Algorithms. Proc. VLDB Endow. 13, 11 (2020), 2382-2395.

[20] Bartosz Krawczyk. 2016. Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5, 4
(2016), 221-232.

[21] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An Index Advisor Using Deep Reinforcement Learning. In CIKM.

[22] Kukjin Lee, Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2023. Analyzing the Impact of Cardinality
Estimation on Execution Plans in Microsoft SQL Server. Proc. VLDB Endow. 16, 11 (2023), 2871-2883.

[23] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2015. How
Good Are Query Optimizers, Really? PVLDB 9, 3 (2015), 204-215.

[24] Jiexing Li, Arnd Christian Konig, Vivek R. Narasayya, and Surajit Chaudhuri. 2012. Robust Estimation of Resource
Consumption for SQL Queries using Statistical Techniques. Proc. VLDB Endow. 5, 11 (2012), 1555-1566.

[25] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E. Alsaadi. 2017. A survey of deep neural
network architectures and their applications. Neurocomputing 234 (2017), 11-26.

[26] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil,
and Nesime Tatbul. 2019. Neo: A Learned Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705-1718.

[27] Ryan C. Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural Network Models for Query Performance
Prediction. Proc. VLDB Endow. 12, 11 (2019), 1733-1746.

[28] Microsoft. 2025. Apply a Fixed Query Plan to a Plan Guide. https://learn.microsoft.com/en-us/sql/relational-databases/
performance/apply-a-fixed-query-plan-to-a-plan-guide?view=sql-server-ver16.

[29] Microsoft. 2025. Azure SQL Database. https://azure.microsoft.com/en-us/products/azure-sql/database.

[30] Microsoft. 2025. CREATE INDEX (Transact-SQL). https://learn.microsoft.com/en-us/sql/t-sql/statements/create-index-
transact-sql?view=sql-server-ver16.

[31] Microsoft. 2025. Intro to Query Execution Bitmap Filters. https://techcommunity.microsoft.com/t5/sql-server-blog/
intro-to-query-execution-bitmap-filters/ba-p/383175.

[32] Microsoft. 2025. Program for TPC-H Data Generation with Skew. https://www.microsoft.com/en-us/download/details.
aspx?id=52430.

— —— —
[IR e N w
— —

—
O
—

[t

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27
https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27
https://learn.microsoft.com/en-us/sql/relational-databases/performance/apply-a-fixed-query-plan-to-a-plan-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/apply-a-fixed-query-plan-to-a-plan-guide?view=sql-server-ver16
https://azure.microsoft.com/en-us/products/azure-sql/database
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-ver16
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-to-query-execution-bitmap-filters/ba-p/383175
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-to-query-execution-bitmap-filters/ba-p/383175
https://www.microsoft.com/en-us/download/details.aspx?id=52430
https://www.microsoft.com/en-us/download/details.aspx?id=52430

[33] Microsoft. 2025. Table hints (Transact-SQL). https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-
table?view=sql-server-ver16.

[34] Lili Mou et al. 2016. Convolutional Neural Networks over Tree Structures for Programming Language Processing. In
AAAI 1287-1293.

[35] Debjyoti Paul, Jie Cao, Feifei Li, and Vivek Srikumar. 2021. Database Workload Characterization with Query Plan
Encoders. PVLDB 15, 4 (2021), 923-935.

[36] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata Borovica-Gajic. 2021. DBA bandits:
Self-driving index tuning under ad-hoc, analytical workloads with safety guarantees. In ICDE. 600-611.

[37] R. Malinga Perera, Bastian Oetomo, Benjamin L. P. Rubinstein, and Renata Borovica-Gajic. 2022. HMAB: Self-Driving

Hierarchy of Bandits for Integrated Physical Database Design Tuning. Proc. VLDB Endow. 16, 2 (2022), 216—-229.

Rainer Schlosser, Jan Kossmann, and Martin Boissier. 2019. Efficient Scalable Multi-attribute Index Selection Using

Recursive Strategies. In ICDE. 1238-1249.

[39] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. The Case for Automatic Database Administration
using Deep Reinforcement Learning. CoRR abs/1801.05643 (2018).

[40] Jiachen Shi, Gao Cong, and Xiaoli Li. 2022. Learned Index Benefits: Machine Learning Based Index Performance

Estimation. PVLDB 15, 13 (2022), 3950-3962.

Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020. Cost Models for Big Data Query

Processing: Learning, Retrofitting, and Our Findings. In SIGMOD. 99-113.

Tarique Siddiqui, Saehan Jo, Wentao Wu, Chi Wang, Vivek R. Narasayya, and Surajit Chaudhuri. 2022. ISUM: Efficiently

Compressing Large and Complex Workloads for Scalable Index Tuning. In SIGMOD. 660-673.

