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Abstract—Knowledge acquisition is an iterative process. Most previous work has focused on bootstrapping techniques based on
syntactic patterns, that is, each iteration finds more syntactic patterns for subsequent extraction. However, syntactic bootstrapping
is incapable of resolving the inherent ambiguities in the syntactic patterns. The precision of the extracted results is thus often
poor. On the other hand, semantic bootstrapping bootstraps directly on knowledge rather than on syntactic patterns, that is, it
uses existing knowledge to understand the text and acquire more knowledge. It has been shown that semantic bootstrapping can
achieve superb precision while retaining good recall. Nonetheless, the working mechanism of semantic bootstrapping remains
elusive. In this paper, we present a detailed analysis of semantic bootstrapping from a theoretical perspective. We show that
the efficiency and effectiveness of semantic bootstrapping can be theoretically guaranteed. Our experimental evaluation results

substantiate the theoretical analysis.

Index Terms—Algorithm, big data, information extraction, semantic bootstrapping

1 INTRODUCTION

The problem of extracting isA relations in the open
domain has been studied for years. State-of-the-art
systems, such as KnowltAll [14], TextRunner [3], and
NELL [11], use a bootstrapping approach. They start
with some seed examples and/or seed patterns of
the target relations. They next look for occurrences
of these seed examples in the corpus, and derive
new patterns. They then use the new patterns to
extract more instances of the relations. The iteration
continues until no more new patterns are learned. In
the rest of this paper, we refer to this idea as syntactic
bootstrapping. Figure 1 gives a canonical view of this

framework.
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Fig. 1. Syntactic bootstrapping
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The philosophy of syntactic bootstrapping is that, in
order to find more relations, we need more syntactic
patterns. However, this is often not true. One-to-one
mapping between syntactic patterns and underlying
knowledge (i.e., the pairs we are interested in) does
not always exist. Sometimes one pattern can mean
multiple things and multiple patterns can refer to
the same thing. This disconnect between the patterns
and knowledge means that acquiring more patterns
does not always give us more knowledge, but rather
ambiguity and noise [30].

ID Pattern
NP such as {NP,}*{(or | and)} NP
such NP as {NP,}*{(or | and)} NP
NP{,} including {NP,}*{(or | and)} NP
NP{,NP}*{,} and other NP
NP{,NP}*{,} or other NP
NP{,} especially {NP,}*{(or | and)} NP

TABLE 1
The Hearst patterns (NP stands for noun phrase)

QO WN -

The problem of ambiguity is ubiquitous in almost
all syntactic patterns, even for those hand-crafted by
linguistic experts. For instance, Table 1 lists the well-
known Hearst patterns [18] used by nearly every
existing information extraction system for the purpose
of extracting isA relations. Now consider the following
example sentences:

Example 1 (Ambiguity in Syntactic Patterns)

1) ... animals other than dogs such as cats ...

2) ... companies such as IBM, Nokia, Proctor and Gam-
ble ...

3) ... representatives in North America, Europe, the
Middle East, Australia, Mexico, Brazil, Japan, China,
and other countries ...
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4) ... classic movies such as Gone with the Wind ...

In these cases, patterns are incapable of making the
right choices in the presence of ambiguities: 1) dogs
will be incorrectly recognized as the super-concept;!
2) Proctor and Gamble are mistakenly extracted as two
companies rather than one; 3) North America, Europe,
and the Middle East will also be deemed as countries;
4) nothing can be extracted since Gone with the Wind
is not a noun phrase that the pattern is looking for.

To address the ambiguity issue, syntactic bootstrap-
ping approaches have to use more strict syntactic rules
in their extractions, which often dramatically sacrifice
recall. For instance, when extracting isA pairs, Know-
ItAll only focuses on sub-concepts that are proper
nouns [14]. Unlike that, in [30] the authors outlined
a conceptually different iterative framework, which
bootstraps on knowledge rather than on syntactic pat-
terns. We refer to this approach as semantic bootstrap-
ping. It differs from syntactic bootstrapping in that
it uses a fixed set of input patterns (e.g., the Hearst
patterns) and relies on using existing knowledge (e.g.,
the pairs already extracted with their frequency) to
understand more text and acquire more knowledge.
As Figure 2 depicts, in each round of iteration, the
extractor extracts new pairs with the help of the
current knowledge, and then uses these new pairs to
enrich the knowledge. ? Albeit a simpler framework,
this approach demonstrates exceptional strength in
disambiguating otherwise unaccessible pairs and thus
achieves superb precision while maintaining good
recall in the extracted pairs.

Nonetheless, the underlying working mechanism
of semantic bootstrapping remains elusive in [30]:
were the results reported just by chance? In this
paper, we present a theoretical analysis as well as
an extended experimental study to provide deeper
insights into semantic bootstrapping. We show that

1. isA relation is between super-concepts and sub-concepts. For
example, in the relation “cat isA animal”, “animal” is the super-
concept and “cat” is the sub-concept. In Example 1, the underlined
term is the super-concept, and the italicized terms are its sub-
concepts. For a given isA relation (z, y), we also call  the concept
and y the instance, although y may itself be a concept as well.

2. The “semantic” here might be a bit misleading. Our purpose
is to distinguish our approach from bootstrapping procedures that
aim for harvesting more and more syntactic patterns. The current
form of “semantic” in our approach is rudimentary: we simply use
statistics as the type of “semantics” or “knowledge.” Nonetheless, it
is not difficult to incorporate more “semantics” into our approach.
For instance, we can add annotated isA relation pairs to help
increase the accuracy of super-concept and sub-concept detection
(see Algorithm 1).

3. Most errors in Example 1 are due to the fact that Hearst-like
patterns ignore syntax and syntactic ambiguities. The patterns are
flat and not formulated over a parse tree. This raises the question
that, if no syntactic ambiguities would exist, would then semantic
bootstrapping be obsolete? It is true that using more advanced
syntactic techniques such as parser trees might help with some
cases, e.g., sentence 1) in Example 1. However, It cannot address
many other cases. For instance, consider sentence 3) in Example 1.
It does not contain any syntactic ambiguity. Nonetheless, we would
end up with incorrect extractions such as (countries, the Middle East)
if we only followed syntactic approaches.

http://dx.doi.org/10.1109/TKDE.2016.2619347

f Patterns ;

A

Corpus

Extractor

Knowledge

A

A 4

New Pairs
Update Knowledge

Fig. 2. Semantic bootstrapping

the efficiency and effectiveness of semantic bootstrap-
ping can be theoretically guaranteed. Specifically, the
required number of iterations is O(log|T'|), where T
is the set of extracted pairs; and the precision of
the extracted pairs is very close to that of the pairs
extracted in the bootstrapping stage (i.e., the first two
rounds of iterations), which are usually of high quality
in practice. Our experimental evaluation results sub-
stantiate the theoretical analysis.

