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ABSTRACT

Query performance regression due to the query optimizer select-
ing a bad query execution plan is a major pain point in produc-
tion workloads. Commercial DBMSs today can automatically de-
tect and correct such query plan regressions by storing previously-
executed plans and reverting to a previous plan which is still valid
and has the least execution cost. Such reversion-based plan cor-
rection has relatively low risk of plan regression since the deci-
sion is based on observed execution costs. However, this approach
ignores potentially valuable information of efficient subplans col-
lected from other previously-executed plans. In this paper, we
propose a novel technique, Plan Stitch, that automatically and op-
portunistically combines efficient subplans of previously-executed
plans into a valid new plan, which can be cheaper than any indi-
vidual previously-executed plan. We implement Plan Stitch on top
of Microsoft SQL Server. Our experiments on TPC-DS benchmark
and three real-world customer workloads show that plans obtained
via Plan Stitch can reduce execution cost significantly, with a re-
duction of up to two orders of magnitude in execution cost when
compared to reverting to the cheapest previously-executed plan.
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1. INTRODUCTION

A query’s plan can change for various reasons, such as when
indexes and statistics are created and dropped, when a stored pro-
cedure gets recompiled with a parameter binding different from last
time, or when a query is manually tuned with hints.

As an example, in Azure SQL Database [9], customers can con-
figure their databases to use Automated Indexing [8|]. Automated
Indexing continuously monitors and analyzes query workloads, and
periodically recommends index configurations. As indexes are in-
crementally implemented, different plans get executed. We observe
that tens of thousands of indexes are created and dropped over a
week. This results in hundreds of thousands of instances where the
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optimizer chooses multiple query plans for the same query, espe-
cially for stored procedures and query templates.

The query optimizer often makes good use of the newly-created
indexes and statistics, and the resulting new query plan improves
in execution costﬂ At times, however, the latest query plan chosen
by the optimizer has significantly higher execution cost compared
to previously-executed plans, i.e., a plan regresses [5/6,31].

The problem of plan regression is painful for production applica-

tions as it is hard to debug. It becomes even more challenging when
plans change regularly on a large scale, such as in a cloud database
service with automatic index tuning. Given such a large-scale pro-
duction environment, detecting and correcting plan regressions in
an automated manner becomes crucial. Such automated correc-
tion techniques must have low risk of making execution costs even
worse due to the correction.
Automatic plan correction. Commercial DBMSs have recognized
the importance of this problem, and indeed, the automatic plan
correction (APC) feature in Azure SQL DB (and Microsoft SQL
Server) automatically detects and corrects plan regressions [J5].

When a plan regresses due to plan changes, previously-executed
plans of the same query are often still valid, i.e., the plans are still
executable in current conﬁgurationﬂ In such cases, reverting to a
cheaper previously-executed plan will resolve the regression.

APC continuously monitors aggregated execution statistics of

plans. Once a plan completes execution and has statisticall-sig-
nificant worse execution cost compared to earlier plans of the same
query observed in recent history, the server automatically forces the
optimizer to execute the query with the cheaper older plan which
is still valid. When database sizes and data distributions have not
changed significantly from the time when previous plans in recent
history were executed, reverting to the cheaper previously-executed
plan corrects the regression. Similar features are available in other
commercial DMBS products as well [6].
Opportunity. This reversion-based plan correction (RBPC) is at-
tractive in a production setting due to its low risk, since the decision
is based on observed execution cost. However, RBPC also restricts
itself to choose one overall cheapest plan from the set of previ-
ously-executed plans. With operator-level execution cost statistics,
we can further identify efficient subplans from other plan in the
set, even if the overall plan is not the cheapest. Ignoring these sub-
plans can leave significant opportunities of further plan improve-
ment with low risk.

'In this paper, we use execution cost (either CPU time and/or logi-
cal reads) as a metric for measuring the goodness of a query plan.
2A plan can become invalid and not executable in a configuration
for various reasons, such as when the indexes used by the plan are
not present in current database.
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Figure 1: Combining subplans to get the best of multiple plans. Each operator is annotated with its execution CPU cost in seconds. p; is
under the configuration of no indexes. p2 and the combined plan are under the configuration of index /g and Ip.

Example. Consider a query that joins 4 relations A, B, C, and D,
and consider a specific instance where a new query plan is chosen
due to new secondary indexes created on B and D. In the absence
of the indexes, the optimizer chooses Hash Joins (HJs) with Table
Scans on all the relations and a join order of A, B, C, and D (see p1
in Figure[Ta). In the presence of the indexes, the optimizer decides
to join C' and B first with Nested Loop Join (NLJ), accessing B
using Index Seek. It then joins A with another NLJ and finally joins
D with NLJ again using an Index Seek on D (see p» in Figure[TDb).
Based on optimizer’s cost estimates, the new plan ps is cheaper
than the previous plan p;. However, due to cost misestimates on
the joins of (C, B, A), p2 ends up with higher execution cost.

