
Understanding and Detecting Query Performance Regression
in Practical Index Tuning: [Experiments & Analysis]

WENTAO WU,Microsoft Research, USA

ANSHUMAN DUTT,Microsoft Research, USA

GAOXIANG XU,Microsoft Research, USA

VIVEK NARASAYYA,Microsoft Research, USA

SURAJIT CHAUDHURI,Microsoft Research, USA

Existing index tuners typically rely on the “what if” API provided by the query optimizer to estimate the

execution cost of a query on top of an index configuration. Such cost estimates can be inaccurate and

may therefore lead to significant query performance regression (QPR) once the recommended indexes are

materialized. This becomes a serious problem for cloud database providers, such as Microsoft’s Azure SQL

Database, that offer index tuning as an automated service (a.k.a. “auto-indexing”). Previous work has explored

use of supervised machine learning (ML) to reduce the likelihood of QPR. However, the trained MLmodels have

limited generalization capability when applied to new databases and workloads. We propose an alternative

approach where we analyze the query plan pairs with significant QPRs and look for structural changes due to

the new index configuration that could explain the QPR. We perform such study for index tuning data across

many benchmark and real-world database workloads, for multiple realistic index tuning scenarios. Our study

reveals that most of the significant QPRs can be attributed to a small number of common “regression patterns”

characterizing the structural plan changes, and we further propose a pattern-based QPR detector accordingly.

Our experimental evaluation shows that the pattern-based QPR detector can significantly outperform existing

ML-based QPR detectors.

CCS Concepts: • Information systems→ Query optimization; Autonomous database administration.

Additional Key Words and Phrases: Index tuning, Query performance regression, Pattern-based detection

ACM Reference Format:
Wentao Wu, Anshuman Dutt, Gaoxiang Xu, Vivek Narasayya, and Surajit Chaudhuri. 2025. Understanding

and Detecting Query Performance Regression in Practical Index Tuning: [Experiments & Analysis]. Proc. ACM
Manag. Data 3, 6 (SIGMOD), Article 374 (December 2025), 26 pages. https://doi.org/10.1145/3769839

1 Introduction
Index tuning is critical to accelerating query execution in modern database systems. Existing index

tuners typically rely on the “what-if” API provided by the query optimizer [5, 6, 46], as illustrated in

Figure 1, that allows for estimating the execution cost of a query given a configuration (i.e., a set) of

proposed hypothetical indexes, as well as their associated statistics, without actually materializing

the indexes. However, what-if cost estimation is still based on query optimizer’s cost model, which

can be inaccurate for reasons such as cardinality estimation (CE) errors and may therefore lead to

significant query performance regression (QPR) when the recommended indexes are eventually

Authors’ Contact Information: Wentao Wu, Microsoft Research, Redmond, USA, wentao.wu@microsoft.com; Anshuman

Dutt, Microsoft Research, Redmond, USA, andut@microsoft.com; Gaoxiang Xu, Microsoft Research, Redmond, USA,

gxu@microsoft.com; Vivek Narasayya, Microsoft Research, Redmond, USA, viveknar@microsoft.com; Surajit Chaudhuri,

Microsoft Research, Redmond, USA, surajitc@microsoft.com.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/12-ART374

https://doi.org/10.1145/3769839

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

https://doi.org/10.1145/3769839
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3769839

Index
Tuner 𝑃𝑎 𝑞, 𝐶𝑎 ,

𝑐𝑜𝑠𝑡(𝑃𝑎)

(𝑞, 𝐶𝑎)
What-If

API

Query
Optimizer

QPR
Detection

𝑃𝑏 𝑞, 𝐶𝑏 ,

𝑐𝑜𝑠𝑡(𝑃𝑏)

✓ No QPR

Materialize 𝐶

Database
Server

Fig. 1. The architecture of cost-based index tuning with what-if query optimizer calls and QPR detection.
[Notation: 𝑞, a SQL query; 𝐶𝑏 , the existing index configuration (i.e., “before configuration”); 𝐶𝑎 , the index
configuration recommended by the index tuner (i.e., “after configuration”); 𝑃𝑏 , the “before plan” of 𝑞 on top
of 𝐶𝑏 ; 𝑃𝑎 , the “after plan” of 𝑞 on top of 𝐶𝑎 .]

deployed [7, 59]. That is, the execution of a query becomes much slower by using the recommended

indexes. QPR has been a serious problem for cloud database providers that offer index tuning as an

automated service (a.k.a. “auto-indexing”). As was reported by [7], around 11% of the indexes that

were created by the auto-indexing service offered by Microsoft’s Azure SQL Database [29] had to

be reverted due to QPR. Therefore, detecting QPR before materializing the recommended indexes

can help significantly reduce the operational cost of cloud auto-indexing service.

We aim to develop a low-overhead technique for QPR detection. Specifically, consider a query 𝑞

and the existing configuration, i.e., “before configuration”,𝐶𝑏
, for which the index tuner proposes a

new configuration, i.e., “after configuration”, 𝐶𝑎
. Even before deploying 𝐶𝑎

, we can make a what-if

call (𝑞,𝐶𝑎) to the query optimizer that returns the query plan of 𝑞 for the “after configuration” 𝐶𝑎
,

as shown in Figure 1. We call this query plan the “after plan” and denote it with 𝑃𝑎 , to distinguish

it from the “before plan” 𝑃𝑏 of 𝑞 on top of the existing configuration 𝐶𝑏
that the index tuner aims

to improve over. The goal of QPR detection is to decide whether the execution time of 𝑃𝑎 will be

significantly higher than that of 𝑃𝑏 without executing 𝑃𝑎 , though the execution information of 𝑃𝑏

is presumed available. If no QPR is detected, the configuration 𝐶𝑎
can then be materialized for

accelerating the execution of 𝑞. There has been recent work on QPR detection and reduction in the

context of index tuning [10, 40, 52, 60]. Most of this work applies supervised machine learning (ML)

to build classification or regressionmodels to predict/detect QPR. However, ML-based QPR detectors

often exhibit poor generalization capability when evaluated on new databases and workloads that

are not included in the training data, notwithstanding their nontrivial overhead.

In this paper we propose an alternative approach where we analyze the query plan pairs with

significant QPRs and look for structural changes due to the new index configuration that could

explain the QPR. We perform such study for index tuning data collected offline across many

benchmark and real-world database workloads. Our study reveals that most of the significant

QPRs can be attributed to a small number of common “regression patterns” characterizing the

structural plan changes, and we further propose a pattern-based QPR detector accordingly. Our

experimental evaluation shows that the pattern-based QPR detector can significantly outperform

existing ML-based QPR detectors.

Collection of Index Tuning Data. In the classical sense, index tuner tunes a given query/workload

by recommending a configuration including all indexes that can improve the execution perfor-

mance at once. We use the term one-shot tuning to represent this classic index tuning scenario

that has been studied extensively in the literature, e.g., [4, 5, 46, 51]. However, in modern cloud

database services, such as Microsoft’s Azure SQL Database [29], indexes need to be optimized

in a continuous manner [7] to adapt to evolving workloads and manage storage constraints. We

therefore also collect data from two more scenarios that represent real-world index tuning ap-

plications: (1) incremental tuning, which constrains the index tuner in terms of the number of

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

indexes it should return and performs tuning in an incremental manner until no more indexes

can be recommended; and (2) evolutionary tuning, which simulates index evolution (e.g., deletion

of existing indexes or introduction of new indexes) from a well-tuned database for reasons such

as storage constraints. These two scenarios aim at capturing more QPRs that could emerge from

such dynamic environments as in cloud auto-indexing services. We collect 1.2 million data points

following these tuning setups, where each data point represents a pair of “before plan” 𝑃𝑏 and

“after plan” 𝑃𝑎 . As expected, index recommendations are beneficial for a large number of plan pairs,

and we highlight representative examples of such benefits in the full version of the paper [55].

However, this paper focuses primarily on the regressed cases (QPRs).

Analysis of QPRs. We then analyze the QPRs that appear in the collected index tuning data to

understand their root causes. Surprisingly, we find that most of the QPRs can be attributed to a small

set of regression patterns that are simple and easy to understand. A regression pattern characterizes

some “local” change or transformation in terms of query plan structure. For example, the regressed

“after plan" misses the pushdown of an aggregation (ref. Figure 4) or a bitmap filter (ref. Figure 5)

that is performance critical. We further develop a taxonomy that categorizes regression patterns

into two general categories: (c1) QPRs due to problematic change of access path between 𝑃𝑏 and 𝑃𝑎 ,

and (c2) QPRs due to critical optimizations that were present in 𝑃𝑏 but missing in 𝑃𝑎 . The simplicity

of the identified QPR patterns is a strength that makes it easier to design simple (and therefore

computationally more efficient) but effective pattern-based QPR detectors. The fact that there are

only a handful of major QPR patterns also makes the overall task of pattern-based QPR detection

addressable and manageable. More importantly, we observe that most of the significant QPRs can
be accounted for by regression patterns from the category (c1) where the regressed “after plan” 𝑃𝑎

contains an “expensive” nested-loop join (NLJ) operator that does not appear in the “before plan” 𝑃𝑏

(ref. Figure 2). The emergence of such expensive NLJ is typically due to cardinality underestimation
errors made by the query optimizer [22]: the availability of the new indexes inadvertently makes the

NLJ look attractive to the query optimizer in terms of estimated cost. Although better cardinality

estimation could improve query plan quality and therefore reduce the chance of QPR, the problem of

accurate cardinality estimation has not yet been settled despite decades of research efforts (see [48]).

State-of-the-art ML-based cardinality estimators [48] could improve cardinality estimation but with

no guarantee on the accuracy. Moreover, they also incur nontrivial overhead of data collection

and model training [48]. Therefore, while it may be an interesting direction for future work, we

deliberately avoid using these ML-based cardinality estimators and make progress in QPR detection

through an approach that can work with existing erroneous cardinality estimates.

Pattern-based QPR Detector. Motivated by the above observations, we develop a pattern-based

QPR detector to identify the “expensive NLJ” regression patterns before the “after plan” 𝑃𝑎 is

executed. This remains a challenging problem, as we need to precisely characterize such regression
patterns to distinguish harmful NLJs from those that are indeed beneficial. In particular, we need

to estimate (1) the expensiveness of an NLJ without executing 𝑃𝑎 and (2) the degree of cardinality

underestimation errors rooted in the expensive NLJ, which are the primary culprit for QPR. To

address (1), we develop two metrics, local expensiveness and global expensiveness. To address (2),

we leverage true cardinality information contained by the “before plan” 𝑃𝑏 , which is presumably

available in the context of QPR detection for index tuning. Specifically, we develop a metric, cost
inflation factors, to quantify the degree of cardinality underestimation errors of the left/outer and

right/inner inputs of the NLJ. We then use the cost inflation factors to recost the NLJ as well as
the entire plan [12, 54, 56]. We further try to match the logically equivalent join in 𝑃𝑏 , and if we

find such a join we recost it as well. Finally, we recompute the plan costs based on the recosted

joins and infer QPRs based on the new costs. Albeit a relatively simple approach, our experimental

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

evaluation shows that it can significantly outperform existing ML-based QPR detectors, which

currently do not use the true cardinality information of the “before plan” 𝑃𝑏 . It is non-trivial to

extend existing ML model designs to include this information, which might be interesting future

work. Our evaluation shows that, even without the use of sophisticated ML-based cardinality

estimators, our low-overhead approach based on cost inflation factors can already detect most

QPRs successfully (Section 5). ML-based cardinality estimators would further improve the results

reported in this paper if their overheads could be reduced.

Contributions, Limitations, and Future Work. In summary, the contributions of this paper are:

(C1)We conduct an empirical QPR analysis using large amount of data collected from practical

index tuning scenarios (Sections 2). To the best of our knowledge, we are not aware of any previous

work on systematically understanding QPRs based on large-scale data generated by following real

industrial index tuning applications.

(C2) We find that most of the QPRs can be attributed to a small set of regression patterns char-

acterizing the structural changes between the “before plan” and the “after plan”, and we further

present a taxonomy of the regression patterns (Section 3).

(C3)We develop a pattern-based QPR detector based on the observation that the majority of the
significant QPRs found in our data can be attributed to the emergence of expensive NLJs in the “after
plan” (Section 4), and our experimental evaluation results demonstrate that the pattern-based QPR

detector can significantly outperform state-of-the-art ML-based QPR detectors (Section 5).

While the list of regression patterns presented in this paper is based on the large-scale index

tuning data we collected, it is by no means an exhaustive list—we do not rule out emergence of

new regression patterns given new databases and workloads. Also, a case-by-case approach may

be required to apply each specific regression pattern to practical QPR detection. For instance, if

aggregation or bitmap filter pushdown appears to be the major regression pattern on a particular

database workload, then one may want to design a QPR detector that focuses on finding such missed

pushdowns. In this spirit, the pattern-based QPR detector developed in this paper that focuses

on detecting expensive NLJs serves as such an example. Moreover, the regression patterns also

provide useful clues for correcting the corresponding QPRs. For example, with the notation used in

Figure 1, if an index 𝐼 ∈ 𝐶 is the culprit of introducing a slow nested-loop join in 𝑃𝑎 that results in

a QPR of 𝑃𝑎 over 𝑃𝑏 , then one may hint the query optimizer [33] to not use the problematic index

𝐼 . Exploration of such more advanced “QPR correction” mechanisms (beyond the naive mechanism

of reverting all recommended indexes upon QPR [7]) is beyond the scope of this paper, which can

be fertile ground for future research.

Availability. Some of the artifacts, e.g., QPR details of the public benchmark workloads used in

our study and experimental evaluation, are available at [55].