Tarique Siddiqui and Wentao Wu. 2023. ML-Powered Index Tuning: An Overview of Recent Progress and Open

Challenges. SIGMOD Rec. 52, 4 (2023), 19-30.

Tarique Siddiqui, Wentao Wu, Vivek R. Narasayya, and Surajit Chaudhuri. 2022. DISTILL: Low-Overhead Data-Driven

Techniques for Filtering and Costing Indexes for Scalable Index Tuning. Proc. VLDB Endow. 15, 10 (2022), 2019-2031.

Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator. Proc. VLDB Endow. 13, 3 (2019), 307-319.

Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman, and Alan Skelley. 2000. DB2 Advisor: An Optimizer

Smart Enough to Recommend Its Own Indexes. In ICDE. 101-110.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. 2017. Attention is All you Need. In NIPS. 5998-6008.

Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou. 2021. Are We Ready For Learned

Cardinality Estimation? Proc. VLDB Endow. 14, 9 (2021), 1640-1654.

Xiaoying Wang, Wentao Wu, Vivek R. Narasayya, and Surajit Chaudhuri. 2025. Esc: An Early-Stopping Checker for

Budget-aware Index Tuning. Proc. VLDB Endow. 18, 5 (2025), 1278-1290.

Xiaoying Wang, Wentao Wu, Chi Wang, Vivek R. Narasayya, and Surajit Chaudhuri. 2024. Wii: Dynamic Budget

Reallocation In Index Tuning. Proc. ACM Manag. Data 2, 3 (2024), 182.

Kyu-Young Whang. 1985. Index Selection in Relational Databases. In Foundations of Data Organization. 487-500.

Wentao Wu. 2025. Hybrid Cost Modeling for Reducing Query Performance Regression in Index Tuning. IEEE Trans.

Knowl. Data Eng. 37, 1 (2025), 379-391.

[53] Wentao Wu, Yun Chi, Hakan Hacigiimiis, and Jeffrey F. Naughton. 2013. Towards Predicting Query Execution Time
for Concurrent and Dynamic Database Workloads. Proc. VLDB Endow. 6, 10 (2013), 925-936.

[54] Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan Hacigiimiis, and Jeffrey F. Naughton. 2013. Predicting
query execution time: Are optimizer cost models really unusable?. In ICDE. 1081-1092.

[55] Wentao Wu, Anshuman Dutt, Gaoxiang Xu, Vivek Narasayya, and Surajit Chaudhuri. 2025. Understanding and

Detecting Query Performance Regression in Practical Index Tuning (Extended Version). Technical Report. Microsoft

Research. https://www.microsoft.com/en-us/research/publication/understanding-and-detecting-query-performance-

regression-in-practical-index-tuning/

Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. 2016. Sampling-Based Query Re-Optimization. In SIGMOD.

Wentao Wu, Chi Wang, Tarique Siddiqui, Junxiong Wang, Vivek R. Narasayya, Surajit Chaudhuri, and Philip A.

Bernstein. 2022. Budget-aware Index Tuning with Reinforcement Learning. In SIGMOD. 1528-1541.

[58] Wentao Wu, Xi Wu, Hakan Hacigiimiis, and Jeffrey F. Naughton. 2014. Uncertainty Aware Query Execution Time
Prediction. PVLDB 7, 14 (2014), 1857-1868.

[59] Ritwik Yadav, Satyanarayana R. Valluri, and Mohamed Zait. 2023. AIM: A practical approach to automated index
management for SQL databases. In ICDE.

[60] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A Tree Transformer Model for Query Plan
Representation. Proc. VLDB Endow. 15, 8 (2022), 1658-1670.

[38

—

[41

—

[42

—

[43

—_

[44

=

[45
[46

e

[48

—

[49

—

[50

—

[51
[52

—

[56
[57

—

Received April 2025; revised July 2025; accepted August 2025

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-server-ver16
https://www.microsoft.com/en-us/research/publication/understanding-and-detecting-query-performance-regression-in-practical-index-tuning/
https://www.microsoft.com/en-us/research/publication/understanding-and-detecting-query-performance-regression-in-practical-index-tuning/

	Abstract
	1 Introduction
	2 Index Tuning Data Generation
	2.1 Index Tuning Scenarios
	2.2 Results of Index Tuning Data Collected
	2.3 Distributions of QPR

	3 Regression Pattern Analysis
	3.1 Taxonomy of Regression Patterns
	3.2 Summary and Discussion

	4 Pattern-based QPR Detector
	4.1 Characterization of Expensive NLJ
	4.2 Regression Pattern by Expensive NLJ
	4.3 QPR Detection Algorithm
	4.4 Other Regression Patterns

	5 Experimental Evaluation
	5.1 Experiment Settings
	5.2 ML-based QPR Detection
	5.3 Pattern-based QPR Detection
	5.4 Analysis of Pattern-based QPR Detector
	5.5 Other Evaluation Results

	6 Related Work
	7 Conclusion
	References

