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ABSTRACT
The recent success of machine learning (ML) has led to
an explosive growth of systems and applications built
by an ever-growing community of system builders and
data science (DS) practitioners. This quickly shifting
panorama, however, is challenging for system builders
and practitioners alike to follow. In this paper, we set out
to capture this panorama through a wide-angle lens, per-
forming the largest analysis of DS projects to date, fo-
cusing on questions that can advance our understanding
of the field and determine investments. Specifically, we
download and analyze (a) over 8M notebooks publicly
available on GITHUB and (b) over 2M enterprise ML
pipelines developed within Microsoft. Our analysis in-
cludes coarse-grained statistical characterizations, fine-
grained analysis of libraries and pipelines, and compar-
ative studies across datasets and time. We report a large
number of measurements for our readers to interpret and
draw actionable conclusions on (a) what system builders
should focus on to better serve practitioners and (b) what
technologies should practitioners rely on.

1. INTRODUCTION
The ascent of machine learning (ML) to mainstream

technology is in full swing: from academic curiosity in
the 80s and 90s to core technology enabling large-scale
Web applications in the 90s and 2000s to ubiquitous
technology for the masses today. We expect that in the
next decade, most applications will be “ML-infused” [2].
This massive commercial success and academic interest
are powering an unprecedented amount of engineering
and research efforts—in the last four years alone, we
have seen over 65K papers in a leading public archive
(https://bit.ly/3D03evh) and millions of publicly shared
data science (DS) notebooks corresponding to billions of
dollars of development cost (per COCOMO model [5]).

As our team at Microsoft’s Gray Systems Lab began to
invest heavily both in building systems to support DS and
leveraging DS to build applications, we were faced with
many open questions due to the speed of evolution of
ML. As system builders, we were uncertain about what
DS practitioners needed (e.g., are practitioners shifting
to using only DNNs?). As DS practitioners, we were
equally puzzled on which technologies to learn and build

upon (e.g., shall we use TENSORFLOW [1, 34] or PY-
TORCH [24]?). Discussing with experts in the field led
to rather inconsistent views, too.

We thus embarked on a (costly) fact-finding mission,
consisting of large data collection and analysis, to better
understand this shifting panorama. In particular, we ana-
lyzed (a) 8M notebooks, publicly shared on GITHUB—
representative of OSS, educational, and self-learning ac-
tivities; and (b) 2M ML pipelines professionally authored
in ML.NET within Microsoft. DS encompasses a wide
range of operations (e.g., wrangling, visualization, ML,
collaboration), and collecting datasets representative of
them all is a herculean task. As we will see, the datasets
we use here are a first step towards this end, and skewed
towards ML, visualization, and data pre-processing.

Over the past few years, we have used the results
of this analysis to educate several decisions across Mi-
crosoft in a data-driven fashion (§6). Given the signif-
icant internal impact, we realized that this knowledge
could serve the community at large. Hence, we summa-
rize our key results in this paper. To our knowledge, this
is the largest analysis of DS projects made public.

The diversity and sheer size of these datasets enable
multiple dimensions of analysis. In this paper, we focus
on extracting insights from dimensions that are most
urgent for the development of systems for DS and for
practitioners to interpret adoption and support trends:
• Landscape (§3) provides a bird’s-eye view on the vol-

ume, shape, and authors of DS code.
• Library analysis (§4) provides a finer-grained view

of this landscape. As such, it (a) sheds light on the
functionality that data scientists rely on and systems
for DS should focus on, and (b) informs prioritization
of efforts based on the relative usage of libraries.