2 Index Tuning Data Generation
Let A be an index tuner, 𝐷 be a database, and𝑊 be a (multi-query) workload. Let 𝐶0 be the

initial configuration of the database 𝐷 . Unlike most of the previous work that mainly concerns with

indexes, the term “configuration” in this paper refers to both indexes and statistics. This is motivated

by the observation that some index tuners, such as the Database Tuning Advisor (DTA) developed

for Microsoft SQL Server [4], recommend both indexes and statistics with the contract that the

estimated benefits of the recommended indexes are based on creating the recommended statistics

simultaneously. Moreover, some database systems, such as Microsoft SQL Server, automatically

update the corresponding statistics when an index is created [30]. As a result, indexes and statistics

are indispensable counterparts in practical index tuning applications.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Name DB Size # Queries # Tables # Joins # Scans

TPC-H sf=10 22 8 2.8 3.7

DSB sf=10 67 24 7.7 8.8

JOB 9.2GB 108 21 7.9 2.5

STATS 223MB 91 8 3.3 4.3

Real-DY 587GB 29 7912 15.6 17

Real-LO 108GB 31 1151 8.1 8.9

Real-MS 26GB 39 474 20.2 21.7

Real-RE 100GB 21 20 6.5 7.2

Real-DW 13GB 107 20 6.3 6.9

Real-ED 210GB 36 23 8.8 8.2

Real-MP 2.9GB 127 8 1.6 2.9

Real-SE 256GB 19 3391 5.9 6.9

Real-RM 60GB 15 7 1.9 2.9

Real-SA 40GB 12 32 7.3 9.7

Table 1. Summary of database and workload properties.

Workload #Queries #OneShot #Inc. #Evol.
TPC-H 22 22 49 1,156

DSB 65 67 191 543,198

JOB 108 108 199 189,320

STATS 91 91 184 38,773

Real-DY 29 29 140 143,255

Real-LO 31 31 42 12,779

Real-MS 39 39 47 199,415

Real-RE 21 21 44 2,704

Real-DW 107 107 37 17,916

Real-ED 36 36 12 875

Real-MP 127 127 12 9,583

Real-SE 19 19 17 9,224

Real-RM 15 15 6 55

Real-SA 12 12 8 6

Total 724 724 988 1,168,259
Table 2. Summary of the index tuning data collected.

2.1 Index Tuning Scenarios
We focus on the following setups that emerge from practical index tuning scenarios for collecting in-

dex tuning data. Each data point collected represents a pair of “before plan” and “after plan” returned

by the query optimizer on top of the existing configuration and the recommended configuration.

2.1.1 One-shot Index Tuning. For each query 𝑞 ∈𝑊 , we run the index tuner A to tune the query

𝑞 on top of the initial configuration 𝐶0. Let 𝐶 be the configuration returned by A after tuning.

Moreover, let the two query plans of 𝑞 on top of𝐶0 and𝐶 be 𝑃0 and 𝑃 , respectively. We run 𝑞 on top

of both 𝐶0 and 𝐶 to record the execution time 𝑡0 and 𝑡 of the two plans 𝑃0 and 𝑃 . We generate one

pair of plans for the query 𝑞, which is denoted as (𝑞, 𝑃0, 𝑃, 𝑡0, 𝑡). A formal algorithmic description of

one-shot tuning is given in the full version of this paper [55]. One-shot tuning represents the classic

offline index tuning setup that has been studied intensively in the literature, e.g., [4, 5, 46, 51].

2.1.2 Incremental Index Tuning. For each query 𝑞 ∈ 𝑊 , we run the index tuner A to tune the

query 𝑞 in an iterative manner. In each iteration, the index tuner A is constrained to return only

one index based on the current configuration. This new index, if any, is then materialized and

included into the “current configuration” of the next iteration. The iterative tuning process ends

when A returns nothing. Let 𝐶𝑖 be the configuration returned in the 𝑖-th iteration by the index

tuner, and let 𝑃𝑖 be the plan of 𝑞 on top of 𝐶𝑖 and 𝑡𝑖 be the recorded execution time of 𝑃𝑖 . We

generate one pair of plans (𝑃𝑖−1, 𝑃𝑖) for the query 𝑞 in each iteration 𝑖 = 1, 2, ..., which is denoted as

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Workload #All #QPR %QPR 𝑇 (𝑃𝑏) 𝑇 (𝑃𝑎) %Impr
TPC-H 22 1 4.55% 0.04h 0.01h 85.33%

DSB 67 2 2.99% 0.05h 0.02h 63.49%

JOB 108 14 12.96% 0.33h 0.22h 33.04%

STATS 91 3 3.30% 0.23h 0.24h -5.95%

Real-DY 29 4 13.79% 0.58h 0.62h -5.82%

Real-LO 31 3 9.68% 0.03h 0.02h 36.13%

Real-MS 39 1 2.56% 0.09h 0.05h 44.26%

Real-RE 21 4 19.05% 0.23h 0.27h -17.35%

Real-DW 107 4 3.74% 0.32h 0.31h 3.14%

Real-ED 36 0 0.00% 2.43h 0.29h 88.12%

Real-MP 127 10 7.87% 0.42h 0.41h 2.38%

Real-SE 19 0 0.00% 0.00h 0.00h 80.28%

Real-RM 15 0 0.00% 0.47h 0.23h 50.58%

Real-SA 12 0 0.00% 0.22h 0.19h 13.41%

Total 724 46 6.35% 5.44h 2.88h 47.16%
Table 3. QPRs emerging in one-shot index tuning. [#All, the total number of plan pairs; #QPR, the number
of plan pairs with QPRs; %QPR, the percentage of QPR, defined as #QPR

#All × 100%; 𝑇 (𝑃
𝑏), the total execution

time of all “before plan” 𝑃𝑏 ; 𝑇 (𝑃𝑎), the total execution time of all “after plan” 𝑃𝑎 ; %Impr, the percentage

improvement defined as
(
1 − 𝑇 (𝑃𝑎)

𝑇 (𝑃𝑏)

)
× 100%.]

(𝑞, 𝑃𝑖−1, 𝑃𝑖 , 𝑡𝑖−1, 𝑡𝑖). A formal algorithmic description of incremental tuning can be found in the full

version [55]. Incremental tuning is useful when index tuning has to be done concurrently while

the database server is also processing queries, to reduce the inference or interruption of normal

query processing [7].

2.1.3 Evolutionary Index Tuning. For each query 𝑞 ∈ 𝑊 , we run the index tuner A to tune the

query 𝑞 on top of the initial configuration 𝐶0. We then materialize the configuration 𝐶 returned by

A. For each subset 𝑆 of 𝐶 , we obtain the query plan of 𝑞 on top of 𝑆 and record its execution time.

We include a pair of plans (𝑞, 𝑃1, 𝑃2, 𝑡1, 𝑡2) for two different subsets 𝑆1 and 𝑆2 of 𝐶 by ensuring that
the query optimizer’s estimated cost of 𝑃𝑏 is no less than that of 𝑃𝑎 , where 𝑡1 and 𝑡2 are the execution
time of 𝑃𝑏 and 𝑃𝑎 , respectively. See [55] for a formal algorithmic description of evolutionary tuning.

The evolutionary index tuning setup is motivated by a common scenario that we have seen in

practice: index evolution from a well-tuned database. Index evolution includes dropping indexes

and creating new indexes, due to reasons such as changes on storage constraints. Index evolution,

e.g., deletion of existing indexes, may result in QPR, and evolutionary index tuning simulates

all possible outcomes of index evolution. Note that we have intentionally enforced (optimizer

estimated) cost(𝑃1) ≥ cost(𝑃2); otherwise, a reasonable index tuner would not even recommend

the configuration corresponding to 𝑃𝑎 . A similar setup was used in [10] to generate training data

for ML-based QPR detectors, though the constraint cost(𝑃1) ≥ cost(𝑃2) was not forced.
2.1.4 Discussion. We focused on single-query tuning in our empirical study to avoid complexity

that can emerge when tuning a multi-query workload, which is a more common scenario in practice.

However, it typically requires placing more constraints on the recommended indexes, such as the

maximum number of indexes allowed or the maximum storage space that can be taken. These

extra constraints can significantly increase the exploration space of a controlled empirical study.

Our single-query tuning setups can be thought of as tuning a multi-query workload without such

constraints. As a result, it actually has higher coverage in terms of the identified regression patterns

(see Section 3), some of which may not appear or appear less frequently when tuning a multi-query

workload with constraints. Index interaction has also been covered by single-query tuning, since

the index tuning algorithm (e.g., a classic two-phase greedy search algorithm that is implemented

inside DTA [4]) used for enumerating index configurations works in the same way of tuning a

multi-query workload.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Workload #All #QPR %QPR 𝑇 (𝑃𝑏) 𝑇 (𝑃𝑎) %Impr
TPC-H 49 5 10.20% 0.33h 0.30h 7.96%

DSB 191 18 9.42% 0.11h 0.07h 29.97%

JOB 199 28 14.07% 0.61h 0.47h 21.81%

STATS 184 9 4.89% 0.10h 0.11h -12.81%

Real-DY 140 20 14.29% 8.73h 13.32h -52.53%

Real-LO 42 3 7.14% 0.04h 0.02h 33.19%

Real-MS 47 5 10.64% 0.09h 0.06h 34.91%

Real-RE 44 7 15.91% 0.31h 0.27h 14.34%

Real-DW 37 3 8.11% 0.25h 0.21h 13.68%

Real-ED 12 0 0.00% 0.20h 0.02h 90.51%

Real-MP 12 2 16.67% 0.01h 0.01h -56.32%

Real-SE 17 0 0.00% 0.00h 0.00h 38.75%

Real-RM 6 1 16.67% 0.23h 0.13h 42.43%

Real-SA 8 0 0.00% 0.12h 0.08h 31.73%

Total 988 101 10.22% 11.12h 15.10h -35.77%
Table 4. QPRs emerging in incremental index tuning.

2.2 Results of Index Tuning Data Collected
We use standard benchmarks as well as real customer workloads in our experiments. For benchmark

workloads, we use (1) a skewed version [32] of the TPC-H benchmark, (2) DSB [9], a variant of

the TPC-DS benchmark with more variety on the data distribution, (3) the “Join Order Bench-

mark” (JOB) [23], and (4) the “Cardinality Estimation Benchmark” (STATS) [14]. We also use 10

real workloads. Table 1 summarizes some basic properties of the workloads, in terms of schema

complexity (e.g., the number of tables), query complexity (e.g., the average number of joins and

table scans contained by a query), and database/workload size. We use Microsoft SQL Server 2022

as the DBMS and use DTA as the index tuner.

Table 2 presents the statistics of the index tuning data collected. We have the same number of

plan pairs as that of queries in one-shot tuning, whereas the number of plan pairs in incremental

tuning increases by 36.5%. On the other hand, the number of plan pairs obtained from evolutionary

tuning is significantly large, due to the exponential explosion of subset enumeration.

2.3 Distributions of QPR
We use the notation (𝑞, 𝑃𝑏, 𝑃𝑎, 𝑡𝑏, 𝑡𝑎) to denote a general plan pair in the index tuning data collected,

regardless of the specific index tuning scenarios, where 𝑃𝑏 and 𝑃𝑎 represent the “before plan” and

“after plan” as defined in Figure 1, and 𝑡𝑏 and 𝑡𝑎 represent the execution time of 𝑃𝑏 and 𝑃𝑎 .

A plan pair (𝑞, 𝑃𝑏, 𝑃𝑎, 𝑡𝑏, 𝑡𝑎) is classified as a QPR if
𝑡𝑎

𝑡𝑏
− 1 ≥ 𝜏 , where 𝜏 is a regression threshold

that measures the degree of QPR. We set 𝜏 = 0.5 in our analysis, i.e., the elapsed query execution

time of 𝑃𝑎 is at least 50% longer than that of 𝑃𝑏 .

Tables 3 and 4 present the distributions of QPRs emerging in one-shot and incremental index

tuning, where we see around 6.3% and 10.2% QPRs repectively. While this may seem to suggest that

the chance of QPR is relatively low in practice, it does not mean that such QPRs are insignificant. To
the contrary, some QPRs can be considerable. To demonstrate this, Tables 3 and 4 further present

the total execution time𝑇 (𝑃𝑏) and𝑇 (𝑃𝑎) of 𝑃𝑏 and 𝑃𝑎 for all plan pairs (𝑃𝑏, 𝑃𝑎) in each workload as
well as the percentage improvement at workload level. A negative improvement means a workload-

level regression. We observe significant slowdown of the execution on certain workloads albeit a

small QPR rate. For example, for incremental tuning on Real-DY, although the percentage of QPR

is only around 15%, the total workload execution time is increased from 8 hours to 13.3 hours, i.e.,

a 52% regression.