2 SEMANTIC BOOTSTRAPPING

For self-containment purpose, in this section we first
formulate the problem of extracting isA relations
and then briefly describe the semantic bootstrapping
framework. We refer the readers to [30] for more
details of semantic bootstrapping.

2.1

isA relation can be extracted from sentences that
match any of the Hearst patterns, e.g.,

Problem Formulation

“... in countries such as China, Japan, ...”

Given such a sentence s, our goal is then to extract
all pairs (z,y) in s such that “y isA z”. For instance,
from the above sentence, we want to extract (country,
China) and (country, Japan). Formally, we can represent
s with a triple:

s = (X, (P),Ys),

where X, = {z1,...,2,,} is the set of all candidate
super-concepts, (P) is the pattern keywords (e.g., the
“such as” in the above example sentence), and Y; =
{vy1,..-,yn} is the set of all candidate sub-concepts.
Ideally, we would like both |X,| =1 and |Y,| =1 so
that there is no ambiguity. Unfortunately, in practice,
this is rarely the case, and our goal is to identify those
valid z’s and y’s among the candidates in X, and Y.
Here, naturally, we say that a pair (z,y) is valid if
the relationship “y isA z” holds. If (z,y) is valid, then
both z and y are valid.

2.2 Properties

The semantic bootstrapping framework relies on a
couple of basic properties of the sentences that match
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the Hearst patterns to distinguish valid isA pairs from
invalid ones.

Property 1 For most of the sentences, there is one and
only one valid x € X,.

While in theory the mapping from valid = € X, to
valid y € Y, could be many-to-many, in practice we
find it is very unlikely that more than one z in X
is valid. Intuitively, if more than one super-concept
is valid, then s itself might be too ambiguous to be
correctly parsed even by human beings. In fact, so
far we have not even found such a highly ambiguous
sentence in our corpus yet.

Property 2 The closer a y € Y is to (P), the more likely
that y is valid.

Although it is arguable, we find that when enumer-
ating sub-concepts, people tend to list those that they
are familiar with first.

Property 3 If yi € Y is valid, then most likely yi, ...,
yr_1 are all valid.

This means, there is usually a boundary in Y, that
delimits valid sub-concepts from invalid ones. For in-
stance, in the sentence 3) of Example 1, the candidate
“Australia” plays the role of a sentinel.

Remark: Note that the three properties here are not
restricted to isA relation extraction. For example, the
authorship relation can be extracted from sentences like
“Victor Hugo wrote The Hunchback of Notre-Dame and
Les Misérables.”

In general, as long as we can identify the three
components X,, (P), and Y; from a sentence s, the
above properties are likely to hold and therefore we
might be able to apply our semantic bootstrapping
framework discussed next. Property 1 usually holds,
partially due to the convention when people are
writing a sentence. In English grammar, a sentence
usually consists of three parts: the subject, the predicate,
and the object. For most of the sentences, they only
have one subject while they can have multiple objects.
Property 2 and 3 are usually valid as well, if the
sentence contains objects that are chained by using
conjunctions such as “and” or “or”. In fact, the pattern
“4y1, ..., and/or y,,” occurs very frequently in English
documents, and is well known as the coordination
pattern in the literature [25].

2.3 The Algorithm

Algorithm 1 outlines the method. Here, we use I to
represent the multiset or bag of the pairs that we have
discovered so far. We also use I'; to denote the I" after
the i-th round of iteration in Algorithm 1, and use
A; =T; —T';_; to denote the multiset of pairs added
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Algorithm 1: isA relation extraction

Input: P, the Heast patterns; S, sentences that
match any of the patterns in P
Output: I, the extracted isA pairs

1T« 0

2 1+ 1;

3 while ¢rue do

4 Al — @,'

5 foreach s € S do

6 Xs,Ys + ExtractCandidates(s) ;
7 if | X,| > 1 then

8 ‘ X, + DetectSuper(Xs,Ys,Ti—1);
9 if | X;| =1 then

10 Y, < DetectSub(Xs,Ys,T'i—1);
11 add valid pairs to A;;

12 end

13 end

14 break if A; = 0;

15 Fz (—Fi,1 UAi,'

16 11+ 1;

17 end

18 return I’;

in round ¢. Initially, 'y = (. We define a count function
n(z,y) which returns how many times the pair (z,y)
has been discovered in the corpus. Initially, I is empty.
We search for candidate pairs in the text, and we use
I" to help identify valid ones among them. Specifically,
we first call ExtractCandidates to extract candidate
super-concepts and sub-concepts. The strategy in this
stage is rather straightforward: we extract all noun
phrases (up to the pattern keywords) as candidates
for super-concepts, and we use “,”, “and”, and “or”
as the delimiters for candidate sub-concepts. Next, if
|Xs| > 1, we further call DetectSuper to determine
the valid super-concept. Once the super-concept is
chosen, we can then call DetectSub to detect valid sub-
concepts. We will discuss some details of these two
procedures shortly. Finally, we expand I' by merging
the newly discovered pairs (line 15). We keep iterating
until we cannot extract any new pairs.

Remark: There is a subtle but nontrivial difference
between Algorithm 1 and the one described in [30].
Note that, in Algorithm 1, new pairs identified in
the current round of iteration are added into I' all
together at the end of the round (i.e., lazy update),
while previously I' was updated immediately when
some new valid pair was identified (i.e., eager update).
Eager update has the advantage of exploiting the new
knowledge as soon as possible. As a result, it has
the potential to identify more pairs in each round of
iteration and therefore speed up the whole extraction
procedure. However, it also has a subtle drawback
that its results may depend on the order of the input
sentences. This is fine if we can always enforce the
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same ordering, e.g., by sorting the sentences with
respect to their unique identifiers or appending new
sentences only to the end of the disk file that stores S.
However, maintenance of S is then costly and might
be prohibitive in practice for a frequently updated
system like Probase [30]. By switching from eager
update to lazy update, we can both get rid of the
maintenance overhead and the dependency on the
input order, although we sacrifice some efficiency by
slightly increasing the number of rounds of iteration.
Nonetheless, as we will see in Section 3, the efficiency
of Algorithm 1 can be theoretically guaranteed. More-
over, we have observed very similar results regarding
the precision of the extracted pairs (see Section 5).