• Pipeline analysis (§5) provides an even finer-grained
view by analyzing operators (e.g., learners, trans-
formers) and the shape (e.g., #operators) of ML
pipelines, both explicit (i.e., SCIKIT-LEARN and
ML.NET pipelines) and implicit ones (i.e., pipelines
defined using one or more libraries).
In addition to reporting objective measures in isolation,

throughout the paper we perform comparative analysis
to better understand trends of usage. In particular, we
compare: (a) statistics for Python notebooks, libraries,
and DS pipelines across four years in GITHUB datasets;

https://bit.ly/3D03evh


and (b) ML pipelines from GITHUB with ML.NET ones.
Furthermore, throughout the paper we draw actionable
interpretations of our results to better inform practitioners
and system builders.

Finally, to better highlight the importance of DS code
analytics in practice, we conclude our discussion with
scenarios from multiple teams within Microsoft and
maintainers of DS libraries on how they have used the
results of our analysis over the years (§6).

2. CORPORA AND CODE ANALYTICS
For our analysis, we leverage all publicly available

notebooks from GITHUB and a large dataset of ML.NET
pipelines from within Microsoft. These datasets cover a
broad spectrum of users—from inexperienced to some-
what experienced to experts. Although the majority of
the notebooks includes ML operations, at least 34% of
them involve data processing and visualization but no ML
operations. Next, we briefly describe each data source
and our purpose-built system for code analytics.
GITHUB. In our analysis, we use three corpora of pub-
licly available notebooks on GITHUB spanning four
years (2017 to 2020): GH17; GH19; and GH20, in-
dicating the corresponding download year. Each con-
sists of notebooks available at the HEAD of the default
(e.g., main or master) branch of all public repositories
at the time of download: 1.2M notebooks (0.3TB com-
pressed) in July 2017 for GH17 [26], 4.6M notebooks
(1.5TB compressed) in July 2019 for GH19, and 8.7M
notebooks (3.2TB compressed) in July 2020 for GH20.
Based on our analysis, this dataset is skewed towards
inexperienced or somewhat-experienced users.
ML.NET. The underlying system, ML.NET [3], has been
used in production for over a decade. We obtained access
to a telemetry database from 2015 to 2019, containing
over 88M events. While many users opted out of report-
ing telemetry, this sample is representative of ML activ-
ities within Microsoft, providing an enterprise-centric
vantage point. This dataset is also representative of a
ML community within Microsoft that supports mostly
large-scale enterprise applications.
Code Analysis System. Analyzing DS code at the scale
outlined above involves multiple challenges (e.g., dis-
tributed downloading, parsing notebooks and ML.NET
pipelines to extract meaningful information, analyzing
DS code efficiently, supporting extensible interfaces for
an ever-increasing need for analytics). To address these
challenges, we designed and implemented a purpose-
built system—here, we only summarize the main steps
for analyzing code. We employ a distributed crawler
for downloading GITHUB notebooks based on [26, 27].
Upon downloading, we parse notebooks based on the
nbformat format, discard malformed notebooks, and up-
load extracted information from valid ones to a backend

Table 1: Overall statistics for GITHUB. Average yearly
growth is ∼2× for most metrics (except “Other languages”
growing at 1.4×). Percentages for each metric are com-
puted over the closer “Total” upward in the table, and re-
main relatively similar across years.

Dimension Metric GH17 GH19 GH20

Notebooks Total 1.23M 4.6M 8.7M
Deduped 66.0% 65.5% 65.7%
Linear 26.4% 29.1% 30.3%
Completely Linear 21.2% 23.3% 24.6%

Languages Python 81.7% 91.7% 91.1%
Other 18.3% 8.3% 8.9%

Cells Total 34.6M 143.1M 261.2M

Code Cells Total 64.5% 66.4% 66.9%
Deduped 41.0% 38.6% 38.5%
Linear 72.1% 80.2% 79.3%
Completely Linear 68.3% 76.1% 75.6%

Users Total 100K 400K 697K

database. We include all metadata (kernel, language, and
nbformat versions) and cell-level information (type, or-
der, source code). Along with notebooks, we also keep
track of related information provided by GITHUB (e.g.,
repository and owner). ML.NET pipelines are similarly
processed. We then perform several extraction passes
using sophisticated extraction subsystems (e.g., extract
and semantically annotate data flows to identify training
pipelines), and store results back in the same database
for composition purposes (e.g., count #users that train a
SCIKIT-LEARN learner using remote CSVs).