Table 5 further presents the distribution of QPRs emerging in evolutionary index tuning. We

observe around 7.4% QPR overall, which is in line with the QPR rates observed from one-shot

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Workload #All #QPR %QPR 𝑇 (𝑃𝑏) 𝑇 (𝑃𝑎) %Impr
TPC-H 1,156 36 3.11% 3.32h 1.06h 68.22%

DSB 543,198 13,784 2.54% 406h 289h 28.98%

JOB 189,320 55,155 29.13% 188h 344h -83.12%

STATS 38,773 2,743 7.07% 85.73h 87.12h -1.62%

Real-DY 143,255 649 0.45% 5562h 3230h 41.93%

Real-LO 12,779 1,429 11.18% 71.15h 18.57h 73.91%

Real-MS 199,415 9,592 4.81% 594h 273h 53.92%

Real-RE 2,704 0 0.00% 176h 171h 2.60%

Real-DW 17,916 2,348 13.11% 113h 107h 5.14%

Real-ED 875 20 2.29% 40.61h 18.31h 54.90%

Real-MP 9,583 945 9.86% 12.29h 7.20h 41.38%

Real-SE 9,224 261 2.83% 17.65h 6.14h 65.19%

Real-RM 55 0 0.00% 4.81h 4.01h 16.79%

Real-SA 6 4 66.67% 0.04h 0.06h -38.91%

Total 1.17m 86,966 7.44% 7277h 4559h 37.35%
Table 5. QPRs emerging in evolutionary index tuning.

and incremental tuning. We also observe flip of improvement/regression on some workloads. For

example, while Real-DY regresses in one-shot and incremental tuning, it improves significantly in

evolutionary tuning. On the other hand, JOB improves in one-shot and incremental tuning, but it

regresses dramatically in evolutionary tuning.

Summary. While the chance of QPR is around 10% to 15% based on our evaluation, the impact on

query execution time can be much higher. As shown in Tables 4 and 5, QPR can result in around 50%

to 80% regression in terms of query execution time for certain databases and workloads. Therefore,

detecting and correcting QPR is important for practical index tuning. A more complete overview of

found QPRs can be found in the full version [55].

3 Regression Pattern Analysis
We analyze QPRs using the data generated by one-shot tuning and incremental tuning. The goal of

this investigation is to understand the root causes of QPRs andwhether there are recurring, ubiquitous
patterns across the databases and workloads. Table 6 presents a taxonomy of the regression patterns

that we found for the QPRs.

3.1 Taxonomy of Regression Patterns
We categorize the QPRs into two categories: (c1) QPRs due to problematic change of access path

between 𝑃𝑏 and 𝑃𝑎 , and (c2) QPRs due to missing critical optimizations that were present in 𝑃𝑏 .

3.1.1 Problematic Change of Access Path (c1). By “change of access path”, we mean one of the

following situations: (1) a table access operator (e.g., a table scan, an index scan, or an index seek)

in 𝑃𝑏 has been changed in 𝑃𝑎 ; (2) the same table access operator is used but its usage pattern is

changed between 𝑃𝑏 and 𝑃𝑎 , e.g., it serves as the inner child of a nested-loop join in 𝑃𝑎 instead of a

hash join in 𝑃𝑏 ; or (3) both a table access operator and its usage pattern are changed. There is a

significant number of QPRs whose root causes can be attributed to some problematic change of

access path. We see two primary patterns for QPRs that fall into this category:

• (RP-1a) 𝑃𝑎 introduces a new expensive nested-loop join (NLJ) due to a new index seek that serves

as its right/inner child;

• (RP-1b) 𝑃𝑎 introduces a new expensive NLJ due to its reduced estimated cost by the optimizer.

We next present examples of these regression patterns.

Example 1 (RP-1a). Figure 2 presents an example of RP-1a. The QPR comes from the query Q-3 of
Real-LO with one-shot index tuning. The “before plan” 𝑃𝑏 does not contain any NLJ. The “after plan”
𝑃𝑎 introduces the node 19, which is an index-based NLJ that becomes the bottleneck of query execution.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Category ID Description

(c1) RP-1a Expensive NLJ due to new inner index seek

RP-1b Expensive NLJ due to reduced estimated cost

(c2) RP-2 Missing critical aggregation pushdown

RP-3 Missing critical bitmap filter pushdown

Table 6. Taxonomy of regression patterns found.

11: HashJoin

ET: 1.9s OptE:80.0

21: T_Scan(8.6K)

ET: 0.17s OptE:0.5

[W_PRODUCT_DH] [T32153]

Est:8.6K,
Act:8.6K

22: HashAgg

ET: 1.6s OptE:79.3

Est:52.9K,
Act:68.7K

Est:14.8K,
Act:68.2K

23: Filter

ET: 1.5s OptE:79.3

Est:52.9K,
Act:70.1K

24: I_Scan(10M)

ET: 1.4s OptE:78.4

[W_ORDERITEM_F]

Est:52.9K,
Act:4.4M

(a) Before plan 𝑃𝑏

8: HashJoin

ET: 5.4s OptE:73.4

16: T_Scan(8.6K)

ET: 0.15s OptE:0.6

[W_PRODUCT_DH] [T32153]

Est:8.6K,
Act:8.6K

17: StreamAgg

ET: 5.2s OptE:72.4

Est:52.9K,
Act:68.7K

Est:14.8K,
Act:68.2K

19: INLJ

ET: 4.4s OptE:53.7

Est:52.9K,
Act:4.4M

20: Merge Interval

ET: 0ms OptE:0.0

Est:2,
Act:2

28: I_Seek(10M)

ET: 4.1s OptE:0.0

[W_ORDERITEM_F]

Est:52.9K,
Act:4.4M

25: Constant Scan

ET: 0ms OptE:0.0

Est:1,
Act:1

27: Constant Scan

ET: 0ms OptE:0.0

Est:1,
Act:1

(b) After plan 𝑃𝑎

Fig. 2. Illustration of regression pattern RP-1a. [Annotation of each operator node in a query plan tree: (1) Est,
estimated cardinality; (2)Act, actual cardinality; (3) ET, execution time; (4) OptE, optimizer’s estimated cost.]

Its right/inner input has huge CE error (estimated 52.9K vs. actual 4.4M rows). The NLJ is introduced
due to the availability of a new inner index seek (i.e., the node 28) in 𝑃𝑎 .

From Example 1, QPRs come with not only change of access path but also CE errors. Intuitively,

the introduction of new indexes should not affect cardinality estimation. However, since our

configuration may contain new statistics as well, they may have impact on cardinality estimation. It

then raises an interesting question: Is the QPR caused by only the new statistics, only the new indexes,
or both the new statistics and new indexes? To better understand this, we propose the following

ablation study:

Procedure 1 (Ablation Study). Let 𝐶 = (I,S) be the configuration that results in the regressed
plan 𝑃𝑎 of a query 𝑞, where I represents the new indexes and S represents the new statistics. We only
create the new statistics S without the new indexes I and let the query optimizer re-optimize the
query 𝑞. We call the plan returned by the query optimizer the intermediate plan and denote it by 𝑃𝑏 .

For Example 1, we observed 𝑃𝑏 returned by the ablation study is very different from either the

“before plan” 𝑃𝑏 or the “after plan” 𝑃𝑎 . Indeed, 𝑃𝑏 is even slower than 𝑃𝑎 with a different nested-loop

join as the bottleneck of query execution. 𝑃𝑎 improves over 𝑃𝑏 by removing that more problematic

nested-loop join and utilizing a recommended index, though it remains much slower than 𝑃𝑏 . Since

𝑃𝑏 is indeed the internal view of 𝑃𝑏 seen by some index tuners (e.g., DTA), such index tuners would

think of 𝑃𝑎 as an improvement over 𝑃𝑏 and therefore, incorrectly, recommend the corresponding

indexes (and statistics). This example demonstrates that the introduction of new statistics can have

significant impact on query optimizer’s cardinality estimation and therefore plan choice as well.

Example 2 (RP-1b). Figure 3 presents an example of RP-1b. The QPR comes from the query Q-3
of Real-DY with incremental index tuning. One bottleneck of the “after plan” 𝑃𝑎 is the node 10 that

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

24: MergeJoin

ET: 11.8s OptE:50.7

26: INLJ

ET: 11.8s OptE:48.8

Est:2,
Act:81.5K

71: T_Scan(101.6K)

ET: 1ms OptE:1.8

[INVENTITE... [T4]

Est:721,
Act:676

Est:2,
Act:81.5K

32: MergeJoin

ET: 10.1s OptE:35.9

Est:1,
Act:81.5K

68: T_Scan(1.2K)

ET: 1.0s OptE:0.0

[LOGISTICS... [T3]

Est:1.2K,
Act:99.8M

34: INLJ

ET: 8.0s OptE:26.4

Est:2,
Act:81.5K

62: T_Scan(101.5K)

ET: 97ms OptE:9.4

[INVENTTAB... [T1]

Est:541,
Act:579

(a) Before plan 𝑃𝑏

10: INLJ

ET: 53.8s OptE:43.1

11: INLJ

ET: 38.7s OptE:41.1

Est:2,
Act:81.5K

36: TSpool

ET: 11.3s OptE:2.0

Est:721,
Act:55.1M

Est:2,
Act:81.5K

12: INLJ

ET: 3.3s OptE:41.1

Est:1,
Act:81.5K

35: T_Scan(1.2K)

ET: 29.5s OptE:0.0

[LOGISTICS...] [T3]

Est:1.2K,
Act:99.8M

19: I_Seek(101.5K)

ET: 15ms OptE:0.0

[INVENTTAB...] [T1]

Est:579,
Act:579

34: T_Scan(26)

ET: 0.76s OptE:0.0

[DATAAREA]...] [T1]

Est:1,
Act:81.5K

37: T_Scan(101.6K)

ET: 18ms OptE:1.9

[INVENTITE...] [T4]

Est:721,
Act:676

(b) After plan 𝑃𝑎

Fig. 3. Illustration of regression pattern RP-1b.

represents an NLJ, which is much slower than the corresponding (logically equivalent) merge join (i.e.,
the node 24) in the “before plan” 𝑃𝑏 . The execution time of the two operators is 53.8s and 11.8s.

Unlike Example 1, the bottleneck NLJs in 𝑃𝑎 (nodes 10 and 11) are not introduced due to the

availability of any new inner index seek—the inner side of the join remains the same table scan in

both 𝑃𝑏 and 𝑃𝑎 . However, the outer side of node 12 in 𝑃𝑎 contains a new index seek (node 19) for a

table that was accessed using table scan in 𝑃𝑏 (node 62). This new index seek indirectly leads the

query optimizer to introduce NLJ for node 10 in 𝑃𝑎 since the optimizer estimated cost (i.e., 43.1) is

lower than that of corresponding plan subtree rooted at node 24 in 𝑃𝑏 (i.e., 50.7). 𝑃𝑎 is significantly

slower due to introduction of spool operator in the inner side of node 10, that creates bottleneck

for pipelined execution of both NLJs (nodes 10 and 11) due to huge underestimation in the number

of rebinds. Observe that node 35 in 𝑃𝑎 is significantly slower compared to corresponding node 68

in 𝑃𝑏 despite the same access path because 𝑃𝑎 uses a single thread compared to 40 threads used

by 𝑃𝑏 in Figure 3(a). This change from parallel to serial execution is a side effect of change in cost

estimates in the two cases.

To separate the impact of the new statistics and the new indexes, we repeated the ablation study

in Procedure 1. Interestingly, in this case 𝑃𝑏 remains the same as 𝑃𝑏 . This means that, even though

the new statistics can affect cardinality estimation, the impact is not significant enough to change

the decision made by the query optimizer. As a result, QPR would not have occurred if we only

brought in the new statistics but not the new indexes.

3.1.2 Missing Critical Optimizations (c2). Unlike the previous category, QPRs that fall into this

category do not suffer from change in access path selection. That is, the access paths of 𝑃𝑎 may

have changed compared to 𝑃𝑏 , but these changes are not the root causes of the QPRs. Rather, some

critical optimizations that were present in 𝑃𝑏 appeared to be missing in 𝑃𝑎 . Again, we observe two

major patterns for such QPRs:

• (RP-2) 𝑃𝑎 misses a critical aggregation pushdown in 𝑃𝑏 ;

• (RP-3) 𝑃𝑎 misses a critical bitmap filter pushdown in 𝑃𝑏 .

Below, we again present examples of these regression patterns.

Example 3 (RP-2). Figure 4 presents an example of RP-2. The QPR comes from the query Q-106 of
STATS with one-shot index tuning. The bottleneck of the “after plan” 𝑃𝑎 is the node 0 that represents
an aggregation operator. This aggregation is much faster in the “before plan” 𝑃𝑏 , thanks to the

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

1: HashJoin

ET: 0.25s OptE:4.2

2: HashJoin

ET: 76ms OptE:3.4

Est:3.3K,
Act:19.2K

9: CI_Scan(79.9K)

ET: 14ms OptE:0.3

[badges] [b]

Est:77.6K,
Act:77.5K

Est:10.2K,
Act:3.1M

3: MergeJoin

ET: 52ms OptE:2.4

Est:1.8K,
Act:5.3K

8: CI_Scan(174.3K)

ET: 17ms OptE:0.7

[comments] [c]

Est:24.8K,
Act:24.7K

5: HashAgg

ET: 40ms OptE:2.0

Est:1.8K,
Act:5.3K

7: CI_Scan(40.3K)

ET: 7ms OptE:0.2

[users] [u]

Est:40.3K,
Act:40.3K

6: CI_Scan(328.1K)

ET: 31ms OptE:1.4

[votes] [v]

Est:33.4K,
Act:33.7K

(a) Before plan 𝑃𝑏

0: ScalarStreamAgg

ET: 42.7s OptE:1.9

1: HashJoin

ET: 26.0s OptE:1.9

Est:19.8K,
Act:537.4M

2: HashJoin

ET: 1.1s OptE:1.2

Est:6.4K,
Act:2.1M

8: I_Seek(79.9K)

ET: 10ms OptE:0.3

[badges] [b]

Est:77.6K,
Act:77.5K

3: HashJoin

ET: 0.17s OptE:0.8

Est:6.4K,
Act:2.1M

7: I_Seek(40.3K)

ET: 5ms OptE:0.1

[users] [u]

Est:40.3K,
Act:40.3K

5: I_Seek(174.3K)

ET: 3ms OptE:0.1

[comments] [c]

Est:24.8K,
Act:24.7K

6: I_Seek(328.1K)

ET: 5ms OptE:0.1

[votes] [v]

Est:33.7K,
Act:33.7K

(b) After plan 𝑃𝑎

Fig. 4. Illustration of regression pattern RP-2.

aggregation pushdown introduced by the node 5. The main cause of this bad decision made by the
query optimizer on eliminating the aggregation pushdown is the CE errors at the join nodes 3 (6.4K
estimated vs. 2.1M actual, i.e., 328× underestimation), 2 (6.4K estimated vs. 2.1M actual, i.e., 328×
underestimation), and 1 (19.8K estimated vs. 0.5B actual, i.e., 25,252× underestimation) in 𝑃𝑎 . While
cardinality underestimation does present in 𝑃𝑏 as well, it is at a much smaller scale. As a result, the
amplified cardinality underestimation made the query optimizer think that the aggregation operator
is cheap enough and is not worth a pushdown.