2.4 Super-Concept Detection

In the case | Xs| > 1, we need to decide the correct
super-concept of s. The basic idea is to compute the
likelihood p(z;|Ys) for each z; € X, and then pick the
one with the maximum likelihood.

Consider p(z;|Y;), we have

p(i|Ys) o< p(i)p(Yslai) oc n(xi) H (yjlzs). (1)

Here, we have assumed that the yj’s are independent
given z;. Furthermore,

p(isy;) _ @i y;)

Yj|Ti) = = 3 2
where n(z;) = Z;L:l n(z;,y;). However, if (z;,y;) €T,
then n(z;,y;) = 0, which implies that a currently
unseen pair will make p(z;|Y;) = 0. To overcome
this issue, we use the well-known additive smoothing
technique by refining p(y;|z;) as

n(zi,y;) +a

R
where o > 0 is the smoothing parameter. Therefore,
[T (s, y;) + )

(n(z;) +na)r=t

Without loss of generality, let z; and z, be the can-
didates with the two largest likelihoods such that
p(z1|Ys) > p(aa|Ys). We pick z; as the output of
DetectSuper if the ratio

: ®)

p(xi|Ys)

4)

p(:C1|Y5)
p(z2|Ys)

is greater than some threshold.

©)

r(zy,x9) =

2.5 Sub-Concept Detection

Assume that we have identified the super-concept
X = {z} from a sentence. The next task is to find
its sub-concepts from Y;. Based on Property 2 and 3,
the strategy is to first find the largest scope wherein
candidate sub-concepts are all valid, and then address
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the ambiguity issues inside the scope by using a
similar likelihood-based approach to the one used
in super-concept detection. Specifically, we find the
largest k such that the likelihood p(yx|z) is above a
threshold. On the other hand, if we cannot find any
Y satisfying the condition, then we assume k = 1,
provided that y; is not ambiguous (i.e., it does not
contain “and” or “or”).

Example 2 (Sub-Concept Detection) For specificity let
us again consider sentence 3) in Example 1. In terms of the
problem formulation as was presented in Section 2.1, we
have X = {countries} and Yy = {North America, Europe,
the Middle East, Australia, Mexico, Brazil, Japan, China}.
We expect that (countries, Australia) has significantly
higher likelihood than (countries, the Middle East). As
a result, “Australia” serves as the boundary in Y, and
DetectSub would extract “Australia,” “Mexico,” “Brazil,”
“Japan,” and “China” from the sentence.

3 EFFICIENCY

In this section, we analyze the efficiency of Algo-
rithm 1. Since the total number of pairs we can extract
from the corpus is finite, and in each round we only
add new valid pairs extracted from the sentences
into I', Algorithm 1 is guaranteed to terminate. The
efficiency depends on the number of iterations it exe-
cutes. In the following presentation, we say a sentence
s in round i is ambiguous if |Xs| > 1 after applying
DetectSuper, and unambiguous otherwise.

Before we proceed, we first redefine the notation
S to be the set of sentences we finally extract at
least one pair, not the set of all sentences in our
corpus. In practice, it is likely that we cannot extract
any pair from some sentences. For example, if we
finally cannot determine the correct super-concept of
a sentence, then we fail to extract anything from it.
These sentences do not contribute anything to our
results, so we exclude them from our analysis below.

Notation | Description

Ty All pairs extracted after iteration ¢

A The pairs extracted in iteration %

Q; The remaining pairs in I" after iteration ¢
7 The average number of pairs that can be

L; ; o

extracted from a sentence after iteration ¢

© The probability that some y € A7

o
¢ becomes a new boundary sub-concept

P; The precision of pairs in iteration i

TABLE 2
Notation used in the analysis of Algorithm 1

Our analysis of the number of iterations is based
on the analysis of expected number of pairs that
can be extracted in each iteration. We find that the
latter shrinks exponentially as the iteration proceeds,
which therefore implies a logarithmic convergence
speed of the extraction procedure. For convenience of
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reference, we summarize the key notation used in our
analysis in Table 2. We start our analysis by presenting
a basic property of DetectSub.

3.1

Consider an arbitrary sentence s in round 4 + 1. Note
that if s is ambiguous in round ¢ + 1, then we cannot
extract any pair from it. Hence we only need to focus
on the case when s is unambiguous. Let x be the
super-concept of s, and Yy = {y1, ..., yn }. Assume that
Y1, ..., y; have been detected by DetectSub before round
i+1. Then we can extract some pair(s) from s in round
i+ 1 only if there is some & (j < k < n) such that y;
can be identified by DetectSub. Note that we seek the
maximum & in DetectSub, and all y;11 to y, will be
extracted once y;, is identified. Therefore, we refer to
yr as the current boundary sub-concept of s. We have
the following property for yj.

A Basic Property of DetectSub

Lemma 1 (z,y) € A;, where A; =T; —T';_;.

Proof: Let p;(yx|z) be the value of the likelihood
p(yx|x) that DetectSub is concerned with in round 4. If
(z,yx) € A, then n(x,y;) does not change between
round ¢ and i + 1. Hence, p;y1(yx|z) < pi(yg|z). Since
we failed to extract (z,y;) from s in round ¢ only
if pi(yx|z) < €, we must have p;i1(yx|lz) < € as
well. Here ¢ is the threshold. Therefore, ¥, cannot be
identified by DetectSub, a contradiction. |

Lemma 1 basically states that, if y; could be
a boundary sub-concept, then its frequency (ie.,
n(z,y,)) must have been changed in round i (ie.,
(x,yx) € A;). Therefore, when searching for a po-
tential boundary sub-concept in round i + 1, we can
just focus on such y;’s. Based on this observation, we
next analyze the expected number of pairs that can
be extracted in each round.

3.2 The Expected Number of Extracted Pairs

We further break down our analysis here into two
smaller steps. For a given sentence, we are interested
in the following two questions:

o What is the likelihood that we can extract at least
one pair from it? We call this likelihood the chance
of success.

o What is the expected number of extracted pairs
given that we can extract at least one pair from
it? We call this expectation the expected successes.

We next analyze these two problems one by one.