3. LANDSCAPE
We start our analysis with a bird’s-eye view of the

landscape of DS through coarse-grained statistics from
GITHUB notebooks. In particular, our analysis in this
section aims to reveal the volume of (a) notebooks and
cells; (b) languages associated with them; (c) users; and
(d) characteristics of code shape. Table 1 presents the
overall statistics and drives our discussion.
Notebooks and Cells. We make three main observations
from the statistics in Table 1 regarding notebooks and
cells. First, most metrics roughly double on average ev-
ery year. Along with the large volume of individual met-
rics (e.g., 8.7M notebooks and 261.2M cells in GH20),
this indicates the wide and fast-paced adoption of note-
books as a programming medium. Second, the volume
of duplicate notebooks and code cells is considerable.
Sources of duplication include git forking and notebook
checkpointing (users often upload both the base note-
book and checkpoints), besides regular duplication of
best practices and code reuse. Interestingly, however,
duplication does not alter metrics and insights of our
analysis (and we omit analysis on deduped code).
Languages. Looking at languages, we confirm one of
our main hypothesis: Python grew its lead from 81%
in GH17 to 91% in GH19 and GH20. Notebooks in
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Figure 1: Users’ coverage on #notebooks.
No spikes on the left suggests notebook
authoring is not dominated by few users.
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Figure 2: Top-10 used libraries.
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Figure 3: DL libraries usage percentages.

all other languages combined grew by roughly 1.4× on
average, below Python’s 2×; growth is increasing in
recent years, but absolute volumes remain relatively low.
These results suggest that Python is emerging as a de-
facto standard for DS; system builders and practitioners
should focus primarily on Python.
Users. User growth is similarly paced at ∼2× average
yearly growth, reaching an impressive 697K unique users
in GH20. The top-100 most prolific users have each
authored at least 432 notebooks in GH17 (693 in GH19,
1052 in GH20), yet no individual user is a “heavy-hitter”.
This is best-seen in Figure 1, which shows the coverage
of users on notebooks: note the absence of spikes on the
left-hand side of the figure. Interestingly, the average
number of notebooks per user has remained roughly the
same across years (i.e., 12.1 per user per year).
Code shape. To better understand the code complexity of
Python notebooks, we focused on how many notebooks
or cells are linear (contain no conditional statements) or
completely linear (contain neither conditional statements
nor classes or functions). To do so, we analyzed every
code cell by first parsing it to its AST representation
using parso [8]. This resulted in an immense 12.9B AST
nodes for GH20. At the notebook level for GH20, 25%
are completely linear while 30% are linear. At the cell
level, however, 76% are completely linear while 80% are
linear. (Observations are similar for GH17 and GH19).
Overall, this analysis shows that DS code is a mostly
linear orchestration of libraries. It is thus amenable
to transformation into declarative dataflows, leveraging
compiler/database optimizations (e.g., lazy evaluation or
cross-optimization between SQL and ML [13, 3, 2]).

Takeaways: Notebooks are emerging as a widely
adopted programming medium, with a roughly ∼2×
yearly growth across our metrics (see Table 1). Python
is emerging as a de-facto standard language for au-
thoring notebooks, with ∼91% of GITHUB notebooks
being authored in Python today. Moreover, Python
code in notebooks appears mostly as a linear orchestra-
tion of libraries (80% of notebook cells are linear).

4. LIBRARIES
We continue our analysis on GITHUB notebooks by fo-

cusing on which libraries are used more prominently and

in which combinations. This will implicitly help us char-
acterize what practitioners code for in such notebooks
(e.g., data processing, DNNs, or classical ML).