One may ask why cardinality underestimation is amplified in the “after plan” 𝑃𝑎 for the ag-

gregation operator. We attribute this to the new statistics brought in by the new indexes being

recommended, as the new indexes themselves should not impact cardinality estimation. We also

notice that the join order and join operator choice of 𝑃𝑎 are different from that of the “before

plan” 𝑃𝑏 , though they are not the performance bottleneck of 𝑃𝑎 . Again, we further performed the

ablation study in Procedure 1. Interestingly, it turns out that the “before plan” 𝑃𝑏 again remains the

choice of the query optimizer in this case (i.e., 𝑃𝑏 = 𝑃𝑏). This suggests that the amplified cardinality

underestimation itself does not result in QPR—the aggregation pushdown remains worthwhile. It

is the new indexes that further reduced the estimated cost of 𝑃𝑎 , which misled the query optimizer

to change its decision on aggregation pushdown.

Example 4 (RP-3). Figure 5 presents an example of RP-3. The QPR comes from the query Q-147 of
Real-MP with one-shot index tuning. Modern query optimizers use bitmap filter pushdowns [31] in
hash join or merge join to reduce the number of rows that need to be fetched from the inner side (of the
join) that match the outer side (of the join). The decision of whether a bitmap filter should be pushed
down is made by the query optimizer based on its estimated selectivity. The “before plan” 𝑃𝑏 contains a
bitmap filter pushdown on the clustered index scan over the table “MainTable,” and the actual output
cardinality is 86K after bitmap filter pushdown. This bitmap filter is missing in the “after plan” 𝑃𝑎 ,
and the actual output cardinality goes up to 1.0M.

Unlike the previous examples, we do not observe significant cardinality underestimation in the

“after plan” 𝑃𝑎 of Example 4. To the contrary, there is significant cardinality overestimation in 𝑃𝑎 ,

which suggests that the actual cost of 𝑃𝑎 should be even less. Interestingly, there is cardinality

underestimation on the merge join (node 5) of the “before plan” 𝑃𝑏 (i.e., 4.6K estimated output

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

5: MergeJoin

ET: 0.71s OptE:73.8

6: Sort

ET: 0.17s OptE:6.3

Est:100K,
Act:100K

10: Sort

ET: 0.44s OptE:66.5

Est:1M,
Act:86K

Est:4.6K,
Act:250.9K

9: CI_Scan(100K)

ET: 25ms OptE:3.6

[MainTableNonPartition] [b]

Est:100K,
Act:100K

12: CI_Scan(1M)

ET: 0.34s OptE:35.4

Bitmap1005

[MainTable] [a]

Est:1M,
Act:86K,

ActRead:1M

(a) Before plan 𝑃𝑏

5: MergeJoin

ET: 2.1s OptE:42.7

7: I_Scan(100K)

ET: 16ms OptE:2.3

[MainTableNonPartition] [b]

Est:100K,
Act:100K

9: I_Scan(1M)

ET: 0.13s OptE:24.4

[MainTable] [a]

Est:1M,
Act:1M

Est:1.8M,
Act:250.9K

(b) After plan 𝑃𝑎

Fig. 5. Illustration of regression pattern RP-3.

rows vs. 250.9K actual rows), and the introduction of the new statistics helps “fix” it; however,

this fix goes too far that ends up with significant cardinality overestimation on the same merge

join (i.e., 1.8M estimated output rows vs. 250.9K actual rows). As a result, creating (and pushing

down) a bitmap filter based on a much higher estimated selectivity/cardinality is not attractive.

To validate this, we further preformed the ablation study in Procedure 1. The 𝑃𝑏 turned out to

be a “transitioning plan”—its only difference from 𝑃𝑏 is the removal of that bitmap filter. This

confirms that the missed bitmap filter pushdown optimization is indeed caused by the cardinality

overestimation due to the introduction of the new statistics.

3.2 Summary and Discussion
We have the following observations based on our analysis.

Observation 1. Most of the significant QPRs can be attributed to some regression pattern that is
simple and easy to understand.

Although our list of regression patterns in Table 6 is by no means exhaustive, it covers most of

the significant QPRs observed in our data. Tables 7 and 8 further present the breakdowns of QPRs

covered by individual regression patterns across the workloads, where we use RP-1 to refer to the

regression pattern RP-1a or RP-1b, as they both characterize the existence of an expensive NLJ.

Observation 2. Regression patterns typically characterize some “local change” or “local transfor-
mation” in the plan structure.

For example, RP-1 (including both RP-1a and RP-1b) asserts the presence of a new expensive

nested-loop join. RP-2 asserts the decision of pushing down an aggregation or not; similarly, RP-3

asserts the decision of pushing down a bitmap filter or not. Once a regression pattern has been

detected, it is straightforward to reverse the harmful change indicated by the pattern. For example,

if RP-1 is detected, we may hint the query optimizer [33] to not use the problematic index. On

the other hand, if RP-2 or RP-3 is detected, we can simply force pushing down the corresponding

aggregation or bitmap filter that is critical to the query performance, by using mechanisms such as

plan forcing [28]. Although in this paper we do not explore potential ways of correcting QPR once

some regression pattern is detected, it is an interesting direction for future work.

Observation 3. The impact on cardinality estimation due to the introduction of new statistics can
be significant enough to change the optimization decision made by the query optimizer.

This observation is affirmed by the ablation study in Procedure 1 that highlights the impact

of the new statistics. It has two possible outcomes: (1) the “intermediate plan” 𝑃𝑏 remains the

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Pattern Workload #QPR 𝑇 (𝑃𝑏) 𝑇 (𝑃𝑎)
RP-1 Real-LO 3 13.08s 31.47s

RP-1 Real-MP 1 1.55s 13.85s

RP-2 STATS 1 0.53s 49.40s

RP-2 Real-RM 1 83.21s 124.33s

RP-3 Real-MP 1 1.24s 3.72s

RP-3 Real-DY 1 63.02s 128.59s

Table 7. Regression patterns in one-shot index tuning.

same as the “before plan” 𝑃𝑏 ; and (2) 𝑃𝑏 is different from 𝑃𝑏 . If 𝑃𝑏 = 𝑃𝑏 , it implies that the new

statistics do not change the plan returned by the query optimizer, even if the new statistics may

have impacted cardinality estimation. On the other hand, if 𝑃𝑏 ≠ 𝑃𝑏 , the impact on cardinality

estimation is significant enough to change the query optimizer’s plan choice. We have seen QPR

examples of both cardinality underestimation and cardinality overestimation with the new statistics.

While it is intuitive that cardinality underestimation can result in QPRs, the QPRs due to cardinality

overestimation are subtle (e.g., Example 4). Nevertheless, the implication here is that a regression

pattern needs to account for not only change of access paths (due to availability of new indexes) but
also cardinality estimation errors (due to availability of new statistics).

Observation 4. The majority of the significant QPRs are attributed to the regression pattern RP-1
(including both RP-1a and RP-1b), namely, the emergence of a new expensive nested-loop join in the
regressed query plan.

This observation is evident from Tables 7 and 8, where RP-1 accounts for 23 of the QPRs while

the other patterns account for 5 QPRs in total. Moreover, we further looked into the degree of QPRs

in terms of their actual execution time, and we found that the QPRs due to RP-1 are much more
significant compared to the others. Therefore, in the rest of this paper we focus on addressing QPRs

that can be accounted for by RP-1. The popularity of RP-1 QPRs in the context of index tuning is

not a coincidence, as it is attractive for the query optimizer to choose a nested-loop join in the

presence of new indexes. Nested-loop join is powerful for accelerating query execution when there

is indeed only a small number of rows that need to be fetched via index seeks. However, it becomes

a risky choice in the presence of significant cardinality underestimation.

4 Pattern-based QPR Detector
We present a pattern-based QPR detector, based on Observation 4, namely, the majority of the

significant QPRs in index tuning can be attributed to the emergence of new expensive NLJs.

Although this detector is dedicated to detecting QPRs with new expensive NLJs, its underlying

design principles can be applied to develop QPR detectors for other regression patterns as well (see

Section 4.4 for a more detailed discussion).

We start with a formal characterization of such expensive NLJs (Section 4.1). We then develop

an algorithmic framework to detect expensive NLJ in an automated manner (Sections 4.2 and 4.3).

4.1 Characterization of Expensive NLJ
Observation 4 itself is far from actionable for QPR detection in practice. Indeed, a naive solution

here could be to forbid the use of nested-loop joins. However, this will forfeit most of the benefits

brought in by index tuning as well. Clearly, not all nested-loop joins are harmful, and the challenge

is to identify which ones are problematic or risky without executing the “after plan” 𝑃𝑎 .
To estimate the expensiveness of a nested-loop join, we define two metrics, local expensiveness

and global expensiveness, as follows.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Pattern Workload #QPR 𝑇 (𝑃𝑏) 𝑇 (𝑃𝑎)
RP-1 Real-DY 8 495.67s 11824.84s

RP-1 Real-ED 1 2.85s 5.77s

RP-1 JOB 2 4.23s 12.36s

RP-1 Real-LO 3 13.32s 33.67s

RP-1 Real-RE 3 1.32s 14.63s

RP-1 STATS 1 0.37s 3.34s

RP-1 Real-MP 1 4.00s 25.80s

RP-2 STATS 1 0.53s 39.57s

Table 8. Regression patterns in incremental index tuning.

Definition 1 (Local Expensiveness). Let 𝐽 be a nested-loop join contained by the “after plan” 𝑃𝑎

in QPR detection. The local expensiveness of 𝐽 is defined as 𝑙 (𝐽 , 𝑃𝑎) = cost(𝐽)
cost(𝑃𝑎) , where cost(𝐽) represents

the estimated cost of the plan subtree under the join 𝐽 .

A nested-loop join 𝐽 is locally expensive if 𝑙 (𝐽 , 𝑃𝑎) > 𝜏𝑙 , where 0 ≤ 𝜏𝑙 ≤ 1 is some threshold.

Local expensiveness characterizes how significant the execution cost of a nested-loop join is inside
the query plan. Ideally, one should use the actual execution time instead of query optimizer’s

estimated cost. Unfortunately, this is impossible in practice because the execution time of the “after

plan” 𝑃𝑎 is unknown when QPR detection needs to be performed. Thus, local expensiveness can

be inaccurate. For example, we may miss a locally expensive NLJ 𝐽 if cost(𝐽) is underestimated

and a relatively expensive operation follows. However, in general, we would expect a bottom-up

propagation of cost estimation errors [16]. That is, if cost(𝐽) is underestimated, then the costs of

higher-level operations are likely underestimated too. If so, the ratio between cost(𝐽) and cost(𝑃𝑎),
i.e., the local expensiveness of 𝐽 , will be relatively stable.

Definition 2 (Global Expensiveness). Let 𝐽 be a locally expensive nested-loop join, and let 𝑞
be the corresponding query in the workload𝑊 where 𝐽 comes from. Let 𝑡𝑏 (𝑞) be the execution time
of the “before plan” 𝑃𝑏 of 𝑞, which is presumably available before QPR detection starts. The global
expensiveness of 𝐽 is defined as 𝑔(𝐽 , 𝑞) = percentile(𝑡𝑏 (𝑞), {𝑡𝑏 (𝑞′)}𝑞′∈𝑊).

A nested-loop join 𝐽 is globally expensive if the corresponding query 𝑞 satisfies𝑔(𝐽 , 𝑞) > 𝜏𝑔 , where

0 ≤ 𝜏𝑔 ≤ 1 is some threshold. Intuitively, global expensiveness measures the relative execution

cost of a query at workload level. Specifically, 𝑡𝑏 (𝑞′) means the execution time of the “before

plan” of 𝑞′, which is presumed available when performing QPR detection. {𝑡𝑏 (𝑞′)} represents the
distribution of the “before plan” execution time w.r.t. all queries of a workload𝑊 . Essentially, we

use the percentile of 𝑡𝑏 (𝑞) in this “before plan” execution time distribution as our definition of the

global expensiveness of 𝑞. On the other hand, it is possible that a query 𝑞 is globally expensive but

actually not so under the new configuration, i.e., when considering the distribution of the “after

plan” execution time of all workload queries. Unfortunately, this latter “after plan” execution time

distribution is unknown when performing QPR detection. This is indeed a limitation of our current

definition of global expensiveness, which we leave for future work.