3.2.1 The Chance of Success

Define A¥ to be the set of pairs in A; with z the super-
concept. Based on Lemma 1, the possible boundary y;
can only come from A¥. We assume that each distinct
y in AY is equally likely to be this y;, with some
probability § (0 < § < 1). Of course, for different s, 6
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may be different. So here ¢ should be viewed as the
average over all sentences. § may also depend on the
round number i. We give some further analysis here.
Note that 6 is the probability of the event E,: “y € A7
is a new boundary y;, in round i +1 for s”. E, occurs
if and only if the following two events occur:

. E;: Jj < k < n, ie.,, the new boundary should
bring in at least one new sub-concept.

o EZ: p(yrlz) > ¢, ie., the new boundary should
pass the likelihood threshold e.

Assuming the independence of E} and E;, we have
0 = p(Ey,) = p(E,)p(E;). On one hand, as the iteration
proceeds, p(E,) is expected to decrease, since it is
more and more difficult to identify new sub-concepts
from a sentence given that the total number of valid
sub-concepts in a sentence is fixed. On the other
hand, p(E?) is expected to increase, since I' keeps on
growing and the count of a valid pair is increasing as
well. We thus treat 6 as a constant.

For the ease of exposition, we formalize this as-
sumption in the following:

Assumption 1 Each distinct y € AY is independently
and equally likely to be the boundary sub-concept yy,, with
probability 6.

We note here that this assumption may not be valid in
reality. It is certainly possible that some sub-concepts
are more likely than the others to be the boundary.
However, Assumption 1 is reasonable if we do not
have any prior knowledge on which sub-concepts are
more likely, according to the principle of maximum
entropy. On the other hand, if we do have such prior
knowledge, we may replace this “uniform distribu-
tion” assumption by the real distribution, which is a
possible extension to the current framework.

Let D(A?) be the set of distinct y’s in A?. Consider
the probability ¢f that some y € D(A?) becomes a
new boundary of s. By Assumption 1, the probability
that none of the y’s in D(A?) can be a new boundary
is then (1 — 6)IP(A)I, Define ¢ = 1 — 6. We have

of=1-(1- g)ID(A‘f)\ —1— q\D(Af)I. (6)

3.2.2 The Expected Successes

Suppose that we can identify some new boundary of
s. Let L; be the average number of pairs that can
be extracted from a sentence after round i. Similar
to Assumption 1, we have the following assumption:

Assumption 2 Each of y;11, ..., Yn is equally likely to be
the yi, with the largest k determined by DetectSub.

The expected number of pairs extracted from s in
round i+ 1 is then
; 1 . 1 -
Bl f+1]:f(1+'“ ‘ i)

%
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Equation 7 may be worth some further explanation.
Consider the following example:

Example 3 Let s be “x such as y1, yo, and ys.” Then
Lo = 3, assuming that s is the only sentence in S. Note
that Lo is unknown to DetectSub. So by Assumption 2,
DetectSub may extract 1, 2, or 3 sub-concepts, depending
on which of y1, y2, and ys is determined to be the
boundary sub-concept. The expected number of extracted
sub-concepts is therefore E[L1] = 3(1+2+3) =2.

3.2.3 Putting It Together

We are now ready to compute the number of expected
pairs extracted in each round. Let Q; = I' — I';, which
is the remaining pairs in I' that can be extracted after
round i. As before, let Q2F be the subset of {2, contain-
ing pairs with x the super-concept. Our next result
shows that the number of remaining pairs decreases
exponentially as the iteration proceeds:

Lemma 2 [QF | < ~7|QF|, where vf = %(1 +q|D(A?)‘).
Proof: By the definition of §2;, we have
Q| = Ly| S|, (8)

where 57 is the subset of S containing sentences with
x the super-concept. By Equation 7, the number of
pairs we expect to extract in round i + 1 is

1
2
Thus the expected number of remaining pairs after
round 7 + 1 is then

|Qf+1 =

ElLi] =50+ L;)]S*]. )

Q7] = ElLi] - of (10)

_ 1 —
Li$*| - 5(1+ Ly)|s*] - oF

1 T\ T 1 T T
= [(l—ioi)Li—iai“S\
1 _
< (1= 50f)Lils"l.

Hence we now have
1 1 *
97,1] < (1- 509)I9] = 5(1+¢PEDhjaz, (1)
which completes the proof of the lemma. 1

Remark: We have two remarks here for Lemma 2.
First, for a particular z, the specific value of ~*
depends on the number of pairs in A?. Since ¢ < 1,
g!P(ADl can be ignored even for a very small A?
with only dozens of distinct pairs. Therefore, we can
actually expect [Q7, | < 1|Q¥| for most of the rounds
except for the last few ones. Thus, usually we can grab
more than half of the remaining pairs in each round.
Second, different x has different |D(A?)|, and hence
has different 7¢. As discussed above, 7¥ ~ i unless
|D(A7)| is very small. In practice, it is well known that

most pairs in €2; are from a small number of 2’s. These
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a’s usually have large D(A?). Since |Q7,,| < 3|Q7| for
these z’s, we can also expect [€2;11| < $[9;| (except for
the last several rounds).

3.3 The Convergence Rate of Algorithm 1

It is now easy to prove the following theorem, which
basically states that Algorithm 1 will converge in
logarithmic rate with respect to |I'|. This is a natural
corollary from Lemma 2.

Theorem 1 Algorithm 1 is expected to end after
Mogy |T'|] + 1 rounds of iteration, where v = (1 + q).
vy

Proof: Based on Lemma 2,

1 P
(0711 < 5(1+¢PEDD 07, (12)

for a specific z. Since ¢ < 1 and |D(A7?)| > 1, we have

xr 1 xT xT
1974 < 5(1 + )| | = |97 . (13)

Note that this is true regardless of the z. Therefore,
1
[Qia] < 51+ )],

since |Q;| = > |QF|. After N rounds of iteration, the
number of remaining pairs that can be extracted is

Qx| < AN Q| < AN (15)
1

Since ¢ < 1, we must have v = 5(1 + ¢) < 1. Letting
yN=1|T| < 1 gives us that N > log1 |T'|+1. This means,
after N' = [log. |T']] +1 rounds, it is expected that
Q] < 1. Algor}thm 1 cannot extract more pairs and

hence terminates. |

(14)

4 PRECISION

In this section, we analyze the precision of the pairs
extracted by Algorithm 1. Since precision can only be
manually evaluated, our goal here is not to give an
explicit number. Rather, we develop a lower bound of
the expected overall precision given that the precision
of the first several rounds is known. Specifically, our
analysis shows that the overall precision only depends
on the precision of the pairs extracted in the first two
rounds. Since in practice the precision of these pairs
is usually very high, we can therefore expect high
precision of all the pairs extracted.