We look at this through Python notebooks (due to
their dominance across years in the GITHUB datasets.)
and the lens of import statements (i.e., import... or
from...import...). Through imports, we observe a large
number of unique libraries: 41.3K, 116.4K, and 175.6K
unique libraries in GH17, GH19, and GH20, respec-
tively (1.5× yearly growth).

In our analysis, next, we identify important libraries
(§4.1), analyze the coverage of libraries on Python note-
books (§4.2), and conclude with statistical correlations
(positive and negative) between libraries (§4.3).

4.1 Important Libraries
We now focus our analysis on identifying what we

informally refer to as “important” libraries.
Most used libraries. Figure 2 shows the top-10 li-
braries according to the percentage of Python notebooks
that each library is imported. We first confirm a key as-
sumption of our study: notebooks are used primarily for
DS activities—the top-10 libraries focus on common DS
tasks (e.g., communicating with external sources, pro-
cessing data, ML modeling, exploring and visualizing
datasets, and scientific computations). Second, we ver-
ify our intuition that NUMPY [18], MATPLOTLIB [15],
PANDAS [20], and SCIKIT-LEARN [32] are quite popu-
lar. However, their frequencies exceed our expectations
(e.g., NUMPY is used in >60% of the notebooks). Third,
by comparing usage across years, we observe that “big”
(i.e., most used) libraries are becoming “bigger”, with
several libraries losing in popularity (e.g., SCIPY [31]);
indicating a consolidation around a core set of libraries.
Overall, we believe these results suggest systems builders
can focus efforts on few frequently used libraries (e.g.,
NUMPY or PANDAS), but must also provide mechanisms
to support a growing tail of less frequently used libraries.
Highest ranking differentials in usage. Comparing
GH17 to GH20, the ranking in terms of usage changed
substantially for a few libraries. Figure 4a shows libraries
that increased their usage ranking the most over the
last three years. We observe a popularity increase of
ML frameworks (e.g., +38 positions for PYTORCH [24];
KERAS, XGBOOST [37], and TENSORFLOW are in top-
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Figure 4: Top-10 libraries with most increased usage.

10). Furthermore, we observe an interest increase in
image and text processing (PILLOW [21], OPENCV [19],
and GENSIM [10]), while the increase of PLOTLY [22] in-
dicates an interest increase for (interactive) visualization.
Finally, the increase of TQDM [36] indicates a growing
interest for showing progress bars (which, in turn, indi-
cates long-running computations), while the increase for
SQLALCHEMY [33] and REQUESTS [25] suggest a need
to access data stored in databases and other endpoints.
Most increased in usage. We complement the ranking
differential analysis with the percentage increase in ab-
solute terms. The top-10 libraries by highest percentage
increase are shown in Figure 4b. Interestingly, we ob-
serve that “big” libraries are getting “bigger” at a faster
rate than average. We observe a similar pattern for li-
braries related to deep learning (e.g., KERAS, PYTORCH,
and TENSORFLOW), that we analyze in more detail next.
Usage among deep learning libraries. Figure 3 shows
the percentage of notebooks that use TENSORFLOW,
KERAS, THEANO [35], CAFFE [7], and PYTORCH. We
observe that PYTORCH has increased the most, followed
by TENSORFLOW and KERAS (with the usage of the
latter two slightly decreasing in GH20). Furthermore, for
both THEANO and CAFFE the usage rates have dropped
considerably. Overall, deep learning is becoming more
popular, yet accounts for less than 20% of DS today.

Overall, we believe that the above library usage
changes can be mainly attributed to (a) shifts in user
interests and operations (e.g., increased interest in image
processing) and (b) social and community trends (e.g.,
companies or classes focusing on specific toolkits). The
latter cannot be unveiled solely by data.

4.2 Coverage
How to prioritize implementation efforts and what is

the impact of supporting a library are important ques-
tions during the developments of systems for DS. In this
direction, we perform a coverage analysis of libraries on
notebooks (i.e., if we only support K libraries, how many
notebooks would be fully covered?).