Reverting back to p; corrects the increase in execution cost due

to p2. However, such an approach misses out an even better plan
that combines the subplans from p; and p2> (see Figure . Com-
bining the joins of (A, B, C) from p; and the root NLJ and Index
Seek on Ip from p2 results in a plan better than both p; and p.
While the combined plan has not been executed in its entirety be-
fore, it consists of subplans with observed execution cost from pre-
viously-executed plans. Thus, executing the combined plan has a
comparable low risk as reverting back to p1.
Harnessing the best of multiple plans. We propose Plan Stitch,
a fully-automated solution that opportunistically constructs a query
plan from previously-executed plans of the same query. The plan
constructed can be different from and cheaper than all the previ-
ously-executed plans. It is also the cheapest plan among all the
plans that only consist of subplans from previously-executed plans.
Challenges. Harnessing efficient subplans from multiple plans has
two challenges. First, discovering efficient subplans from multiple
complicated query plans which consist of hundreds of operators re-
quires analyzing the semantics of hundreds of subplans. Second,
even after such efficient subplans are identified, combining the ac-
cess paths, physical operators, and join orders from these subplans
into a single valid plan is also challenging.

Plan Stitch addresses both challenges by formulating the prob-
lem as a plan search problem similar to traditional query optimiza-
tion, but in a constrained search space. Every physical operator
in this constrained search space must appear in a previously-ex-
ecuted plan of the same query with exactly the same logical ex-
pression, and it must be valid in current configuration. Plan Stitch
discovers efficient subplans by comparing alternative subplans of
the same logical expression in the constrained search space. It
then combines these efficient subplans into the cheapest plan in
execution cost with a fast, quadratic time algorithm based on dy-
namic programming. Finally, Plan Stitch influences the optimizer’s
plan choice using the plan forcing feature supported by commercial

databases [6,46]. This forcing step also validates the correctness of
the constructed plan.

Example. Referring back to the example in Figure[I] Plan Stitch
will constrain the plan search space to only subplans executed in p;
and po, such as joining A, B, C using either (A, B, C) with HJs
or (C, B, A) with NLIJs, but not using Merge Join or any other join
order. Based on operator-level execution cost of p; and ps, Plan
Stitch combines the root NLJ and Index Seek on the newly created
index Ip from pa, as well as the subplan of joining (A, B, C) from
p1. It ends up with a new plan (Figure with the lowest overall
execution cost possible from this constrained search space, which
is cheaper than both p; and p2.

Properties. Plan Stitch has the same desirable properties as RBPC:
it is automatic, low-overhead, and low-risk. Similar to RBPC, Plan
Stitch directly relies on observed execution cost and thus is low
in risk, which is crucial for automatic plan correction at a large
scale such as in an automatically indexed cloud-scale database ser-
vice like Azure SQL DB. In contrast, most prior work on leverag-
ing feedback from execution [|1;/11}|{14}/16,43] applies feedback to
general query optimization and considers subplans that have never
been executed before, introducing increased risk of large estima-
tion errors for the selected plan’s execution cost. Compared with
RBPC, Plan Stitch can still leverage subplans even where the pre-
viously-executed plans are invalid, e.g., due to index changes.

Note that Plan Stitch can be applied even when there is no re-
gression. Whenever a query accumulates execution statistics for
multiple plans, Plan Stitch can search for opportunities to improve
plan quality. Given Plan Stitch’s low overhead, it is potentially
worth exploring such opportunities routinely.

Our discussion so far has focused on executions of specific query
instances. For parameterized queries (query templates) or stored
procedures, RBPC reverts to a previously-executed plan with the
cheapest execution cost averaged over all the instances of the plan.
Plan Stitch follows the same paradigm and constructs the cheap-
est stitched plan in average execution cost. Averaging execution
cost across instances optimizes for the cheapest expected execution
cost. With appropriate criterion for choosing subplans, Plan Stitch
can adapt to alternative objectives, such as low variance of execu-
tion cost [10]. If multiple plans can be stored for the same query,
we can also stitch the plan for a specific parametrization. With
parametric query optimization techniques [[19}[21}22}27,28]], Plan
Stitch can adjust the weight of previously-executed plan instances
for a specific query instance based on their similarity in the selec-
tivity space when constructing the stitched plan. Such extensions
are beyond the scope of this paper.
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Figure 2: The architecture of the database engine with feedback
collection and Plan Stitch.

Result highlights. We implement Plan Stitch in C# as a compo-
nent external to Microsoft SQL Server (Section [d). We rely on
existing functionality in the engine for storing a history of exe-
cuted plans [37]], obtaining operator-level execution cost [41}42],
and influencing the query optimizer’s plan choice [36,46]. Using
industry-standard benchmark TPC-DS and three real-world cus-
tomer workloads, we demonstrate that Plan Stitch outperforms a
reversion-based correction technique (or RBPC) both in terms of
coverage (i.e., number of queries and plans improved) as well as
the reduction in execution cost. By stitching together subplans
from previously-executed plans, Plan Stitch constructs new plans
that are at least 10% cheaper in execution cost for up to 83% of
plans across our workloads when compared to the cheapest plan
found by RBPC. There are several instances where there is up to
two orders of magnitude reduction in execution costs. Across all
the workloads, Plan Stitch improves the quality of up to 20 x more
plans than RBPC. In addition, constructing and validating each
stitched plan is often cheaper than the cost to optimize the corre-
sponding query by the optimizer.