4.2 Regression Pattern by Expensive NLJ
We define the regression pattern based on expensive NLJ as 𝐽 = P(𝑃𝑏, 𝑃𝑎) over a pair of “before
plan” 𝑃𝑏 and “after plan” 𝑃𝑎 , with respect to a given local expensiveness threshold 𝜏𝑙 and a given

global expensiveness threshold 𝜏𝑔:

(1) The nested-loop join 𝐽 appears in 𝑃𝑎 but not in 𝑃𝑏 ;

(2) The nested-loop join 𝐽 is both locally and globally expensive;

(3) The right/inner side of the nested-loop join is a table access operator (with perhaps filters but

no other operators, e.g., join, on top of it), i.e., it is a “left deep” nested-loop join.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Hash
Join

NLJ2 NLJ3

NLJ1

Table
Scan

A IB

Index
Seek Ic D

Hash
Join

E

Index
Seek

Table
Scan

Table
Scan

IF

Index
Scan

depth 0

depth 1 depth 1

depth 2

Fig. 6. Illustration of the expensive NLJ pattern.

If there are multiple expensive nested-loop joins in 𝑃𝑎 , we will only return the “deepest” one in the

plan tree (where the root node of the plan tree receives a depth of zero).

Example 5 (Expensive NLJ Pattern). Figure 6 presents an example query plan that contains three
nested-loop joins NLJ

1
, NLJ

2
, and NLJ

3
. Suppose that all of them pass the local and global expensiveness

thresholds. NLJ
3
does not match the expensive NLJ pattern because it is not “left deep.” Both NLJ

1
and

NLJ
2
are “left deep,” but only NLJ

1
matches the pattern as it is the “deepest” one in the query plan.

We choose to focus on “left deep” nested-loop join following the observations on the simplicity

(i.e., Observation 1) and locality (i.e., Observation 2) of regression patterns. Compared to more

complicated “bushy” nested-loop join (e.g., NLJ
3
in Example 5), “left deep” nested-loop join is easier

to define and detect. The impact of an index is also more direct on “left deep” nested-loop join,

which makes it easier to understand and correct the corresponding QPR with remediation actions.

Moreover, we choose to focus on the deepest expensive “left deep” nested-loop join if there are

multiple candidates, because the (local) expensiveness of higher-level joins may be a consequence

of expensive joins below.

Algorithm 1 presents the details of automating the process of matching the expensive NLJ pattern

in a given plan pair (𝑃𝑏, 𝑃𝑎) of a query 𝑞. We start by looking for all nested-loop joins that appear

in the plan 𝑃𝑎 (line 2). For each of the nested-loop joins 𝐽 found, we simply check whether (1) 𝐽 is

“left deep,” (2) 𝐽 does not appear in the plan 𝑃𝑏 , and (3) 𝐽 is expensive; if so, we only keep the one

with the maximum depth (lines 3 to 9).

4.3 QPR Detection Algorithm
Our QPR detection algorithm based on the expensive NLJ pattern can be broken down into three

major steps: (1) match the expensive NLJ pattern using Algorithm 1; (2) measure the degree of
potential QPR based on the notion of cost inflation factors; and (3) recost the “before plan” and “after
plan” using the cost inflation factors and predict QPR based on the recomputed plan costs.

4.3.1 Cost Inflation Factors. Formally, let 𝐽 be an expensive nested-loop join operator found in the

“after plan” 𝑃𝑎 , and let𝑂𝑙 and𝑂𝑟 be its left/outer and right/inner input operators. Moreover, let𝑂𝑚
𝑙

and 𝑂𝑚
𝑟 be the corresponding match (i.e., logically equivalent operator) of 𝑂𝑙 and 𝑂𝑟 in the “before

plan” 𝑃𝑏 , respectively.

Definition 3 (Cost Inflation Factors). The cost inflation factors of the left and right inputs of
𝐽 are defined as

𝑓𝑙 =max{
ActCard(𝑂𝑚

𝑙
)

EstCard(𝑂𝑚
𝑙
) , 1} and 𝑓𝑟 =max{ActCard(𝑂

𝑚
𝑟)

EstCard(𝑂𝑚
𝑟)

, 1}.

Here, EstCard andActCard represent the estimated and actual cardinality, respectively. Intuitively,
cost inflation factors measure, in an approximate way, the impact of cardinality underestimation on

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Algorithm 1:MatchExpensiveNLJ(𝑞, 𝑃𝑏, 𝑃𝑎).
Input: (𝑃𝑏 , 𝑃𝑎), a pair of plans to detect QPR; 𝑞, the corresponding query in the workload𝑊 ; 𝜏𝑙 , the

threshold for local expensiveness; 𝜏𝑔 , the threshold for global expensiveness.

Output: 𝐽 , the expensive nested-loop join found.

1 𝐽 ← null;

2 J ← GetAllNLJs(𝑃𝑎);
3 foreach nested-loop join 𝐽 ′ ∈ J do
4 if 𝐽 ′ is “left deep” and 𝐽 ′ ∉ 𝑃𝑏 then
5 𝑙 (𝐽 ′, 𝑃𝑎) ← cost(𝐽 ′)

cost(𝑃𝑎) ;

6 𝑔(𝐽 ′, 𝑞) ← percentile(𝑡𝑏 (𝑞), {𝑡𝑏 (𝑞′)}𝑞′∈𝑊);
7 if 𝑙 (𝐽 ′, 𝑃𝑎) > 𝜏𝑙 and 𝑔(𝐽 ′, 𝑞) > 𝜏𝑔 then
8 if depth(𝐽 ′) > depth(𝐽) then
9 𝐽 ← 𝐽 ′;

10 return 𝐽 ;

the execution cost of the join. Moreover, once again we assume that we have obtained execution

information (in particular, true cardinality information) of the “before plan” 𝑃𝑏 .

4.3.2 Recosting of the Join and the Plan. The presence of cardinality underestimation makes it

necessary to recompute the costs of the “before plan” and the “after plan” to reevaluate the likelihood

of QPR. We conduct this recosting process [12, 54, 56] based on the cost inflation factors obtained

by Algorithm 2.

Specifically, Algorithm 3 presents the details of plan recosting, which employs Algorithm 4 as

a subroutine to recost the join operators. We start by seeking a match (i.e., logically equivalent

operator) of the expensive NLJ operator 𝐽 in 𝑃𝑏 (line 2). If such a match 𝐽 ′ is found, we call

Algorithm 4 to recost 𝐽 ′ based on its own cost inflation factors 𝑓 ′
𝑙
and 𝑓 ′𝑟 , and we recompute the

cost of 𝑃𝑏 by replacing the old cost of 𝐽 ′ with its new cost (lines 3 to 8). Similarly, we recost 𝐽 based

on the given cost inflation factors 𝑓𝑙 and 𝑓𝑟 and recompute the cost of 𝑃𝑎 accordingly (lines 9 to 11).

The recosting of the join operators 𝐽 and 𝐽 ′, as illustrated in Algorithm 4, works as follows. We

recompute the cost of a join based on its type. If it is a nested-loop join, we increase the cost of

the right/inner side and the residual cost (i.e., the cost of the join operator itself excluding the

costs of the left and right inputs) by a factor of 𝑓𝑙 · 𝑓𝑟 , while keeping the cost of the left/outer side
unchanged (line 3). This is easy to understand, as the cost inflation factors quantify the degree of

cardinality underestimation on the left and right inputs of the join. Therefore, for each iteration of

the nested-loop join, the cost of the inner side is roughly increased by a factor of 𝑓𝑟 . On the other

hand, the number of iterations is boosted by a factor of 𝑓𝑙 . This justifies the recosting formula of

the nested-loop join. Meanwhile, for other types of join, such as hash join or merge join, that do

not require multiple accesses of the right/inner side, we increase only the residual cost of the join

by a factor of 𝑓𝑙 · 𝑓𝑟 but not the cost of the right/inner side.

4.3.3 Putting It Together. Algorithm 5 presents the details of the pattern-based QPR detection

algorithm. We start by matching the expensive NLJ pattern using Algorithm 1 (line 1). We report

no QPR if we fail to find any expensive NLJ (lines 2 to 3). Otherwise, we compute the cost inflation

factors using Algorithm 2. We again report no QPR if there is no cardinality underestimation, i.e.,

𝑓𝑙 ≤ 1 and 𝑓𝑟 ≤ 1 (lines 4 to 6). Otherwise, we recost both plans 𝑃𝑏 and 𝑃𝑎 with the cost inflation

factors, using Algorithm 3, and we report QPR if recost(𝑃𝑎) > recost(𝑃𝑏) (lines 7 to 12).

Discussion. The QPR detection algorithm in Algorithm 5 is limited by the fact that it relies on

finding matches in the “before plan” 𝑃𝑏 . It can result in both false positives and false negatives:

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Algorithm 2: ComputeCostInflationFactors(𝐽 , 𝑃𝑏, 𝑃𝑎).
Input: (𝑃𝑏 , 𝑃𝑎), the plan pair; 𝐽 , the expensive NLJ found in 𝑃𝑎 .

Output: 𝑓𝑙 , the cost inflation factor of the left/outer input of 𝐽 ; 𝑓𝑟 , the cost inflation factor of the

right/inner input of 𝐽 .

1 𝑂𝑙 ← LeftChild(𝐽), 𝑂𝑟 ← RightChild(𝐽);
2 𝑓𝑙 ← 1, 𝑓𝑟 ← 1;

3 𝑂𝑚
𝑙
← Match(𝑂𝑙 , 𝑃

𝑏), 𝑂𝑚
𝑟 ← Match(𝑂𝑟 , 𝑃

𝑏);
4 if 𝑂𝑚

𝑙
is not null then

5 𝑓𝑙 ← max{ ActCard(𝑂
𝑚
𝑙
)

EstCard(𝑂𝑚
𝑙
) , 1};

6 if 𝑂𝑚
𝑟 is not null then

7 𝑓𝑟 ← max{ ActCard(𝑂
𝑚
𝑟)

EstCard(𝑂𝑚
𝑟)

, 1};
8 return 𝑓𝑙 , 𝑓𝑟 ;

• (False Positives) Consider a case where we have either 𝑓𝑙 > 1 or 𝑓𝑟 > 1 but we cannot find a match

for 𝐽 in 𝑃𝑏 . As a result, the cost of 𝑃𝑎 is increased after plan recosting, whereas 𝑃𝑏 cannot be

recosted by Algorithm 3 and thus cost(𝑃𝑏) remains the same. However, it is likely that cost(𝑃𝑏)
should have been increased, too, as the existence of cardinality underestimation in 𝑃𝑎 suggests

that there may be cardinality underestimation in 𝑃𝑏 as well. This possibility is currently ignored

by Algorithm 5. Consequently, if Algorithm 5 reports QPR in this case, it may be a false positive
due to the potential underestimation of cost(𝑃𝑏).
• (False Negatives) Consider another case where we cannot find a match for either 𝑂𝑙 or 𝑂𝑟 . As a

result, we may miss potential cardinality underestimation and therefore the recomputed cost of

𝐽 may be less than it should have been. When this happens, if we can find a match 𝐽 ′ in 𝑃𝑏 for

𝐽 , then it creates an unfair situation as we can use actual cardinality for recosting 𝐽 ′ but not 𝐽 .
Therefore, we may make the cost of 𝐽 ′ (and thus the plan 𝑃𝑏) higher but not the cost of 𝐽 (and

thus the plan 𝑃𝑎). Consequently, if Algorithm 5 reports no QPR in this case, it may be a false
negative due to the potential underestimation of cost(𝑃𝑎).

4.4 Other Regression Patterns
While it is not our goal in this paper to provide a comprehensive list of regression patterns and

their corresponding pattern-based QPR detectors, the principles and techniques developed can be

applied to the development of QPR detectors based on regression patterns other than RP-1. For

example, a QPR detector based on RP-2 or RP-3 would be to monitor any aggregation or bitmap

filter pushdowns that were present in 𝑃𝑏 but missing in 𝑃𝑎 , while also considering the degree of

cardinality estimation (CE) errors.

Although this case-by-case approach is effective for the QPR patterns covered in the present

study, a more general approach remains interesting. There are two basic elements in such a general

approach: (1) specification of the structural change between the “before plan” and the “after plan” and

(2) quantification of the CE error. From this point of view, we can retain the skeleton of Algorithm 5

and only replace the function calls MatchExpensiveNLJ(), ComputeCostInflationFactors(),
and RecostPlan() with implementations customized for detecting different QPR patterns. On the

other hand, one can further ask for a different approach that is more general than the one proposed

in this paper, which is an interesting but more challenging question. An idea could be to fully

automate the QPR pattern mining or discovery process, which may be a direction for future work.

5 Experimental Evaluation
We evaluate the pattern-based QPR detector proposed in Section 4 and report the experimental

evaluation results in this section.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Algorithm 3: RecostPlan(𝐽 , 𝑃𝑏, 𝑃𝑎).
Input: (𝑃𝑏 , 𝑃𝑎), the plan pair; 𝐽 , the expensive NLJ operator.

Output: recost(𝑃𝑏), the recomputed cost of plan 𝑃𝑏 ; recost(𝑃𝑎), the recomputed cost of plan 𝑃𝑎 .