Figure 5 shows the cumulative percentage of note-
books covered (y-axis) while varying the number of li-
braries (x-axis). We sort libraries from the most to the
least used and pick a prefix of size K. Our main ob-
servation is that by including just the top-10 most used
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Figure 5: Percentage of notebooks to be covered.
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Figure 6: Top-10 correlated library pairs.

libraries (i.e., the ones shown in Figure 2), we can reach
a coverage of ∼40% across years, while a coverage of
75% can be achieved by including the top-100 most used
libraries. The increase in coverage, however, is diminish-
ing as less used libraries are added in. More interestingly,
a coverage of 100% is much harder to achieve in GH20
and GH19 than in GH17—suggesting that the DS field
is expanding both in size and tail complexity.

4.3 Correlation
We conclude this section with an analysis of the co-

occurrence (or correlation) of libraries. Figure 6a projects
top-10 positively and negatively Pearson correlated li-
braries. (We defer a detailed discussion on individual
correlations to [23]). Our main observation is that neg-
ative correlations highlight incompatibilities between
supported data types and focus areas, whereas positive
correlations validate common wisdom and indicate (a)
to practitioners the need for expertise in certain combi-
nations of libraries, and (b) to system builders which
libraries to focus on co-optimizing.

Takeaways: Python notebooks on GITHUB emerge as
large collections of DS-related activities, with all top-
10 most used libraries focusing on DS. In particular,
we observe an increased consolidation around a core
set of highly used libraries: NUMPY, MATPLOTLIB,
PANDAS, SCIKIT-LEARN are used in more than 23% of
notebooks in GH20. The adoption of DL is increasing,
yet it accounts for less than 20% of DS. At the same
time, an increase in #used libraries indicates that DS
is still an expanding field. Finally, our correlation
analysis ranks library connections (Figure 6) to help
system builders and practitioners decide what to co-
optimize or get expertise on.



Table 2: #Extracted pipelines and distinct operators.
GH17 GH19 GH20 ML.NET

#Pipelines Implicit 164K 415K 1.4M N/A
Explicit 10K 129K 252K 29.7M

#Distinct Ops Implicit 668K 1.8M 2.6M N/A
Explicit 584 3.4K 5.5K 23.5K

5. PIPELINES
So far, we have focused on understanding DS projects

based on the libraries they are using (Section 4). In
this section, we dive deeper into (primarily training) ML
pipelines to provide an even finer-grained view of DS
logic, that is also optimizeable and manageable [2, 29].
Pipelines. We focus analysis on explicit and implicit
pipelines. We refer to the former as pipelines defined
declaratively: for our analysis, we use pipelines con-
structed using “sklearn.pipeline” [30] in notebooks, and
the method chaining pattern in ML.NET. We refer to the
latter as pipelines defined without such constructs but
rather imperatively, using functions from different toolk-
its. To enable comparisons among explicit and implicit
pipelines, we require implicit ones to be used for training,
and have operators semantically close to SCIKIT-LEARN
ones (which are close to ML.NET ones). As such, and
given that PANDAS is the predominant way to read data
(Section 4), we model implicit pipelines as data flows
in notebooks with PANDAS reads and SCIKIT-LEARN
learners being source and sink nodes, respectively.
Volumes. Table 2 outlines the overall volumes of ex-
tracted pipelines across datasets. Regarding GITHUB,
we observe a steady increase (>1.9× growth), for both
implicit and explicit pipelines. Furthermore, explicit
pipelines have started increasing in size and stabilizing
their growth. Moreover, implicit pipelines are larger in
volume than explicit ones (e.g., 5× larger in GH20).
Note, however, that from our extraction process, explicit
SCIKIT-LEARN pipelines are subsets of implicit ones be-
cause a SCIKIT-LEARN pipeline can be a subpipeline of
an implicit pipeline. Finally, from ML.NET we extracted
29.7M pipelines (2M unique after dedup), highlighting
the overall importance of explicit pipelines in enterprises.