Contributions. Following are the key contributions:

e We propose Plan Stitch, a novel, fully-automated, low-overhead
technique that uses operator-level execution cost of previously-
executed plans to opportunistically construct new plans that are
cheaper in execution cost than the cheapest previous plan that is
still valid, with low risk of plan regression.

We describe an efficient, dynamic programming-based approach
to construct a plan with the cheapest execution cost. We com-
bine the observed execution cost of subplans from previously-
executed plans to estimate the execution cost of stitched plans
with high accuracy (Section[3).

We implement Plan Stitch as a component layered on top of Mi-
crosoft SQL Server (Section E]) Using industry-standard TPC-
DS benchmark and three real-world customer workloads, our
comprehensive evaluation demonstrates that with very low over-
head (Section [5), Plan Stitch results in plans which are signifi-
cantly cheaper than plans found by the optimizer or RBPC.

2. OVERVIEW

Problem statement. Given a query instance g, the set of indexes
{I1} available in the current database configuration C, and a set P
of distinct query plans {p; } of ¢ which have per-operator execution
costs recorded from past executions, Plan Stitch constructs a plan p
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for query g that has cheapest execution cost with the constraint that
each operator in p can be found in some plan p; € P.

We refer to the operation of constructing p using operators from

different plans in p; as stitching, and the resulting plan p as the
stitched plan. As noted earlier in Section|[I] we use execution cost
measures proportional to the logical amount of work done by the
query, such as CPU time consumed by the query or number of log-
ical reads performed by the query.
Architectural overview. Figure[2]shows the logical architecture of
how Plan Stitch integrates with a DBMS, how it obtains its inputs
({(g, P, C)), and how it influences the optimizer’s plan choice with
its output (p). Logically, Plan Stitch executes outside of the critical
path of the query optimization and execution, either as an external
client component or a background thread in the DBMS. The opti-
mizer selects a plan for a given query and the current configuration
(obtained from database metadata), which is then executed, and
its execution statistics are recorded in a repository. The execution
statistics includes the plan structure and its operator-level execution
cost [2L/37]. Over time, the repository passively collects a history
of plans, including different plans executed for the same query.

Whenever multiple plans for the query ¢ have executed and its
execution statistics are available in the repository, we can trigger
Plan Stitch to search for alternative stitched plans which could re-
duce the execution cost compared to the plan currently chosen by
the optimizer. Once triggered, Plan Stitch obtains its input plans P
from the execution data repository and reads the current index con-
figuration C' from the database metadata. The final stitched plan p
generated by Plan Stitch is then passed to the optimizer so that it
can be used for future executions of query q.

Plan Stitch influences the optimizer to use p as ¢’s execution plan
using a widely-supported plan forcing API which allows specifying
a plan hint for a query [636,46]. The plan structure fully specifies
the logical tree structure and the physical operators. The query
optimizer takes the hint as a constraint to prune its search space
during its plan search, thus generating a query plan which conforms
to the hint and is guaranteed to be a valid plan for the query.

Note that Plan Stitch’s ability to find a cheaper plan depends on
the presence of cheaper subplans in PP which are still valid in the
current configuration C. Hence, Plan Stitch is opportunistic and
cannot guarantee an improved plan. Plan Stitch outputs a stitched
plan only if it is estimated to be cheaper in execution cost compared
to the plan returned by the optimizer.

The repository needs to age out execution feedback to ensure the
accuracy of Plan Stitch’s cost estimate when data changes. This is
a common challenge for all feedback-based approaches. Since a
query’s execution cost depends on the amount of data and its distri-
bution, it is difficult to theoretically bound the degree of inaccuracy
of the execution feedback when the data changes. As a result, dif-
ferent heuristics have been proposed, such as to retire the execution
data after a time window, invalidate the execution data when de-
tecting a large enough fraction of the data has changed (similar to
detecting out-of-date statistics and histograms [7,30]]), or weigh the
execution feedback based on its freshness. Such heuristics could
also be applied to the execution data used in Plan Stitch.

3. PLAN STITCH

Plan Stitch has two major components: (a) using the set of
previously-executed distincﬂplans P of the same query to identify
and encode a constrained search space; and () using per-operator

3We aggregate the execution cost of multiple executions of the
same plan to reduce the runtime variance of execution data as well
as the overhead of Plan Stitch.
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execution cost from plan p; to construct the stitched plan with min-
imum total execution cost in the constrained search space. In this
section, we explain these components, how Plan Stitch estimates
the execution cost of the stitched plan, and the stitch algorithm.