1 recost(𝑃𝑏) ← cost(𝑃𝑏), recost(𝑃𝑎) ← cost(𝑃𝑎);
2 𝐽 ′ ← Match(𝐽 , 𝑃𝑏);
3 if 𝐽 ′ is not null then
4 𝑂 ′

𝑙
← LeftChild(𝐽 ′), 𝑂 ′𝑟 ← RightChild(𝐽 ′);

5 𝑓 ′
𝑙
← max{ ActCard(𝑂

′
𝑙
)

EstCard(𝑂′
𝑙
) , 1}, 𝑓

′
𝑟 ← max{ ActCard(𝑂

′
𝑟)

EstCard(𝑂′𝑟)
, 1};

6 recost(𝐽 ′) ← RecostJoin(𝐽 ′, 𝑓 ′
𝑙
, 𝑓 ′𝑟);

7 residual(𝑃𝑏) ← cost(𝑃𝑏) − cost(𝐽 ′);
8 recost(𝑃𝑏) ← residual(𝑃𝑏) + recost(𝐽 ′);
9 recost(𝐽) ← RecostJoin(𝐽 , 𝑓𝑙 , 𝑓𝑟);

10 residual(𝑃𝑎) ← cost(𝑃𝑎) − cost(𝐽);
11 recost(𝑃𝑎) ← residual(𝑃𝑎) + recost(𝐽);
12 return recost(𝑃𝑏), recost(𝑃𝑎);

Algorithm 4: RecostJoin(𝐽 , 𝑓𝑙 , 𝑓𝑟).
Input: 𝐽 , the join operator; 𝑓𝑙 , the cost inflation factor of the left/outer child of 𝐽 ; 𝑓𝑟 , the cost inflation

factor of the right/inner child of 𝐽 .

Output: recost(𝐽), the new cost of 𝐽 .

1 residual(𝐽) ← cost(𝐽) − outerChildCost(𝐽) − innerChildCost(𝐽);
2 if 𝐽 is nested-loop join then
3 recost(𝐽) ← outerChildCost(𝐽) + 𝑓𝑙 · 𝑓𝑟 · innerChildCost(𝐽) + 𝑓𝑙 · 𝑓𝑟 · residual(𝐽);
4 else
5 recost(𝐽) ← outerChildCost(𝐽) + innerChildCost(𝐽) + 𝑓𝑙 · 𝑓𝑟 · residual(𝐽);
6 return recost(𝐽);

5.1 Experiment Settings
We focus on detection of significant QPRs emerging in one-shot, incremental, and evolutionary

tuning by setting the regression threshold 𝜏 = 0.5 (i.e., 50% QPR).

5.1.1 Evaluation Metrics. We use the following metrics to evaluate a QPR detector.

The first set of metrics are standard based on the viewpoint of treating QPR detection as a binary

classification problem: (1) precision, (2) recall, (3) accuracy, and (4) F1 score.
The second set of metrics are to address the limitation of the binary classification view of QPR

detection, as some QPRs can be much worse than the others: (1) time of the “before plan” 𝑃𝑏 , (2) time
of the “after plan” 𝑃𝑎 , (3) time of 𝑃pred, and (4) time of 𝑃best. Here, 𝑃pred is the plan chosen based on

the output of the QPR detector ℎ. That is, 𝑃pred = 𝑃𝑏 if ℎ predicts a QPR, and 𝑃pred = 𝑃𝑎 otherwise.

𝑃best is the plan chosen based on the output of an oracle (i.e., a perfect QPR detector) that always

makes the right prediction. That is, 𝑃best = 𝑃𝑏 if 𝑡𝑏 < 𝑡𝑎 , where 𝑡𝑏 and 𝑡𝑎 are the execution time of

𝑃𝑏 and 𝑃𝑎 respectively, and 𝑃best = 𝑃𝑎 otherwise.

5.1.2 QPR Detectors. We evaluate the pattern-based QPR detector proposed in Section 4, as well as

three state-of-the-artML-based QPR detectors: (1)AImeets AI (AMA) [10], (2) TreeCNN (TCNN) [26],

and (3) QueryFormer (QF) [60].

5.2 ML-based QPR Detection
The main difference between the three ML-based QPR detectors AMA, TCNN, and QF lies in the

feature representation of a query plan. Specifically, AMA carefully selects features that are important

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

for characterizing the execution profiles of individual operators in the query plan (e.g., estimated

number of input and output rows, estimated number of input and output bytes, estimated execution

cost, etc.). Such operator-level features are further aggregated w.r.t. the plan tree structure to form

a vector representation of the query plan. On the other hand, both TCNN and QF adopt more

advanced technologies to encode a query plan into its vector representation. In more detail, TCNN

leverages tree convolution [34] that adapts the well-known convolutional neural network (CNN) [25]

to work for tree-structured data, whereas QF leverages tree transformer that adapts the well-known
transformer architecture [47] to encode query plan tree. Therefore, we can use a uniform framework

to evaluate all these three ML-based QPR detectors.

Given a pair of plans (𝑃𝑏, 𝑃𝑎), we first convert 𝑃𝑏 and 𝑃𝑎 into their feature vectors ®P𝑏 and ®P𝑎
using the plan encoder provided by the corresponding ML-based QPR detector. Following [10], we

then take the difference ®x = ®P𝑎 − ®P𝑏 as the input to train a binary classifier ℎ as the QPR detector.

For fair comparison, we use the same classifier ℎ for AMA, TCNN, and QF plan representations.

Specifically, ℎ is a 4-layer fully-connected deep neural network, where each hidden layer contains

64 neurons and uses ReLU as the activation function. A similar architecture has been used in [60].

5.2.1 Implementation and Evaluation Setups. We implement AMA, TCNN, and QF using PyTorch,

and we use an Nvidia RTX A6000 GPU for model training and inference. For model training, we

use the Adam optimizer [18] with 100 epochs and batch size of 32.

We use a “leave one out” setup for evaluating the ML-based technologies [10]. Specifically, let

W be the set of all workloads. For each workload𝑊 ∈ W, we use all index tuning data collected

for the other workloadsW−𝑊 =W − {𝑊 } to train an ML modelM and test it using the index

tuning data collected for𝑊 .

5.2.2 Results. Figure 7(a) and 7(b) present results on the one-shot and incremental index tuning

data in terms of prediction accuracy of the ML-based QPR detectors. We were not able to finish

training TCNN and QF within reasonable time (i.e., 48 hours) on the evolutionary index tuning

dataset. We observe that TCNN and QF perform better than AMA in terms of the “accuracy” metric.

However, it does not suggest that TCNN and QF are more effective binary classifiers, because their

F1 scores are much lower than that of AMA. In fact, in almost all cases the F1 scores of TCNN

and QF are zero, which means that they are not able to capture any QPR. In other words, they

behave the same as a degenerated QPR predictor that simply says there is no QPR. Overall, all three

ML-based QPR detectors show unsatisfactory performance. There are several potential reasons for

this observation. First, the one-shot and incremental index tuning datasets are relatively small and

therefore sophisticated plan encodings such as TCNN and QF are perhaps not worthwhile and more

likely to overfit. Second, the fact that QPR is a relatively infrequent event makes the classification

problem more challenging (e.g., a naive classifier such as the degenerated one can achieve high

accuracy but fail miserably in terms of F1 score). This is related to the well-known “learning from

imbalanced data” challenge in the literature [20]. Indeed, we have tried to “rebalance” the data

by giving the regressed cases higher weights in the loss function when training the ML-based

classifiers but we still see underwhelming results as shown in Figures 7(a) and 7(b). Third, the

“leave one out” setup is arguably the worst-case scenario for ML-based classifiers, as the training

and test datasets may not follow the same distribution. Indeed, our results here resonate with the

observations in [10], where the AMA classifier shows similar results to the degenerated classifier

under the “leave one out” setup.

5.3 Pattern-based QPR Detection
We now evaluate the pattern-based QPR detector proposed in Section 4. We set the local expensive-

ness threshold 𝜏𝑙 = 0.1 and the global expensiveness threshold 𝜏𝑔 = 0.1 in our evaluation, which are

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

Algorithm 5: Pattern-based QPR detection.

Input: (𝑃𝑏 , 𝑃𝑎), the pair of plans; 𝑞, the corresponding query.

Output: true, if (𝑃𝑏 , 𝑃𝑎) is a QPR; false, otherwise.
1 𝐽 ← MatchExpensiveNLJ(𝑞, 𝑃𝑏 , 𝑃𝑎);
2 if 𝐽 is null then
3 return false;
4 𝑓𝑙 , 𝑓𝑟 ← ComputeCostInflationFactors(𝐽 , 𝑃𝑏 , 𝑃𝑎);
5 if 𝑓𝑙 ≤ 1 and 𝑓𝑟 ≤ 1 then
6 return false;
7 // We have either 𝑓𝑙 > 1 or 𝑓𝑟 > 1;

8 recost(𝑃𝑏), recost(𝑃𝑎) ← RecostPlan(𝐽 , 𝑃𝑏 , 𝑃𝑎);
9 if recost(𝑃𝑎) > recost(𝑃𝑏) then
10 return true;
11 else
12 return false;

 0

 0.2

 0.4

 0.6

 0.8

 1

TPC
−H

D
SB

JO
B

STATS

R
ea

l−
D
Y

R
ea

l−
LO

R
ea

l−
M

S

R
ea

l−
R
E

R
ea

l−
D
W

R
ea

l−
ED

R
ea

l−
M

P

R
ea

l−
SE

R
ea

l−
R
M

R
ea

l−
SA

AMA−acc
TCNN−acc

QF−acc
AMA−f1

TCNN−f1
QF−f1

A
c
c
u
ra

c
y
 /
 F

1
 S

c
o
re

Workload

(a) One-shot Index Tuning

 0

 0.2

 0.4

 0.6

 0.8

 1

TPC
−H

D
SB

JO
B

STATS

R
ea

l−
D
Y

R
ea

l−
LO

R
ea

l−
M

S

R
ea

l−
R
E

R
ea

l−
D
W

R
ea

l−
ED

R
ea

l−
M

P

R
ea

l−
SE

R
ea

l−
R
M

R
ea

l−
SA

AMA−acc
TCNN−acc

QF−acc
AMA−f1

TCNN−f1
QF−f1

A
c
c
u
ra

c
y
 /
 F

1
 S

c
o
re

Workload

(b) Incremental Index Tuning

Fig. 7. Comparison of ML-based regression detectors in terms of prediction accuracy and F1 score.

the default settings of the pattern-based QPR detector. We use AMA as the baseline of ML-based

detectors to compare with.

5.3.1 One-shot Index Tuning. Figure 8(a) presents the (percentage) improvement of the total

execution time by using the plan suggested by the QPR detector, i.e., 𝑃pred, w.r.t. to the plan over

the existing configuration, i.e., 𝑃𝑏 , for one-shot index tuning. We observe that the pattern-based

QPR detector significantly outperforms AMA on the workloads JOB, Real-RE, Real-ED, and Real-

RM, while having similar performance on the other workloads (except Real-LO, where AMA

outperforms the pattern-based QPR detector). In fact, the pattern-based QPR detector achieves

similar performance to the best possible, i.e., 𝑃best, on the workloads TPC-H, JOB, DSB, Real-MS,

Real-ED, Real-MP, Real-SE, Real-RM, and Real-SA. For example, the improvements on JOB by the

pattern-based QPR detector and AMA are 53% and 40%, where the best possible improvement is

59%. Meanwhile, the performance of using the plan suggested by AMA is often inferior to that of

the default approach of always using 𝑃𝑎 , for example, on Real-ED and Real-RM.

Figure 9(a) further compares the pattern-based QPR detector with AMA in terms of the predic-

tion/classification accuracy. We observe that the pattern-based QPR detector significantly outper-

forms AMA in terms of both accuracy and F1 score on the workloads JOB, STATS, DSB, Real-LO,

Real-RE, Real-DW, Real-ED, and Real-RM. AMA has an advantage only on Real-SA in terms of

accuracy. Some F1 scores are zero (i.e., either precision or recall is zero) and thus not visible.

5.3.2 Incremental Index Tuning. Figures 8(b) and 9(b) compare the pattern-based QPR detector

against AMA for incremental index tuning. Again, the pattern-based QPR detector significantly

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

−20

 0

 20

 40

 60

 80

 100

TPC
−H

D
SB

JO
B

STATS

R
ea

l−
D
Y

R
ea

l−
LO

R
ea

l−
M

S

R
ea

l−
R
E

R
ea

l−
D
W

R
ea

l−
ED

R
ea

l−
M

P

R
ea

l−
SE

R
ea

l−
R
M

R
ea

l−
SA

%
 I
m

p
ro

v
e
m

e
n
t
(v

s
.
P

b
)

Workload

P
a

AMA
Pattern

Best

(a) One-shot Index Tuning

−80
−60
−40
−20

 0
 20
 40
 60
 80

 100

TPC
−H

D
SB

JO
B

STATS

R
ea

l−
D
Y

R
ea

l−
LO

R
ea

l−
M

S

R
ea

l−
R
E

R
ea

l−
D
W

R
ea

l−
ED

R
ea

l−
M

P

R
ea

l−
SE

R
ea

l−
R
M

R
ea

l−
SA

%
 I
m

p
ro

v
e
m

e
n
t
(v

s
.
P

b
)

Workload

P
a

AMA
Pattern

Best

(b) Incremental Index Tuning

−100
−80
−60
−40
−20

 0
 20
 40
 60
 80

TPC
−H

D
SB

JO
B

STATS

R
ea

l−
D
Y

R
ea

l−
LO

R
ea

l−
M

S

R
ea

l−
R
E

R
ea

l−
D
W

R
ea

l−
ED

R
ea

l−
M

P

R
ea

l−
SE

R
ea

l−
R
M

R
ea

l−
SA

%
 I
m

p
ro

v
e
m

e
n
t
(v

s
.
P

b
)

Workload

P
a

AMA
Pattern

Best

(c) Evolutionary Index Tuning

Fig. 8. Comparison of AMA vs. pattern-based QPR detectors in terms of improvement on plan execution time.