In the following, we start by giving a represen-
tation of the total number of extracted pairs (ie.,
IT'|). Our analysis shows that |I'| can be approxi-
mately expressed in terms of the number of pairs
extracted in the first two iterations. We then conduct
a similar study on the total number of correct pairs
extracted, which again connects it with the number
of correct pairs extracted in the first two iterations.
As a final step, we develop an expression for the
overall precision based on the previous two results,
and further derive a natural lower bound according to
the established expression. Again, we refer the readers
to Table 2 for the key notation used in this section.
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We first analyze the relationships between the |A?|’s,
i.e., the number of pairs extracted in each round with
x the super-concept. We have the following lemma:

The Total Number of Extracted Pairs

Lemma 3 Let N be the number of rounds Algorithm 1
iterates before its termination. Then

N

Y IAT = AT+

Jj=1

2

mmz\ —[$%. (16)

Proof: In the proof of Lemma 2, we have shown

1 - 1

9l = [(1= 500k = 5o7]ls™. A7)

Since |Q%| = L;|S*|, the above can be rewritten as

1 1
Q0] = (1= J00)IQF| - 307187 (18)
Since A7, | = Q7] — |QZ+1\ it follows that
4] = 07107 + 507157 (19)
Note that [Q¥]| = Zj —it1 |A%|, which gives
al 1
ALl = 5of Y IAf+50fIST (0)
j=i+1
or equivalently,
1
(1- ,0 DIAL] =507 Z A7+ azls7. 1)
Jj=i+2
Therefore, we have
N
D 1a71= fal=1s7 @
j=i+2
Letting ¢ = 1 in the above equation gives
Y x 2 xr
pBILVIE 51— 1571, (23)
j=3
Since
ZINI— \AIHINHZIN (24)
7j=3
we have
N
d_IAfI=1AT+ = |A$| 571 @)
Jj=1
The lemma follows by noting of =1 —¢/P(ADI. [

Since |D(AT)| is usually large, we can expect that
1 — ¢/P(ADl ~ 1. Hence, based on Lemma 3, we can
have the following equation

N
D7) =) A7 ~ |AT] +2|A5] - [57).

j=1

(26)
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Here, following our notational convention, I'* repre-
sents the total number of extracted pairs with z the
super-concept. Therefore, since |I'| = )" |I'*|, we have

DoIATI+2) A =[S

= A1 +2[Ag] —[S].

T = (27)

The above analysis suggests that the total number of
extracted pairs (i.e., |I'|) can be expressed in terms of
only the number of pairs extracted in the first two
iteration. While this might seem surprising at first
glance, it resonates with the fact that the number of
pairs that can be extracted decreases exponentially
(Lemma 2). In the following we will see that the
total number of correct pairs extracted exhibits a very
similar property.

4.2 The Total Number of Correct Pairs

We next analyze the number of correct pairs extracted
by Algorithm 1. In the following discussion, we use
IV, A’, and ' to denote the subsets of correct pairs in
I', A, and ©, respectively. We have

Lemma 4 Let N be the number of rounds Algorithm 1
iterates before its termination. Then

al / ! 2 !/
DoAY = 1A+ Ty (4%
j=1

Proof: The proof is almost the same as the proof of
Lemma 3, with only one difference. Recall that, if we
can extract at least one pair from a sentence in round
i+1, then the expected number of pairs we can extract
is $(1+4 L;), where L; is the average number of pairs
that can be extracted from a sentence after round ¢ (see
Equation 7). Now since we only focus on the correct
pairs, let L! be the average number of correct pairs we
can extract from a sentence after round ¢. Note that it
is possible that we extract some pairs from a sentence
but none of them is correct. So the expected number
of correct pairs we can extract in round i + 1 is

(28)

_ 1_
——0+1+---+ L) = 5Lg, (29)

L’—|—1

not 3(1 + L}). Therefore, following the same analysis
as that in the proof of Lemma 2, we have

1-
(@)1 = 1) - 5Li-oflsT @)
= Ei|s* - 5L ofls7]
= (1 5ol
Since | (QF)'| = L7, it follows that
1
|(2)' = [1 = 507 ]1(90)'] (31)
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The rest of the proof is the same as that in Lemma 3,
and hence we omit it here. O
Similarly, we expect that 1 — ¢/P(41) ~ 1. Hence

STHADT+2> 1A (32

|AL] +2]Ag].

Q

|

This suggests that the total number of correct pairs
can also be expressed in terms of only the number of
correct pairs extracted in the first two iterations. We
are now ready to give an expression for the overall
precision based on the results we have derived.

4.3 A Lower Bound for Overall Precision
Now, let P; and P, be the precision of A; and A,

: |AY] |A5]
ie., P = |A1‘ and P, = |A;.

Theorem 2 The precision P of I" is
|F/| _ O[P1—|—2P2

I etz B (33)

where o = |A;} and B = %.
follows that

2
P>
T 2+«

Since o« > 0 and >0, it

=

Ps. (34)

Proof: The proof is by direct computation:

b I Iaf 2y
T (A 4+ 2[Az] = |95]
P1|A1| +2P2|A2| o aP1 + 2P2
|A1|+2|A2|—|S| Oé+2—ﬂ’
since by definition, |A]]| = P1|A1|, and |A)| = Po|Aq.
Furthermore, we have
7P10£+2P2 >P1(1+2P2 > 2
Ca+2-87 a+4+2 T 2+a
since a« > 0 and 8 > 0. |
Theorem 2 implies a lower bound of P that only
depends on a and P. Since 0 < a < 1, we then have

(35)

P27 (36)

Pz%&, (37)

regardless of a. In practice, o is usually quite small
since |Ag| is usually much larger than |A,|, for A,
only serves the purpose of providing seed pairs for
semantic bootstrapping. Therefore, we can expect that
the lower bound is very close to P.

To better understand the lower bound for the over-
all precision, let us consider a concrete example:

Example 4 (Lower Bound for Precision) Suppose
that we are given the following contrived corpus:

1) A and B such as C, D and E.
2) A and B such as C, D and E.
3) A and B such as C, E and D.
4) A and B such as D.