3.1 Constrained Search Space

Plan Stitch starts by constraining its plan search space to opera-
tors that have appeared in some p;. The major challenges in gener-
ating this constrained search space are: (a) identifying equivalent
subplans from different plans p;; and (b) compactly encoding these
equivalent subplans in a structure to allow efficient search.
Identifying equivalent subplans. Every node in a query plan
(along with the subplan rooted at the node) represents a logical ex-
pression with the required physical properties (such as interesting
orders [40]), e.g., A 1 B 1 C without a sort order. Two sub-
plans are equivalent if they have the same logical expression and
the required physical properties. A group of equivalent subplans is
referred to as an equivalent subplan group.

To find equivalent subplans across plans in p;, we need to de-
cide the equivalence of the logical expressions for these subplans,
which is known to be undecidable [29]]. Previous work has pro-
posed tests and greedy algorithms to match equivalent logical ex-
pressions [23}/39] to enable the query optimizer to match views and
detect duplicate expressions. Conceptually, such techniques can be
used to identify equivalent expressions. In our implementation, we
use similar heuristics that provide a reasonable balance between
ease of implementation, overhead, and accuracy of matches, and
use the optimizer to ensure the correctness of a stitched plan as
a side-effect of plan forcing. We will discuss our implementation
choices in detail in Section 4l
Encoding the constrained search space. We represent the con-
strained search space of allowed alternative plans using an AND-OR
graph [24]]. The graph consists of AND and OR nodes where each
node represents whether the respective subplans should be used si-
multaneously (AND) or are mutually exclusive (OR). Each AND node
corresponds to a physical operator in a plan, e.g., Hash Join. Every
OR node represents a logical expression with the required physical
properties. The children of an AND node are OR nodes, represent-

ing logical expressions and required physical properties of the AND
node’s child subplans. The children of an OR node are AND nodes,
representing the root physical operators of alternative subplans of
the OR node.

To construct an AND-OR graph, for every subplan rooted at a

physical operator in p;, we find all the equivalent subplans from
p; € P. With these equivalent subplans, we create an OR node
representing the logical expression and the required physical prop-
erties for an equivalent subplan group. The root physical operator
of each subplan in the group corresponds to a child AND node of the
OR node.
Example. Consider the example query joining relations A, B, C,
and D discussed in Section[I] Figure [3]shows the AND-OR graph
constructed from the two alternative query plans under the current
configuration of indexes on B and D (OR nodes are numbered black
circles; AND nodes are rounded rectangles. See Figures [la and
for the original plans). Every physical operator in the AND-OR
graph, represented by an AND node, has been executed with exactly
the same logical expression from either p; or p2. For example, the
root OR node 1 of the graph has two alternatives, the root HJ from
p1 and the root NLJ from po. Similarly, the left subplans of the
two root physical operators have the same logical expression, i.e.,
joining A, B, and C, and they share the same OR node 2. This OR
node has two alternatives: joining (A, B, C') with HJs from p; and
joining C, B, A with NLJs from p,.

Note that not all the leaf operators from previously-executed
plans will appear in the corresponding AND-OR graph. If a leaf
operator uses an access path that is not available in current configu-
ration, it is not valid and does not appear in the graph. For instance,
if we drop the index Ip from the configuration in our example, the
Index Seek Ip from p» will not be valid and thus the corresponding
AND node will be removed from the AND-OR graph in Figure[3]

3.2 Constructing the Stitched Plan

There are two important properties of the AND-OR graph to en-
able an efficient search. First, the graph is acyclic which enables
Plan Stitch to construct the cheapest plan recursively from the bot-
tom up. Since each plan is tree-structured, the physical operators
and the subplans rooted at these operators are partially ordered
within a planﬂ Consequently, the operators are partially ordered
across plans; otherwise, there will exist two equivalent operators
in the same plan, where one operator is the ancestor of the other,
which is not possible. Since all the operators are partially ordered
across plans, the AND-OR graph is acyclic.

Second, there is at least one OR node: the root OR node shared
by all the plans of the query. Because all the plans execute the
same query, the plans themselves are logically equivalent and their
root physical operators share the same root OR node. This implies
that the AND-OR graph embeds all the previously-executed plans
that are still valid from the same OR root. Thus, the cheapest plan
constructed from this constrained search space costs no higher than
the cheapest plan among all the valid previously-executed plans.
Stitching plans. Intuitively, we construct the cheapest plan from
leaf AND nodes to the root OR node by stitching the cheapest subplan
for each AND node and each OR node in the AND-OR graph using
dynamic programming. At the leaf-level, each node is an AND node
and the corresponding operator becomes the cheapest subplan of
the AND node by itself. The cheapest stitched subplan of an OR
node is the cheapest one from the cheapest stitched subplans of all
its alternative AND nodes. To get the cheapest stitched plan rooted at