 0

 0.2

 0.4

 0.6

 0.8

 1

TPC
−H

D
SB

JO
B

STATS

R
ea

l−
D
Y

R
ea

l−
LO

R
ea

l−
M

S

R
ea

l−
R
E

R
ea

l−
D
W

R
ea

l−
ED

R
ea

l−
M

P

R
ea

l−
SE

R
ea

l−
R
M

R
ea

l−
SA

Accuracy (AMA)
Accuracy (Pattern)

F1 Score (AMA)
F1 Score (Pattern)

A
c
c
u
ra

c
y
 /
 F

1
 S

c
o
re

Workload

(a) One-shot Index Tuning

 0

 0.2

 0.4

 0.6

 0.8

 1

TPC
−H

D
SB

JO
B

STATS

R
ea

l−
D
Y

R
ea

l−
LO

R
ea

l−
M

S

R
ea

l−
R
E

R
ea

l−
D
W

R
ea

l−
ED

R
ea

l−
M

P

R
ea

l−
SE

R
ea

l−
R
M

R
ea

l−
SA

Accuracy (AMA)
Accuracy (Pattern)

F1 Score (AMA)
F1 Score (Pattern)

A
c
c
u
ra

c
y
 /
 F

1
 S

c
o
re

Workload

(b) Incremental Index Tuning

 0

 0.2

 0.4

 0.6

 0.8

 1

TPC
−H

D
SB

JO
B

STATS

R
ea

l−
D
Y

R
ea

l−
LO

R
ea

l−
M

S

R
ea

l−
R
E

R
ea

l−
D
W

R
ea

l−
ED

R
ea

l−
M

P

R
ea

l−
SE

R
ea

l−
R
M

R
ea

l−
SA

Accuracy (AMA)
Accuracy (Pattern)

F1 Score (AMA)
F1 Score (Pattern)

A
c
c
u
ra

c
y
 /
 F

1
 S

c
o
re

Workload

(c) Evolutionary Index Tuning

Fig. 9. Comparison of AMA vs. pattern-based QPR detectors in terms of prediction accuracy and F1 score.

outperforms AMA on workloads such as TPC-H, JOB, Real-DY, Real-LO, Real-MS, Real-RE, and Real-

MP. We also observe that AMA is sometimes even significantly worse than the default approach

of using 𝑃𝑎 (e.g., on TPC-H, Real-DY, Real-LO, and Real-MS). Meanwhile, the pattern-based QPR

detector achieves the best possible on workloads such as TPC-H, Real-RE, and Real-ED. For example,

the time improvements on Real-RE by the pattern-based QPR detector and AMA are 41.5% and

15.3%, where the best possible is 41.8%.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

5.3.3 Evolutionary Index Tuning. Figures 8(c) and 9(c) further compare the two QPR detectors in

the context of evolutionary index tuning. As shown in Figure 8(c), the pattern-based QPR detector

significantly outperforms AMA on TPC-H, JOB, Real-LO, Real-ED, and Real-SE in terms of improved

plan execution time, while their performances on the other workloads are similar. The improvement

achieved by the pattern-based QPR detector is similar to the best possible on most workloads (except

JOB). On the other hand, AMA remains inferior to the default approach of using 𝑃𝑎 on workloads

such as TPC-H, Real-LO, Real-ED, and Real-SE.

5.4 Analysis of Pattern-based QPR Detector
We further perform more detailed analysis of the pattern-based QPR detector to understand the

impact of (1) the local and global expensiveness thresholds and (2) the cost inflation factors.

5.4.1 Local and Global Expensiveness Thresholds. We are interested in the potential of the pattern-

based QPR detector by varying the local and global expensiveness thresholds. For this sake we

study the optimal settings of the thresholds. Specifically, we perform a “grid search” in the space

of (𝜏𝑙 , 𝜏𝑔) ∈ L × G, where L = G = {0.1, 0.2, 0.5, 0.8, 0.9}. Figures 10(a), 10(b), and 10(c) present

the results of the optimal thresholds for one-shot, incremental, and evolutionary index tuning,

respectively. For one-shot tuning and incremental tuning, optimal thresholds only make a significant

difference on Real-DY. On the other hand, for evolutionary tuning optimal thresholds only make

a significant difference on JOB. It remains future work to explore ways of finding the optimal

thresholds without an exhaustive search.

5.4.2 Cost Inflation Factors. Our way of computing cost inflation factors is best-effort: the cost
inflation factor of the left/right input of the expensive nested-loop join remains 1 if we cannot find

the corresponding match in the “before plan” 𝑃𝑏 . To understand the impact of this limitation, we

study a hypothetical case where we use the true left/right input cardinality to compute the cost

inflation factor if we cannot find a match. The results of using the cost inflation factors based on

true cardinality, in combination with using the optimal local and global thresholds, are presented as

‘Opt-TC’ in Figures 10(a), 10(b), and 10(c). We observe that leveraging true cardinality can further

improve the pattern-based QPR detector in certain cases, e.g., on Real-DY for incremental tuning

and JOB for evolutionary tuning. This suggests that one direction for further improvement of the

pattern-based QPR detector is to improve the cardinality estimation for those operators in the

“after plan” 𝑃𝑎 that have no match in the “before plan” 𝑃𝑏 .

5.5 Other Evaluation Results
5.5.1 Generality of Regression Pattern. Some of the observations and results (in particular, the

QPR pattern due to emergence of expensive NLJs) are not restricted to Microsoft SQL Server. First,

NLJs are supported by almost all database systems. Second, the QPR pattern related to expensive

NLJs also characterizes the roles of cardinality estimation (CE) errors, which are well-known

general issues beyond a specific database system (e.g., see [23, 56] for studies of CE errors on top

of PostgreSQL). To validate this, we create the same indexes recommended by DTA on top of

PostgreSQL databases. We then check if the QPR pattern based on the emergence of new expensive

NLJs occurs as well. We use PostgreSQL 17.4 running on a standard Azure D16s-v3 VM.

Figure 11 presents the validation results on the four benchmark workloads TPC-H, DSB, JOB,

and STATS. Here, we compare the percentage of QPRs with new emerging expensive NLJs. We

have two main observations. First, for most of the cases tested, around 60% to 100% of the QPRs

contain new expensive NLJs. Second, this percentage coverage is consistent across PostgreSQL and

Microsoft SQL Server, demonstrating the generality of the QPR pattern.

5.5.2 Decoupling Indexes from Statistics. Following our ablation study (Procedure 1) in Section 3.1,

a “statistics only” scenario is itself interesting, as having extra data statistics available could, in

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

−10
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

TPC
−H

D
SB

JO
B

STATS

R
ea

l−
D
Y

R
ea

l−
LO

R
ea

l−
M

S

R
ea

l−
R
E

R
ea

l−
D
W

R
ea

l−
ED

R
ea

l−
M

P

R
ea

l−
SE

R
ea

l−
R
M

R
ea

l−
SA

%
 I
m

p
ro

v
e
m

e
n
t
(v

s
.
P

b
)

Workload

Pattern (Default)
Pattern (Opt)

Pattern (Opt−TC)
Best

(a) One-shot Index Tuning

−60

−40

−20

 0

 20

 40

 60

 80

 100

TPC
−H

D
SB

JO
B

STATS

R
ea

l−
D
Y

R
ea

l−
LO

R
ea

l−
M

S

R
ea

l−
R
E

R
ea

l−
D
W

R
ea

l−
ED

R
ea

l−
M

P

R
ea

l−
SE

R
ea

l−
R
M

R
ea

l−
SA

%
 I
m

p
ro

v
e
m

e
n
t
(v

s
.
P

b
)

Workload

Pattern (Default)
Pattern (Opt)

Pattern (Opt−TC)
Best

(b) Incremental Index Tuning

−40

−20

 0

 20

 40

 60

 80

TPC
−H

D
SB

JO
B

STATS

R
ea

l−
D
Y

R
ea

l−
LO

R
ea

l−
M

S

R
ea

l−
R
E

R
ea

l−
D
W

R
ea

l−
ED

R
ea

l−
M

P

R
ea

l−
SE

R
ea

l−
R
M

R
ea

l−
SA

%
 I
m

p
ro

v
e
m

e
n
t
(v

s
.
P

b
)

Workload

Pattern (Default)
Pattern (Opt)

Pattern (Opt−TC)
Best

(c) Evolutionary Index Tuning

Fig. 10. Comparison of variants of the pattern-based QPR detector w.r.t. improvement on execution time.

 0

 20

 40

 60

 80

 100

TPC−H DSB JOB STATS%
 o

f
Q

P
R

s
 w

it
h
 P

a
tt
e
rn

Benchmark workload

PostgreSQL
Microsoft SQL Server

(a) One-shot Index Tuning

 0

 20

 40

 60

 80

 100

TPC−H DSB JOB STATS%
 o

f
Q

P
R

s
 w

it
h
 P

a
tt
e
rn

Benchmark workload

PostgreSQL
Microsoft SQL Server

(b) Incremental Index Tuning

 0

 20

 40

 60

 80

 100

TPC−H DSB JOB STATS%
 o

f
Q

P
R

s
 w

it
h
 P

a
tt
e
rn

Benchmark workload

PostgreSQL
Microsoft SQL Server

(c) Evolutionary Index Tuning

Fig. 11. Validation of the generality of the regression pattern based on new emerging expensive NLJs.

−600

−500

−400

−300

−200

−100

 0

 100

TPC
−H

D
SB

JO
B

STATS

R
ea

l−
D
Y

R
ea

l−
LO

R
ea

l−
M

S

R
ea

l−
R
E

R
ea

l−
D
W

R
ea

l−
ED

R
ea

l−
M

P

R
ea

l−
SE

R
ea

l−
R
M

R
ea

l−
SA

%
 I
m

p
ro

v
e
m

e
n
t
(v

s
.
P

b
)

Workload

Statistics Only (P
~b

)
Statistics + Indexes (P

a
)

(a) One-shot Index Tuning

−1600
−1400
−1200
−1000
−800
−600
−400
−200

 0
 200

TPC
−H

D
SB

JO
B

STATS

R
ea

l−
D
Y

R
ea

l−
LO

R
ea

l−
M

S

R
ea

l−
R
E

R
ea

l−
D
W

R
ea

l−
ED

R
ea

l−
M

P

R
ea

l−
SE

R
ea

l−
R
M

R
ea

l−
SA

%
 I
m

p
ro

v
e
m

e
n
t
(v

s
.
P

b
)

Workload

Statistics Only (P
~b

)
Statistics + Indexes (P

a
)

(b) Incremental Index Tuning

Fig. 12. Comparison of improvement in execution time with the “intermediate plan” 𝑃𝑏 and “after plan” 𝑃𝑎 .

theory, greatly improve the plans (without extra indexes). To shed some light on the sheer impact of

new statistics, we extend our ablation study to all plan pairs collected from one-shot and incremental

index tuning scenarios. Figures 12(a) and 12(b) present the time improvement by the “intermediate

plan” 𝑃𝑏 over the “before plan” 𝑃𝑏 . We also include the “after plan” 𝑃𝑎 for comparison. Interestingly,

it is not guaranteed that the availability of new statistics will result in better plans. Although 𝑃𝑏

indeed leads to significant improvements for some workloads (e.g., JOB), it also causes significant

regressions for some other workloads (e.g., Real-LO). This raises the question of recommending

statistics to improve query execution without causing regression, which we leave for future work.

6 Related Work
Index Tuning. Much work has been devoted to index tuning in the past decades (see [43] for a

recent survey). A classic setup is offline index tuning (e.g., [2–5, 8, 17, 19, 38, 42, 44, 46, 49–51, 57]),

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

where the index tuner is given a static workload of queries and the goal is to come up with an

index configuration that minimizes the workload execution cost (subject to certain constraints

such as storage bound). Offline index tuners rely on the what-if query optimizer call to estimate

the execution cost of a query given an index configuration, which can be inaccurate and result in

QPR after the index configuration is materialized. On the other hand, there is also a prominent line

of recent work towards online index tuning (e.g. [21, 36, 37, 39]), where the index tuner needs to
deal with dynamic workloads with new queries coming from time to time. Online index tuning is a

more challenging problem and existing work has been focusing on solutions using reinforcement

learning (RL) technologies with actual query execution time as feedback to build reward functions

that guide the RL search process. Using actual query execution time reduces the chance of QPR but

is significantly more expensive compared with using what-if calls.

Query Performance Regression. QPR is an averse problem in practice. One prominent cause of QPR

is plan change due to bad plan choice made by the query optimizer. QPR emerging in index tuning,

in particular, falls into this category and is more costly given the nontrivial overhead of running the

index tuner and creating the recommended indexes in addition to the query execution time itself.

QPR after index tuning means all tuning efforts are wasted and the recommended indexes have to be

dropped to bring the query execution time back to normal [7]. Existing approaches to QPR detection

in the context of index tuning mainly adopt machine learning (ML) technologies [10, 40, 52, 60].

These approaches often suffer from limited generalization capability when facing new databases

and workloads. The pattern-based QPR detector studied in this paper provides an alternative to

these ML-based approaches with better generalizability. On the other hand, there has also been

work on QPR correction in the context of index tuning [11], an interesting but orthogonal direction.

Cardinality Estimation. The pattern-based QPR detector proposed in this paper relies on accurate

cardinality information available from execution feedback in the “before plan.” Moreover, the

evaluation results in Section 5.4.2 further demonstrate the potential improvement of the pattern-

based QPR detector by fixing cardinality estimation errors. There has been extensive work in the

literature on improving cardinality/selectivity estimation accuracy, and we refer the readers to

recent benchmark studies [14, 48] for an overview of progresses in this area. As we mentioned

in Section 5.4.2, it remains interesting future work to integrate these more advanced cardinality

estimation technologies into the pattern-based QPR detector to improve the calculation of the cost

inflation factors when exact matching fails in the “before plan.”