5) A such as C.
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6) A such as C.
7) A such as D.
8) A such as D.

Assume that isn(A,C) and isA(A, E) is correct, but
isA(A, D) is incorrect. Furthermore, for simplicity assume
that the threshold used by DetectSub for n(x,y) is 1, i.e.,
the appearance of a sub-concept makes it eligible for the
boundary. Algorithm 1 will then finish in three iterations:

I1) It will extract (from sentences 5 to 8): (A,C) twice
and (A, D) twice. So the precision (Py) is

p—_2 _1

242 2
12) As (A,C) and (A,D) are much more likely than
(B,C) and (B, D), A will be determined as the super-
concept of sentences 1 to 4. Moreover, D now serves
as the boundary sub-concept for sentences 1 to 4.
Algorithm 1 will then extract (A,C), (A,D) from
sentences 1 and 2, extract (A,C), (A, E), (A, D) from
sentence 3, and extract (A, D) from sentence 4. As a
result, it will extract (A, C') three times, (A, D) four

times, and (A, E) once. So the precision (P,) is

3411
27334+ 1 2

13) E now serves as the boundary concept for sentences
1 and 2. Algorithm 1 will then extract (A, E) twice,
once for each of sentences 1 and 2. So the precision

(Ps) is

In total, Algorithm 1 will extract (A, C) five times, (A, D)
six times, and (A, E) three times. So the overall precision
(P) is then

5+3 4

T 5+6+3 7

On the other hand, the lower bound suggested by Theo-

rem 2 is
1

2 2 1
SPpp=C.- =
3 3 2

Hence, it holds that P > 2 P;.
We want to emphasize here that this example is only
for illustrative purpose. The analysis presented in
this section relies on the assumption that the corpus
is large, otherwise some approximations (especially
1 —¢/P(AD ~ 1 as was in Lemma 3 and 4) may not

work on small corpus.

5 EVALUATION

We report our experimental evaluation results in this
section. Our corpus contains more than 7 billion Web
pages, which is 3.4 times larger than that used in [30].
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5.1 Efficiency

We extracted overall 102,309,829 isA pairs. We further
studied the number of pairs extracted in each round of
iteration. Table 3 shows the number of pairs extracted
(lA;]) and the number of remaining pairs (|2;|) for
each round i, respectively. Note that, since A; is by
definition a multiset, we also report the number of
distinct elements it contains (|D(A;)]), which are the
new pairs extracted in round i.

[ Round i | (A | DA ] (] ]
1 26,492,477 | 16,736,068 | 321,276,392
2 | 244,880,870 | 56,060,246 76,395,522
3 48,582,780 | 17,515,818 27,812,742
4 16,214,502 7,060,475 11,598,240
5 7,069,892 2,907,529 4,528,348
6 2,204,261 1,047,007 2,324,087
7 1,619,613 567,942 704,474
8 523,076 286,324 181,398
9 106,641 73,762 74,757

10 51,644 39,520 23,113
11 23,113 15,138 0
TABLE 3

The number of isA pairs extracted

We observe from Table 3 that |€2;| decreases expo-
nentially, as predicted by Theorem 1. Moreover, the
remaining number of pairs from the current round :
is usually no more than half of that from the previous
round i — 1. As analyzed in Section 3 (see the remarks
after Lemma 2), the upper bound of the shrinking
factor y should be close to % in practice, due to the
large |A;| observed in each round.

We also notice that the first several rounds ex-
tract a dominant number of pairs, compared with
the remaining rounds. However, this does not mean
the later rounds are not useful. They are still im-
portant because: i) they improve the recall; and ii)
they capture those isA pairs that involve concepts and
instances in the long tail (i.e., concepts and instances
that are not frequently mentioned in the corpus),
which have been demonstrated to be useful in various
applications [13], [27], [28], [29]. Nonetheless, here we
might have exaggerated the importance of the long-
tail concepts and entities if the users are actually not
interested in them. In such cases, one could stop the
iteration much earlier. In this sense, our algorithm
provides some tunable trade-off between the amount
of information it can extract and the running time it
needs. A reasonable practice might be to terminate
when the number of pairs extracted in the last itera-
tion is below some threshold.

5.2 Precision

To estimate the correctness of the extracted isA pairs,
we used the same benchmark as that in [30] with 40
concepts covering various domains (see Table 4). For
each concept, to estimate its precision, we followed
the same approach as in [30] by randomly picking
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50 instances and manually evaluating their correct-
ness. The average precision of the isA pairs over the
benchmark concepts is 92.9%, which is very close to
that reported in [30]. Figure 3 further presents the
precision of each individual concept.

In Table 5, we further examined the precision of
the pairs extracted in round i (FP;) and the overall
precision of the pairs extracted from round 1 to round
i (Q;). Here P; and @Q; are evaluated based on the
duplicated pairs (i.e., A;). We notice that the overall
precision when the iteration ends (i.e., Q11 = 93.95%)
is higher than the 92.9% precision reported above,
because the 92.9% precision was based on unique
pairs. (Due to the high precision, double-counting the
duplicates can increase the overall precision.)

Notice that we again have some trade-off between
precision and recall here. As suggested by Table 5,
P; drops as the iteration proceeds while we indeed
extract more valid pairs. Again, the trade-off depends
on how the information is utilized by the users. If
precision is more important, we can stop the iteration
earlier, while we can iterate for more rounds if recall
is crucial. Nonetheless, a nice property of our frame-
work is that the overall precision @); is guaranteed to
be good by the time the algorithm converges.

1 26,492,477 | 0.9728 | 0.9728
2 | 244,880,870 | 0.9713 | 0.9714
3 48,582,780 | 0.8877 | 0.9587
4 16,214,502 | 0.7976 | 0.9509
5 7,069,892 | 0.6846 | 0.9454
6 2,204,261 | 0.5403 | 0.9429
7 1,619,613 | 0.4378 | 0.9405
8 523,076 0.5 | 0.9398
9 106,641 | 0.3983 | 0.9397
10 51,644 | 0.3576 | 0.9396
11 23,113 | 0.3049 | 0.9395
TABLE 5

Precision of the pairs extracted

Finally, we find that the overall precision shown
in Table 5 matches our lower bound developed in
Section 4 quite well. According to Theorem 2, the
overall precision P > QJF%PZ According to Table 5,
we have a = % ~ 0.1082. Hence, the predicted
P > 0.9487P, =~ 0.9215, which is very close to the
actual overall precision observed (i.e., Q11 = 0.9395).