“Here we assume that every physical operator in a plan either
changes the logical expression or the physical properties, i.e., sort
order, of the subplan rooted at the operator.
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an AND node, we take the cheapest stitched subplans of its children
OR nodes and stitch them as child subplans to the corresponding
root physical operator of the AND node. Finally, the cheapest plan
of the query is the cheapest stitched subplan at the root OR node.
Costing stitched plans. To stitch the cheapest subplan, Plan Stitch
compares the execution cost of alternative stitched subplans. Since
a stitched subplan may not have been executed in its entirety from
one previously-executed plan, Plan Stitch combines the observed
execution cost of the operators in the stitched subplan. When stitch-
ing the cheapest subplan of a child OR node to a parent AND node,
Plan Stitch estimates the execution cost of the resulting stitched
subplan by combining the cost of child subplans with that of the
cost of the parent, similar to how the query optimizer combines its
cost estimates and propagates them through the plan:

stitchedSubUnitCost(opCost, execCount,
{(childSubUnitCost, childExzecCount)})

stitchedSubUnitCost estimates the execution cost of executing a
stitched subplan rooted at a physical operator op once. It takes
four inputs: the observed execution cost of op, how many times op
is executed in its original plan, the estimated execution cost of exe-
cuting each stitched child subplan once, and how many times each
of its original child subplans executes. Note that most subplans are
executed only once in a plan, except if the subplan is a descendant
of the inner side of some Nested Loop Join or Apply [4] operators.
By constraining the search to operators that have been executed,
Plan Stitch can combine and estimate the execution cost of the
stitched plan with high accuracy, which is verified in our experi-
ments and thus confirms its low risk. Note that this applies to all
logical cost measures, such as CPU time and logical reads.
Assumptions in costing. To simplify combining execution costs
for the stitched plan, we make a few assumptions and approxima-
tions. First, we assume that the execution cost of an operator is
transferrable from one plan to another, provided its input and out-
put are unchanged and it is performing the same logical operation.
This follows from the observation that the operator implementa-
tions are deterministic. Second, for subplans with multiple exe-
cutions, we divide the execution costs evenly among executions,
ignoring start-up overhead for the first execution. While this ap-
proximation can introduce errors in cost estimation, as we will see
in the experimental evaluation (Section , in practice across a
variety of workloads, we did not observe this factor introducing
noticeable errors in our costing.
Example. Consider the example in Figure[3] We start from the leaf
nodes, where OR node 7 and 11 have alternative choices. As the
cheapest subplan of the group, OR node 7 chooses Seek(Ig) and
OR node 11 chooses Seek(Ip). Similarly, at children AND nodes
of OR node 2, the cheapest stitched subplan rooted at the HJ is
cheaper than its equivalent stitched subplan rooted from the NLJ,
and thus the former becomes the cheapest stitched subplan of OR
node 2. Continue to stitch the cheapest subplans for AND nodes and
OR nodes upwards, eventually, at the root OR node 1, it compares
the cheapest stitched subplan from the top HJ and the top NLJ and
chooses the latter. Figure [3] shows the resulting cheapest stitched
plan colored in green.

3.3 Stitch Algorithm

Algorithm [T] outlines the dynamic programming algorithm that
constructs the cheapest stitched plan from bottom up, similar to the
System R optimizer [40].

Let G be an AND-OR graph constructed from previously-executed
plans with all invalid operators removed. For each AND node
and, we maintain two states: the cheapest stitched subplan

Input: A set of query plans P, a set of indexes I present in
current configuration, and the AND-OR graph G
constructed from P

Output: The cheapest stitched query plan

// Order the equivalent subplan groups from

bottom to top

G’ + GetOrderedSubplanGroups(G)

// Construct the cheapest stitched plan

-

2 for g(or) in G’ do
3 bestSubInGp(g(or)) <~ NULL
4 bestCost < oo
5 for and in or’s child AND nodes do
6 if and is leaf operator then
7 bestSubUnitCost(and) < opUnitCost(op)
8 bestSubplan(and) < A single operator op
9 else
10 bestSubplan(and) < op
11 for ory. in and’s child OR nodes do
12 bestSubplan(and) < Stitch
bestSubInGp(g(ork)) to op
13 andy, <— subplan root of
bestSubInGp(g(ori))
14 end
15 bestSubUnitCost(and) <
stitchedSubUnitCost(opCost(op),
execCount(op), {bestSubUnitCost(andy),
execCount(op, ory)})
16 if best SubInGp(g(or)) = NULL or
bestCost > bestSubUnitCost(and) then
17 bestSubInGp(g(or)) < bestSubplan(and)
18 bestCost + bestSubUnitCost(and)
19 end
20 end

21 return bestSubInGp(groot)
Algorithm 1: Construct the cheapest stitched query plan using
dynamic programming

bestSubplan(and) with the corresponding root operator op and
the estimated execution cost bestSubUnitCost(and) of execut-
ing bestSubplan(and) once. For each OR node or and its corre-
sponding equivalent subplan group g(or), we maintain the cheap-
est stitched subplan in the group as bestSubInGp(g(or)), which
is the cheapest stitched subplan among all the bestSubplan(and),
where and is a child AND node of or.

We stitch the subplans from bottom up (line 1 in Algo-
rithm [T). If op is a leaf operator (line 6-8 in Algorithm [I), the
bestSubplan(op) is op itself and bestSubUnitCost(op) is the
cost of executing op once.