Cost Modeling. We have used query plan recosting [12, 54, 56] in the pattern-based QPR detector,

based on simple cost formulas crafted by following the execution logic of the NLJ and other join

operators. It is well-known that query optimizer’s cost modeling can be inaccurate, and there has

been considerable amount of work on improving cost modeling (e.g., [1, 13, 15, 24, 26, 27, 35, 41,

45, 53, 54, 58]). While the simple cost modeling techniques used for the pattern-based QPR detector

show reasonable results in our evaluation, it remains interesting future work to leverage more

advanced cost modeling techniques for further improvement.

7 Conclusion
We have proposed a pattern-based QPR detector based on learnings from an in-depth study of QPRs

emerging from real-world index tuning scenarios. The design of the pattern-based QPR detector

is motivated by the observation that most of the significant QPRs can be attributed to expensive

nested-loop joins with underestimated input cardinalities. We have evaluated the pattern-based QPR

detector on top of both industrial benchmarks and real customer workloads. Our evaluation results

show that the pattern-based QPR detector exhibits better generalizability than state-of-the-art

ML-based QPR detectors when applied to new databases and workloads.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

References
[1] Mert Akdere et al. 2012. Learning-based Query Performance Modeling and Prediction. In ICDE.
[2] Matteo Brucato, Tarique Siddiqui, Wentao Wu, Vivek Narasayya, and Surajit Chaudhuri. 2024. Wred: Workload

Reduction for Scalable Index Tuning. Proc. ACM Manag. Data 2, 1, Article 50 (2024), 26 pages.
[3] Nicolas Bruno and Surajit Chaudhuri. 2005. Automatic Physical Database Tuning: A Relaxation-based Approach. In

SIGMOD. 227–238.
[4] Surajit Chaudhuri et al. 2020. Anytime Algorithm of Database Tuning Advisor for Microsoft SQL Server.

[5] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven Index Selection Tool for Microsoft SQL

Server. In VLDB. 146–155.
[6] Surajit Chaudhuri and Vivek R. Narasayya. 1998. AutoAdmin ’What-if’ Index Analysis Utility. In SIGMOD. 367–378.
[7] Sudipto Das et al. 2019. Automatically Indexing Millions of Databases in Microsoft Azure SQL Database. In SIGMOD.
[8] Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. 2011. CoPhy: A Scalable, Portable, and Interactive Index

Advisor for Large Workloads. Proc. VLDB Endow. 4, 6 (2011), 362–372.
[9] Bailu Ding, Surajit Chaudhuri, Johannes Gehrke, and Vivek R. Narasayya. 2021. DSB: A Decision Support Benchmark

for Workload-Driven and Traditional Database Systems. Proc. VLDB Endow. 14, 13 (2021), 3376–3388.
[10] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and Vivek R. Narasayya. 2019. AI Meets AI:

Leveraging Query Executions to Improve Index Recommendations. In SIGMOD. 1241–1258.
[11] Bailu Ding, Sudipto Das, Wentao Wu, Surajit Chaudhuri, and Vivek R. Narasayya. 2018. Plan Stitch: Harnessing the

Best of Many Plans. Proc. VLDB Endow. 11, 10 (2018), 1123–1136.
[12] Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2017. Leveraging Re-costing for Online Optimization of

Parameterized Queries with Guarantees. In SIGMOD. 1539–1554.
[13] Archana Ganapathi, Harumi A. Kuno, Umeshwar Dayal, Janet L. Wiener, Armando Fox, Michael I. Jordan, and David A.

Patterson. 2009. Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning. In ICDE.
[14] Yuxing Han et al. 2021. Cardinality Estimation in DBMS: A Comprehensive Benchmark Evaluation. Proc. VLDB Endow.

15, 4 (2021), 752–765.

[15] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for Out-of-the-box Learned Cost Prediction.

Proc. VLDB Endow. 15, 11 (2022), 2361–2374.
[16] Yannis E. Ioannidis et al. 1991. On the Propagation of Errors in the Size of Join Results. In SIGMOD. 268–277.
[17] Andrew Kane. 2017. Introducing Dexter, the Automatic Indexer for Postgres. https://medium.com/@ankane/

introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27.

[18] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In ICLR.
[19] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020. Magic mirror in my hand, which is the best

in the land? An Experimental Evaluation of Index Selection Algorithms. Proc. VLDB Endow. 13, 11 (2020), 2382–2395.
[20] Bartosz Krawczyk. 2016. Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5, 4

(2016), 221–232.

[21] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An Index Advisor Using Deep Reinforcement Learning. In CIKM.

[22] Kukjin Lee, Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2023. Analyzing the Impact of Cardinality

Estimation on Execution Plans in Microsoft SQL Server. Proc. VLDB Endow. 16, 11 (2023), 2871–2883.
[23] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2015. How

Good Are Query Optimizers, Really? PVLDB 9, 3 (2015), 204–215.

[24] Jiexing Li, Arnd Christian König, Vivek R. Narasayya, and Surajit Chaudhuri. 2012. Robust Estimation of Resource

Consumption for SQL Queries using Statistical Techniques. Proc. VLDB Endow. 5, 11 (2012), 1555–1566.
[25] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E. Alsaadi. 2017. A survey of deep neural

network architectures and their applications. Neurocomputing 234 (2017), 11–26.

[26] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil,

and Nesime Tatbul. 2019. Neo: A Learned Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718.
[27] Ryan C. Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural Network Models for Query Performance

Prediction. Proc. VLDB Endow. 12, 11 (2019), 1733–1746.
[28] Microsoft. 2025. Apply a Fixed Query Plan to a Plan Guide. https://learn.microsoft.com/en-us/sql/relational-databases/

performance/apply-a-fixed-query-plan-to-a-plan-guide?view=sql-server-ver16.

[29] Microsoft. 2025. Azure SQL Database. https://azure.microsoft.com/en-us/products/azure-sql/database.

[30] Microsoft. 2025. CREATE INDEX (Transact-SQL). https://learn.microsoft.com/en-us/sql/t-sql/statements/create-index-

transact-sql?view=sql-server-ver16.

[31] Microsoft. 2025. Intro to Query Execution Bitmap Filters. https://techcommunity.microsoft.com/t5/sql-server-blog/

intro-to-query-execution-bitmap-filters/ba-p/383175.

[32] Microsoft. 2025. Program for TPC-H Data Generation with Skew. https://www.microsoft.com/en-us/download/details.

aspx?id=52430.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27
https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27
https://learn.microsoft.com/en-us/sql/relational-databases/performance/apply-a-fixed-query-plan-to-a-plan-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/apply-a-fixed-query-plan-to-a-plan-guide?view=sql-server-ver16
https://azure.microsoft.com/en-us/products/azure-sql/database
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-ver16
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-to-query-execution-bitmap-filters/ba-p/383175
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-to-query-execution-bitmap-filters/ba-p/383175
https://www.microsoft.com/en-us/download/details.aspx?id=52430
https://www.microsoft.com/en-us/download/details.aspx?id=52430

[33] Microsoft. 2025. Table hints (Transact-SQL). https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-

table?view=sql-server-ver16.

[34] Lili Mou et al. 2016. Convolutional Neural Networks over Tree Structures for Programming Language Processing. In

AAAI. 1287–1293.
[35] Debjyoti Paul, Jie Cao, Feifei Li, and Vivek Srikumar. 2021. Database Workload Characterization with Query Plan

Encoders. PVLDB 15, 4 (2021), 923–935.

[36] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata Borovica-Gajic. 2021. DBA bandits:

Self-driving index tuning under ad-hoc, analytical workloads with safety guarantees. In ICDE. 600–611.
[37] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata Borovica-Gajic. 2022. HMAB: Self-Driving

Hierarchy of Bandits for Integrated Physical Database Design Tuning. Proc. VLDB Endow. 16, 2 (2022), 216–229.
[38] Rainer Schlosser, Jan Kossmann, and Martin Boissier. 2019. Efficient Scalable Multi-attribute Index Selection Using

Recursive Strategies. In ICDE. 1238–1249.
[39] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. The Case for Automatic Database Administration

using Deep Reinforcement Learning. CoRR abs/1801.05643 (2018).

[40] Jiachen Shi, Gao Cong, and Xiaoli Li. 2022. Learned Index Benefits: Machine Learning Based Index Performance

Estimation. PVLDB 15, 13 (2022), 3950–3962.

[41] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020. Cost Models for Big Data Query

Processing: Learning, Retrofitting, and Our Findings. In SIGMOD. 99–113.
[42] Tarique Siddiqui, Saehan Jo, WentaoWu, Chi Wang, Vivek R. Narasayya, and Surajit Chaudhuri. 2022. ISUM: Efficiently

Compressing Large and Complex Workloads for Scalable Index Tuning. In SIGMOD. 660–673.
[43] Tarique Siddiqui and Wentao Wu. 2023. ML-Powered Index Tuning: An Overview of Recent Progress and Open

Challenges. SIGMOD Rec. 52, 4 (2023), 19–30.
[44] Tarique Siddiqui, Wentao Wu, Vivek R. Narasayya, and Surajit Chaudhuri. 2022. DISTILL: Low-Overhead Data-Driven

Techniques for Filtering and Costing Indexes for Scalable Index Tuning. Proc. VLDB Endow. 15, 10 (2022), 2019–2031.
[45] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator. Proc. VLDB Endow. 13, 3 (2019), 307–319.
[46] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman, and Alan Skelley. 2000. DB2 Advisor: An Optimizer

Smart Enough to Recommend Its Own Indexes. In ICDE. 101–110.
[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. 2017. Attention is All you Need. In NIPS. 5998–6008.
[48] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou. 2021. Are We Ready For Learned

Cardinality Estimation? Proc. VLDB Endow. 14, 9 (2021), 1640–1654.
[49] Xiaoying Wang, Wentao Wu, Vivek R. Narasayya, and Surajit Chaudhuri. 2025. Esc: An Early-Stopping Checker for

Budget-aware Index Tuning. Proc. VLDB Endow. 18, 5 (2025), 1278–1290.
[50] Xiaoying Wang, Wentao Wu, Chi Wang, Vivek R. Narasayya, and Surajit Chaudhuri. 2024. Wii: Dynamic Budget

Reallocation In Index Tuning. Proc. ACM Manag. Data 2, 3 (2024), 182.
[51] Kyu-Young Whang. 1985. Index Selection in Relational Databases. In Foundations of Data Organization. 487–500.
[52] Wentao Wu. 2025. Hybrid Cost Modeling for Reducing Query Performance Regression in Index Tuning. IEEE Trans.

Knowl. Data Eng. 37, 1 (2025), 379–391.
[53] Wentao Wu, Yun Chi, Hakan Hacigümüs, and Jeffrey F. Naughton. 2013. Towards Predicting Query Execution Time

for Concurrent and Dynamic Database Workloads. Proc. VLDB Endow. 6, 10 (2013), 925–936.
[54] Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan Hacigümüs, and Jeffrey F. Naughton. 2013. Predicting

query execution time: Are optimizer cost models really unusable?. In ICDE. 1081–1092.
[55] Wentao Wu, Anshuman Dutt, Gaoxiang Xu, Vivek Narasayya, and Surajit Chaudhuri. 2025. Understanding and

Detecting Query Performance Regression in Practical Index Tuning (Extended Version). Technical Report. Microsoft

Research. https://www.microsoft.com/en-us/research/publication/understanding-and-detecting-query-performance-

regression-in-practical-index-tuning/

[56] Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. 2016. Sampling-Based Query Re-Optimization. In SIGMOD.
[57] Wentao Wu, Chi Wang, Tarique Siddiqui, Junxiong Wang, Vivek R. Narasayya, Surajit Chaudhuri, and Philip A.

Bernstein. 2022. Budget-aware Index Tuning with Reinforcement Learning. In SIGMOD. 1528–1541.
[58] Wentao Wu, Xi Wu, Hakan Hacigümüs, and Jeffrey F. Naughton. 2014. Uncertainty Aware Query Execution Time

Prediction. PVLDB 7, 14 (2014), 1857–1868.

[59] Ritwik Yadav, Satyanarayana R. Valluri, and Mohamed Zaït. 2023. AIM: A practical approach to automated index

management for SQL databases. In ICDE.
[60] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A Tree Transformer Model for Query Plan

Representation. Proc. VLDB Endow. 15, 8 (2022), 1658–1670.

Received April 2025; revised July 2025; accepted August 2025

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 374. Publication date: December 2025.

https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-server-ver16
https://www.microsoft.com/en-us/research/publication/understanding-and-detecting-query-performance-regression-in-practical-index-tuning/
https://www.microsoft.com/en-us/research/publication/understanding-and-detecting-query-performance-regression-in-practical-index-tuning/

	Abstract
	1 Introduction
	2 Index Tuning Data Generation
	2.1 Index Tuning Scenarios
	2.2 Results of Index Tuning Data Collected
	2.3 Distributions of QPR

	3 Regression Pattern Analysis
	3.1 Taxonomy of Regression Patterns
	3.2 Summary and Discussion

	4 Pattern-based QPR Detector
	4.1 Characterization of Expensive NLJ
	4.2 Regression Pattern by Expensive NLJ
	4.3 QPR Detection Algorithm
	4.4 Other Regression Patterns

	5 Experimental Evaluation
	5.1 Experiment Settings
	5.2 ML-based QPR Detection
	5.3 Pattern-based QPR Detection
	5.4 Analysis of Pattern-based QPR Detector
	5.5 Other Evaluation Results

	6 Related Work
	7 Conclusion
	References