5.3 Recall

Evaluation of recall is challenging. Specifically, the
recall is defined as:

# of valid isA pairs extracted
# of valid isA pairs in the corpus’

recall = (38)
Although computing the numerator is straightfor-
ward given that we have already evaluated the preci-
sion, estimating the denominator is an extremely hard
problem. If we just count the number of distinct valid
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Fig. 3. Precision of randomly picked 50 instances over the benchmark concepts

Concept (# of Instances) [

Representative Instances

actor (20226)

Tom Hanks, Marlon Brando, George Clooney

aircraft model (160)

Airbus A320-200, Piper PA-32, Beech-18

airline (3929)

British Airways, Deltae

airport (3299)

Heathrow, Gatwick, Stansted

album (8377)

Thriller, Big Calm, Dirty Mind

architect (2825)

Frank Gehry, Le Corbusier, Zaha Hadid

artist (179724)

Picasso, Bob Dylan, Madonna

book (63868)

Bible, Harry Potter, Treasure Island

cancer center (110)

Fox Chase, Care Alliance, Dana-Farber

celebrity (32220)

Madonna, Paris Hilton, Angelina Jolie

chemical compound (339)

carbon dioxide, phenanthrene, carbon monoxide

city (48357)

New York, Chicago, Los Angeles

company (356136)

IBM, Microsoft, Google

digital camera (802)

Canon, Nikon, Olympus

disease (58017)

AIDS, Alzheimer, chlamydia

drug (32557)

tobacco, heroin, alcohol

festival (13252)

Sundance, Christmas, Diwali

file format (3547)

PDF, JPEG, TIFF

film (73897)

Blade Runner, Star Wars, Clueless

food (69836)

beef, dairy, French fries

football team (442)

Real Madrid, AC Milan, Manchester United

game publisher (337)

Electronic Arts, Ubisoft, Eidos

internet protocol (479)

HTTP, FTP, SMTP

mountain (1977)

Everest, the Alps, the Himalayas

museum (7314)

the Louvre, Smithsonian, the Guggenheim

olympic sport (331)

gymnastics, athletics, cycling

operating system (6164)

Linux, Solaris, Microsoft Windows

political party (2012)

NLD, ANC, Awami League

politician (6065)

Barack Obama, Bush, Tony Blair

programming language (2472)

Java, Perl, PHP

public library (153)

Haringey, Calcutta, Norwich

religion (3830)

Christianity, Islam, Buddhism

restaurant (28651)

Burger King, Red Lobster, McDonalds

river (6379)

Mississippi,the Nile, Ganges

skyscraper (132)

the Empire State Building, the Sears Tower, Burj Dubai

tennis player (281)

Maria Sharapova, Andre Agassi, Roger Federer

theater (4174)

Metro, Pacific Place, Criterion

university (9954)

Harvard, Stanford, Yale

web browser (1182)

Internet Explorer, Firefox, Safari

website (34539)

YouTube, Facebook, MySpace

TABLE 4
Benchmark concepts

pairs from some sample sentences and try to scale
up the estimate based on that, we cannot make the
estimate reasonably accurate unless the sample size is
sufficiently large. In fact, this problem of estimating
the number of distinct values in a population is
well known as “estimating the number of species” in
statistical literature [8], and it has been shown that the
estimation error cannot be bounded unless the sample
size is O(n), where n is the population size [12].
Since our corpus contains billions of sentences, it
means that we need to manually identify valid pairs
from billions of sample sentences, which is clearly

prohibitive. Perhaps because of this difficulty, so far
we are not aware of any previous work on open-
domain information extraction that reported recall as
defined by Equation 38.

Nonetheless, we further conducted experiments to
evaluate “recall” based on the idea of sampling ran-
dom sentences from the corpus. We randomly sam-
pled 400 sentences from our corpus that the algorithm
extracted at least one pair, and manually identified
the correct super-concepts and sub-concepts. We then
measured the precision and recall based on the ex-
tracted pairs and the ground truth.
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Fig. 4. Precision, recall, and F1 score over 400 random
sample sentences

Figure 4 presents the results (as well as the F1
scores). We observe that, while the algorithm can
achieve high precision (close to 94% when it termi-
nates), the “recall” is relatively low (around 80%,
which gives an F1 score of 86%). Note that, here the
“recall” only means recall on this sample corpus, and
we cannot make any inference on the recall over the
whole corpus because of the aforementioned hardness
result. However, in our experiments we do find that
the algorithm does not perform well on rare sentences
that contain many sub-concepts, usually because the
algorithm cannot find enough evidence (i.e., suffi-
ciently high frequency) for a boundary sub-concept
that is close to the end of the sub-concept list. In
this sense, the current version of DetectSub is a bit
conservative. We leave improving recall as one of the
main directions for future work.

6 DIScUSSION AND CRITIQUES

In this section, we would like to discuss and give
some critiques to the applicability and extensibility
of the analysis presented in this paper.

First, in our analysis, we have employed several
assumptions, some of which may not always hold in
practice. The goal of the theoretical analysis in this
paper is not to capture all real-world subtleties: such
a model might be too complicated to be tractable for a
formal analysis. For example, when analyzing the effi-
ciency of Algorithm 1, rather than assuming a uniform
distribution (Assumption 1), we could instead assume
that the probability of a y € A¥ being the y;, follows
some distribution Pr(y). But then we have to assume
Pr(y) be certain known distribution (e.g., Gaussian)
to make any further inference, which might still be
unrealistic. Hence, rather than developing sophisti-
cated models which might provide better insights but
also be difficult to understand, our intention in this
paper is to provide a simple, basic model and show
what we can infer by just using this model. Our
evaluation on a real data set shows that the results
we derive from the model match the experimental
observations, which substantiates the usefulness of
the model. Of course, it remains interesting to further
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explore possible extensions to the current model to
make it more general.