5.1 Pipeline Length
Figures 7a and 7b show the #pipelines per pipeline

length, for both explicit and implicit pipelines, as a
proxy for the complexity of problems tackled by dif-
ferent pipelines. (Intuitively, problems requiring more
steps correspond to pipelines with more operators).

Explicit pipelines are right-skewed, with most having a
length of 1 to 4. Among them, SCIKIT-LEARN pipelines
have a smaller length than the ML.NET ones. Given that
the operators used in both are of similar expressiveness,
we believe that this is related to the type of users behind
each of them. As also discussed in Section 2, expert
users (represented by ML.NET) tend to address more
complicated problems that require more steps, resulting

Table 3: Top learners and transformers in explicit pipelines.
Top Tranformers Top Learners

SKLEARN

StandardScaler
CountVectorizer
TfidfTransformer
PolynomialFeatures

LogisticRegression
MultinomialNB
SVC
LinearRegression
RandomForestClassifier

ML.NET

OneHotEncoding
FeaturizeText
ReplaceMissingValues
TokenizeIntoWords
ProduceWordBags

Fast Tree
Fast Forest
SdcaLogisticRegression
LbfgsPoissonRegression
AveragedPerceptron

in longer pipelines. Note, however, that SCIKIT-LEARN
pipelines are increasing in length over the years, which
might indicate that corresponding users are addressing
increasingly more complex problems. Implicit pipelines
are also right-skewed, but their length is much larger
than the one of explicit pipelines: most implicit pipelines
have a length of 4 to 100, reaching a max length of 4K
in GH20. We believe this is because explicit pipelines
tend to encompass a much narrower functionality than
the implicit ones (e.g., data cleaning and visualization
steps are uncommon in explicit pipelines), and enable
expressing operations in a more succinct way.

5.2 Operators
To study the type of operations that users perform us-

ing ML pipelines, we discuss #distinct operators and then
we rank individual operators by frequency to identify im-
portant ones. Trends on operator frequencies are similar
across years (we omit drill-downs to avoid duplication).

Table 2 shows that the #distinct pipeline operators
across datasets has increased substantially for both im-
plicit and explicit pipelines. Furthermore, it is evident
that practitioners need the flexibility for introducing their
own functionality: #operators of explicit SCIKIT-LEARN
pipelines has increased due to user-defined transformers
and learners, ML.NET contains 23K user-defined oper-
ators (and 536 system-defined ones), and #operators in
implicit pipelines is much higher than the explicit ones
due to the unconstrained way in encoding user logic.
Explicit Pipelines. Table 3 shows the top learners and
transformers in explicit pipelines. An interesting obser-
vation is that normalizers are not within the top trans-
formers for ML.NET while they are popular in SCIKIT-
LEARN pipelines. This is because ML.NET adds these
automatically based on needs of downstream operators or
because data is normalized beforehand. Furthermore, re-
garding learners, Gradient Boosting and Random Forest
are more popular in ML.NET than SCIKIT-LEARN. We
believe this is due to their relative quality and the tasks
observed in Microsoft. Finally, the importance of Pois-
son Regression in ML.NET indicates that data scientists
in enterprises routinely deal with count data, and data
like that is rarely released and made available publicly.
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Figure 7: Number of pipelines and coverage of operators on explicit and implicit ML pipelines.

Implicit Pipelines. The trends on transformers and learn-
ers of explicit pipelines follow the implicit ones (mod-
ulo hyperparameter tuning being more prominent in im-
plicit ones). Importantly, however, implicit pipelines
are primarily dominated by operators for data wrangling
(e.g., project, select, group by, concat, aggregations, and
merge) and data visualization (e.g., print, plot, and head).