If op is an internal operator (line 10-15 in Algo-
rithm [I)), for the equivalent subplan group of every OR
child node g(ory), we stitch bestSubInGp(g(ory)) to
op. We compute bestSubUnitCost with the costing API
as stitchedSubUnitCost(opCost(op), execCount(op),
{bestSubUnitCost(andy), execCount(op, ory)}), where
execCount(op, ory) is how many times the child subplan rooted
at ory, is executed when the subplan rooted at op is executed once.

After constructing the cheapest stitched subplan rooted at op,
we update bestSubInGp(g(or)) accordingly (line 16-19 in Al-
gorithm [I). Finally, we return the cheapest stitched subplan of
the root group (i.e., best SubInGp(groot)) as the cheapest stitched
plan from this AND-OR graph G (line 21 in Algorithm [T).
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Time complexity. Algorithm []is quadratic in the number of plans
and the number of operators in the plan, assuming the time to de-
cide the equivalence of two subplans is a constant using our heuris-
tics. Let IV be the number of plans and M be the maximal number
of operators in a plan among all the plans in P, we show that:

The worst-case running time for the plan stitch algorithm is
O((NM)?).

Because the total number of operators in all the plans is at most
N M, the size of each equivalent subplan group is at most N M. So
updating the cheapest stitched plan for each group takes O(NM).
Since there is at most N M equivalent subplan groups, computing
the cheapest stitch subplans for all groups takes O((NM)?). Now
we show a case where the upper bound is tight.

Let there be N query plans. Each plan is a perfect binary
tre&ﬂ with M = 2% — 1 operators. Let all the interior nodes
be join operators and each leaf node be an index access opera-
tor on the same table. Since there are M = 2 — 1 operators
in a plan, 271 operators are leaf operators. Let the leaf opera-
tors in all the plans be op1,0p2, -+ ,0pyk—1,. Let each op; ac-
cess the same table with an index of key columns a1, a2, - ,a;
and sort order ai,az,---,a;. Thus, the subplan of leaf op-
erator op; has at least (2"7'N) — 4 equivalent subplans, i.e.,
OPi+1;0Pit2, "+, OPa(k_1)N- So computing the best stitched sub-

plans in all the groups takes at least Efi;lN FIN — 41 =
2P 2N (2FTIN 4 1) = WEDNUMEDNES)  Therefore, the time
complexity O((NM)?) is tight and the worst-case running time is
O((NM)?).

In TPC-DS benchmark and real-world customer workloads used
in our experiments, the number of operators in a query plan is no
more than a few hundred, and we expect to stitch a handful of
previously-executed plans for each query. In addition, the equiv-
alent subplan matches are usually sparse, and the algorithm will
rarely reach its worse-case running time. That is, in practice, the
overhead of Algorithm [I]is much less than optimizing the corre-
sponding query given plans with a few hundred of operators and a
handful of plans to stitch.

4. IMPLEMENTATION

We implement Plan Stitch in C# as a component on top of Mi-
crosoft SQL Server without requiring any changes to the engine.
SQL Server stores previously-executed plans and their execution
statistics, including plan structures, properties of operators (e.g.,
sort columns), and operator-level execution costs [37,/41]. Plan
Stitch passively monitors query executions and triggers the search
for alternative plans when execution statistics for multiple plans for
the same query are available. Our implementation follows the logi-
cal architecture in Figure 2] where we force the stitched plan using
the plan hinting API supported in SQL Server [36,46].

As described in Section 3] conceptually, we can implement Plan
Stitch inside SQL Server. When stitching plans inside the engine,
we can leverage view matching and transformation rules to match
subplans [23}/39], constrain the search space, and force the plan.

Implementing Plan Stitch inside the engine, however, incurs sig-
nificant engineering overhead. Because SQL Server query opti-
mizer prunes search space aggressively, it explores different search
space for the same query under different configurations. Persisting
and aligning the in-memory data structures of plans across query
optimization boundary to construct the AND-OR graph become an

°In a perfect binary tree, all interior nodes have two children and
all leaves have the same depth.

engineering challenge. Moreover, integrating the execution cost
into the optimizer requires a redesign of its costing framework.