Second, while the analysis in the paper is dedicated
to the approach in [30], it may also be applied to
other cases. Note that the approach in [30] can be
used to extract other types of relations (e.g., “part-
of” relations [23]), provided that there are patterns
bearing the properties stated in Section 2.2. Perhaps
more importantly, similar analysis may be done for
other bootstrapping procedures, which are popular
in modern information extraction systems. Indeed,
this is an essential motivation of this paper, which,
we hope, provides an example and makes a first
step towards this direction. However, Algorithm 1 is
not really a prototypical algorithm used in “syntactic
bootstrapping” approaches. Typically, some candidate
scoring functions are used to decide if an extraction
is correct [4]. The idea is to harvest more tuples
with the current patterns, and expand the patterns by
using the new tuples found. This is essentially more
complicated compared with semantic bootstrapping
analyzed in this paper. Because the set of patterns can
change as syntactic bootstrapping proceeds, it is ex-
pected that there are more rounds of iterations. Mean-
while, the overall precision does not only depend
on the precision of the tuples in the bootstrapping
phase: it also depends on the quality of the patterns
extracted (and vice versa) in later rounds. It is very
interesting future work to see if the current framework
we used for the analysis of semantic bootstrapping
can be extended to analyze syntactic bootstrapping.

Third, one might also have the question regarding
the implication and usefulness of such theoretical
analysis. The meaning is that it will guide people
on how to use semantic bootstrapping in practice.
For example, our analysis suggests that we can trade
off between precision and recall by using different
iterations. As another example, as suggested by The-
orem 2, the overall precision highly depends on the
precision of the first two iterations. Therefore, to
improve the quality of the extracted pairs, one should
focus on improving the quality of the pairs extracted
in the first two iterations. For instance, one may
want to choose larger thresholds (used by DetectSuper
and DetectSub) in the first two iterations and smaller
thresholds in later iterations. As an alternative, one
may also incorporate external, clean knowledge (e.g.,
isA relations from WordNet [16] or Freebase [5]) into
the first two iterations to boost the precision.

7 RELATED WORK

Automatically extracting relations from text corpus
has been studied for decades. Early work focused
on information extraction from a closed domain (e.g.,
news). These systems usually used supervised learn-
ing approaches such as Hidden Markov Models
(e.g., [17]), rule learning (e.g., [26]), or Conditional
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Random Fields (e.g. [20]), which were elaborately
tuned for that specific domain. As a result, while these
approaches might be effective on documents that are
similar to those in the training corpus, it is difficult
to apply them to open domains like the whole Web,
where the corpus and the target relations are much
more diverse.

To the best of our knowledge, the first work towards
open domain information extraction was DIPRE [7],
which leveraged the basic idea of syntactic bootstrap-
ping. Similar ideas were adopted by several later work
(e.g., [1], [21], [24]). However, these systems usually
require substantial human effort to provide manually
tagged seed instances for every target relation. Know-
ItAll [14] partially alleviated this practical challenge
by specifying seed patterns (or rules) instead of seed
instances. But this raised a new question about the
availability of hand-crafted linguistic patterns. Tex-
tRunner [3] later addressed this issue by using a
self-supervised learner to automatically identify ex-
traction patterns. Recent work [15] further improved
TextRunner by enforcing certain syntactic constraints
to suppress incoherent and uninformative extractions.
Nonetheless, the precision and scale of the extracted
relations remains an issue. Another prominent recent
work was the NELL project [11], which viewed in-
formation extraction as a multi-task learning problem
and employed semi-supervised learning methods.
However, NELL still uses syntactic bootstrapping and
requires seed instances for the learners to bootstrap
with. As a result, it suffers similar problems.

Unlike this line of work on syntactic bootstrapping,
Probase [30] applied the idea of semantic bootstrapping
to isA relation extraction and showed promising per-
formance. Nonetheless, it only gave empirical results
with no performance guarantee. This paper serves as
a companion of [30]. We have conducted a detailed
theoretical analysis that further explains the working
mechanism underlying semantic bootstrapping. So
far, we are not aware of similar study on any previous
isA relation extraction algorithm. It is our hope that
our work in this paper could inspire future research
on formal analysis of information extraction systems.

On the other hand, semantic bootstrapping does
not address the issue of how to obtain high-quality
syntactic patterns. There has also been a lot of work on
how to obtain good syntactic patterns. For example,
Riloff and Jones [24] proposed a multi-level bootstrap-
ping architecture, by introducing a meta-bootstrapping
stage before the standard syntactic bootstrapping
framework. Patwardhan and Riloff [22] built a clas-
sifier that can evaluate the relevance of an extraction
pattern to a piece of text in the corpus. Semantic
bootstrapping is orthogonal to this line of work. It is
interesting future work to combine both to develop a
perhaps more powerful system that consists of two
layers: the bottom layer is syntactic bootstrapping,
whose output is a set of high-quality extraction pat-
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terns; the top layer is semantic bootstrapping, whose
input is the output from syntactic bootstrapping, and
whose output is the high-quality pairs extracted. This
architecture is visualized in Figure 5.
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Fig. 5. Combine syntactic and semantic bootstrapping

Finally, it is worth mentioning that semantics-based
techniques have been studied for decades in natural
language processing (NLP) research, as were detailed
in the recent survey by Cambria and White [10].
Unlike pure syntax-based approaches which basically
adopt a “bag-of-words” model, semantics-based ap-
proaches take a “bag-of-concepts” view that focuses
on detecting the intrinsic meaning underlying the text.
Knowledge representation lies in the center of these
semantics-based approaches, with the aim of building
universal taxonomies or Web ontologies [10]. Except
for the effort on automatically extracting worldly facts
from large open-domain corpus that has been elabo-
rated extensively throughout this paper, there are also
many other popular Semantic Web projects (e.g., An-
notea [19], SIOC [6], and SKOS [2]). Researchers have
also been attempting semantics-based techniques that
go beyond encoding subsumption knowledge in tax-
onomies and ontologies. For example, there is a recent
move towards sentic computing [9], which presents an
approach to concept-level sentiment analysis based
on graph mining and dimensionality reduction tech-
niques. Incorporating richer knowledge and seman-
tics into semantic bootstrapping will be a very inter-
esting direction for future work.

8 CONCLUSION

In this paper, we revisited a semantic bootstrapping
framework for open-domain isA relation extraction
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that differs from previous work based on syntactic
bootstrapping. Rather than seeking more and more
syntactic patterns as the iteration proceeds, semantic
bootstrapping uses a fixed set of patterns and lever-
ages the knowledge identified in previous rounds to
help extract more knowledge. We gave both theo-
retical and empirical study of its performance. We
demonstrate that semantic bootstrapping can indeed
achieve very high precision while retaining good re-
call on large-scale corpus.
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