5.3 Coverage
We conclude our discussion on pipelines with a cov-

erage analysis of operators on pipelines (to better help
system builders realize prioritization opportunities). Fig-
ures 7c and 7d show the coverage of pipelines while
increasing operators in descending order of operator fre-
quency. Regarding explicit pipelines, top-100 and top-10
operators in SCIKIT-LEARN and ML.NET pipelines, re-
spectively, can cover more than 80% of corresponding
pipelines, highlighting optimization opportunities. In
contrast, implicit pipelines are much harder to cover in
full, with >50% coverage requiring >104 operators.
Takeaways: Explicit pipelines are gaining considerable
traction in GITHUB notebooks (>1.9× yearly growth),
and they are an established practice in an enterprise set-
ting. Nevertheless, implicit pipelines continue to be the
dominant way (by 5× in GH20) to specify DS logic
in GITHUB notebooks. While explicit pipelines ap-
pear to focus more on feature transformations, implicit
ones contain more data preprocessing and visualization
operations. Finally, explicit pipelines contain a core
set of operators that system builders can prioritize sup-
port for, and practitioners casually introduce their own
operators indicating a need for additional functionality.

6. INTERNAL IMPACT OF ANALYSIS
The analysis we presented here has been used to guide

decisions on the DS space throughout Microsoft. Its
impact has exceeded our expectations, leading to a con-
tinuous stream of drill-down asks from several teams.

Operationally, insights have already been used to (a) in-
form decision making on resource allocation and feature
enhancements (e.g., what libraries to support and opti-
mize in Azure services); and (b) verify the correctness of
prior decisions (e.g., first class support of notebooks in
Synapse, VSCode, and Azure Data Studio). Furthermore,
this analysis has motivated decisions on several projects:
(a) holistic optimization of DS pipelines [13]; (b) con-

structing KBs of Python libraries for data-flow analy-
sis [17]; (c) tracking provenance from DS scripts [17];
and (d) overall shape visions and inform research agen-
das in the space [2]. Finally, ongoing collaborations trig-
gered by this line of work include furthering the analysis
of notebooks with analysis of context (i.e., output and
markdown cells), supporting finer-grained analysis of DS
code (e.g., understanding dataset types), and constructing
ML models for code auto-completion and synthesis.

7. RELATED WORK
Understanding DS-related activities is crucial as most

applications are becoming ML-infused [2]. Our work
pushes the envelope on the topic by performing an ex-
tensive analysis of millions of Python notebooks and
ML.NET pipelines. Other studies reveal interesting in-
sights on complementary DS aspects through discussions
with data scientists about their engineering and collabora-
tion practices [4, 12, 16, 39, 28, 11, 14]. Furthermore, the
work in [6] presents a coarse-grained analysis on PYPI.
Our work targets the Python language as well but with a
special focus on DS projects. The work in [9] compares
the package dependency graphs of CRAN, PYPI, and
NPM. This work targets various languages and thus does
not contain a detailed analysis of Python libraries. The
study in [26] performs an analysis of GITHUB notebooks
with a focus on interactions between exploration and ex-
planation of results. Our work incorporates the dataset
used in this study (GH17) but focuses on analyzing the
DS code structure instead. Finally, the study in [38]
performs dynamic analysis of notebooks (to recommend
data preprocessing operators) and provides interesting
insights on DS operators, albeit on limited #notebooks
due to the requirement on executing notebooks.

8. CONCLUSION
In this work, we amassed and analyzed approximately

40M DS projects, both publicly available at GITHUB and
Microsoft-internal ones. With this paper, we share the
key findings of our analysis with the community, provide
actionable interpretations, and share how this analysis
has been used internally at Microsoft to inform deci-
sions in the DS space. Finally, we believe this analysis
is pragmatically useful to better inform investments by
practitioners and systems builders—and a step towards a
thorough, data-driven understanding of DS as a field.
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