As a proof of concept, we choose to implement Plan Stitch ex-

ternal to SQL Server, using heuristics for subplan match and the
existing mechanism to force and validate the stitched plan.
Matching equivalent subplans. We use the following heuristics to
determine matches between subplans: (a) rule out subplans which
can never be equivalent (e.g., different joined tables, or not match-
ing interesting orders), (b) consider candidate matches where the
necessary conditions are met (e.g., the joined tables, sort order of
output columns, etc.), (¢) match expressions computed in the query
wherever possible by comparing the expression trees. For sort or-
ders, as long as the prefix of the sort order of a subplan satisfies the
required sort order of the OR node, the subplan matches the sort or-
der of the corresponding OR node. In addition, when the optimizer
generates single-threaded (i.e., serial) and multi-threaded (i.e., par-
allel) plans for the same query, we also need to consider the serial
or parallel mode as required physical properties, since equivalent
serial and parallel nodes are not interchangeable across plans.
Forcing the stitched plan. When a plan is forced for a query, es-
pecially when the plan is externally provided, the optimizer must
ensure that the plan is correct, i.e., it returns the result required by
the query and the plan is executable under current database con-
figuration. The optimizer performs this validation by constraining
its search space to only explore plans satisfying the specified plan
structure. Similar to Plan Stitch, such a constraint enforcement re-
quires the optimizer to find equivalence of expressions in the spec-
ified plan and expressions that appear in the query. Since determi-
nation of such equivalence is undecidable [29], the optimizer also
relies on heuristics to perform this match. SQL Server’s query opti-
mizer uses a large collection of transformation rules which are used
to rewrite an expression into equivalent logical expressions, which
the optimizer tries to match. Such an approach ensures that there
are no false positives in matches, though it is possible to have false
negatives. Therefore, if a specified plan is successfully forced, the
plan is guaranteed to be correct. However, the optimizer might fail
to force some valid plans due to false negatives in matches. We
observed multiple cases where either the original plan itself or the
cheapest previously-executed plan that is still valid in current con-
figuration cannot be forced.
Handling errors in validation. The stitched plan generated by
Plan Stitch can fail the forcing and validation step either due to
shortcomings of the equivalence matching in Plan Stitch or the op-
timizer. Plan Stitch handles such failed validations with two-stage
stitch. When a stitched plan is invalid and the corresponding plan
forcing fails, Plan Stitch makes a second attempt with sparse stitch.
A sparse stitch performs a sparser match by removing equivalent
subplan groups rooted at operators such as Bitma[ﬂ and Compute
Scalar, which introduces expressions to make matching harder. In-
tuitively, by reducing the number of equivalent subplan groups, we
decrease the chance of making mistakes in constructing the con-
strained search space and hopefully increase the chance of produc-
ing a valid stitched plan.

It is possible to iteratively eliminate subplan groups to make
the stitch sparser until we find a valid plan which can be forced.
However, in practice, we found the incremental benefits of sparser
stitches in improving the probability of a successful validation de-
creases, and two stages provide a good trade-off between the over-
head and success rate. For the several workloads used in our ex-
periments, 75%-100% of the initial stitched plans are successfully
forced, and the two-stage stitch increases the rate by up to 9%. If

®Bitmap represents a filtering bitmap created by a HashMap oper-
ator from its outer relation and is pushed down to its inner relation.
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Table 1: Statistics of TPC-DS benchmark and real-world customer
workloads. Included queries are subsets of queries with at least two
distinct plans. Average indexes is the number of indexes referenced
by the plans for the query averaged over the entire workload.

| Workload & Statistics || TPC-DS | Custl | Cust2 [ Cust3 |

DB size (GB) 87.7 44.6 493 93
Tables 24 23 349 22
Queries 99 25 38 26
Included Queries 76 24 27 11
Avg. Joins 8 8.2 18.7 7.2
Avg. Plans 8.4 7.9 8.4 6.6
Avg. Indexes 4.5 3.9 6.2 3.1

the sparse stitch still results in an invalid stitched plan, Plan Stitch
uses the cheapest previously-executed plan which is valid.

Note that a sparse stitch does not necessarily sacrifice the quality
of the stitched plan. Even if the sparse stitch does not identify a
cheaper alternative subplan, it can still benefit from that subplan by
stitching a subplan that contains this cheaper subplan.

S. EXPERIMENT

In this section, we evaluate Plan Stitch compared to reversion-
based plan correction (RBPC) on TPC-DS benchmark (10 GB) [44]
and three real-world customer workloads. Table [I] shows some
summary statistics of the workloads. We use the CPU time con-
sumed during execution as the measure of execution cost.

The major questions our evaluation focuses on are:

e Plan Quality (Section [5.2). How much improvement in plan
execution cost does Plan Stitch bring compared to RBPC? How
much is the risk of plan regression using Plan Stitch?

e Cost Estimation (Section [5.3). How accurate is the stitched
plan’s estimated execution cost compared to true execution cost?

e Coverage (Section[5.4). How many queries and plans can Plan
Stitch improve?

e Overhead (Section[5.3). What is the overhead of Plan Stitch?

o Stitched Plan Analysis (Section[5.6). How different is the stitched

plan compared to the optimizer’s plan? How many previously-
executed plans are used for the stitched plan? Why does the
optimizer miss the cheaper stitched plan in its optimization?
o Parameterized Queries (Section [5.7). How much does Plan
Stitch improve in aggregated execution cost of query instances?
e Data Changes (Section[5.8). How much does cost estimation in
Plan Stitch degrade when data changes?

5.1 Experimental Setup

We consider the setup where an automated indexing solution,
like Automated Indexing in Azure SQL DB [8|9], is analyzing
the workload and incrementally implementing and/or reverting in-
dexes, which results in multiple distinct plans for different subsets
of index configurations. To simulate the setup, we use Database
Engine Tuning Advisor (DTA) in Microsoft SQL Server to tune
each query, and then select different subsets of the recommended
indexes to obtain plans and execution costs which are recorded in
the execution data repository described in Section 2]

We use each tuned query and the plans executed for the query un-
der different configurations as input of Plan Stitch. For each query
g, we generate up to 10 configurations {¢; }, and each different con-
figuration ¢; can result in a different query plan p; chosen by the
optimizer. For each ci, pr, becomes the original plan, and {p; } be-
come the previously-executed plans under different configurations.

For each configuration cg, Plan Stitch constructs a new plan p’ un-
der ¢y, using {p; }. Thus, p’ is constrained to the same configuration
¢, (e.g., the same set of indexes) as px. We validate and execute a
stitched plan with our two-stage stitch (Section[d) whenever the es-
timated execution cost of the stitched plan is significantly cheaper
than the original plan, i.e., > 10%.

As a baseline, we implement RBPC, where if the original plan is
more expensive than a previously-executed plan that is still valid,
we revert back to the older cheap plan. In our experiment, a previ-
ous plan p; is not valid only when it accesses indexes that are not
in current configuration cy.

We execute each plan and each stitched plan in isolation (i.e.,
no concurrent queries) using Microsoft SQL Server and use the
average CPU time of five executions in our analysis. All the exper-
iments are run on machines with the same hardware specification.
Each machine has Intel Xeon CPU E5 — 2660 v3 2.6GHz, 192GB
memory, a 6.5TB hard disk, and running Windows Server 2012 R2.

5.2 Plan Quality Improvement

We first evaluate the improvement of plan quality of Plan Stitch.
We execute a stitched plan when it is estimated to be at least 10%
cheaper than the original plan and compare the true execution cost
of the stitched plan and the cheapest valid plan (RBPC). Since the
estimated execution cost of a stitched plan is always at least as
cheap as the cheapest valid plan, Plan Stitch improves all the test
cases where RBPC can improve the plan by at least 10% as well.

Figures [4] 5] [6} and [7] show the percentage improvement of the
stitched plan’s execution cost over RBPC for TPC-DS benchmark

and real-world customer workloads. Improvement (%) reported is:

CPUTimeg; _CPUTi %100.0 .
( Zme°t7"5’;§gTimFRBZ$RBPC) . We report the distri-

bution of improvements using an equi-width histogram, with the
z-axis labels being the lower bin boundary and y-axis representing
the percentage of cases where Plan Stitch was invoked. For exam-
ple, Figure [d] shows that, 16% of the stitched plans are 0% — 10%
cheaper in execution cost than the plan chosen by RBPC, 16% of
them are 10% — 20% cheaper, etc. Compared with the plan chosen
by RBPC, Plan Stitch further reduces the execution cost by at least
10% for at least 40% of stitched plans across all the workloads,
with a maximum of 83% of stitched plans in Cust3 workload. In
particular, Plan Stitch further reduces the execution cost of the plan
by least 50% for 28% of the improved plans in Cust2 workload.
Figure [§] shows the percentage of stitched plans where the exe-
cution cost is at least 10% worse than RBPC. This happens when
the execution cost of the stitched plan is underestimated, and such
underestimate outweighs the improvement margin of the stitched
plan. Across all our workloads, the percent of stitched plans that
regress more than 10% compared to RBPC is less than 2.7%. Thus,
Plan Stitch has a comparable low risk of regression with RBPC.

5.3 Cost Estimation

Plan Stitch needs to estimate the cost of the stitched plan since
it may not have been executed in its entirety before. Even though
Plan Stitch combines costs of subplans observed from previous ex-
ecutions, it makes some simplifying assumptions (Section[3.2). We
evaluate how much error is introduced due to those assumptions by
comparing Plan Stitch’s estimates with measured execution costs
after the stitched plans are forced and executed.

Figures [0} [T0] [TT} and [T2] show the distribution of cost estima-
tion errors of stitched plans for TPC-DS benchmark and real-world
customer workloads. We compute the ratio of execution cost over
estimated cost of stitched plans in percentage, excluding the plans
where both execution cost and cost difference are small (< 100ms)
to reduce noise from runtime variance. Across the workloads, the
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estimation is within 20% for at least 70% of stitched plans, with
a maximum of 85% in Custl workload. In all our real-world cus-
tomer workloads, the misestimate is less than 50%. Thus, our cost-
ing assumptions described in Section@mostly hold in practice.

We analyze the small fraction of outliers (8%) in TPC-DS where
the misestimates are more than 50% and discover that the misesti-
mates mostly come from implementation artifacts of SQL Server.

First, the plan executed with plan forcing can be slightly differ-
ent from the specified stitched plan, which makes our cost estima-
tion inaccurate. While Plan Stitch specifies the full stitched plan to
SQL Server, the optimizer, however, only uses the “skeleton” of the
logical structure of the specified plan to constrain its plan search,
ignoring operators that are not critical for the logical plan and leav-
ing it to the optimizer to decide the rest of the plan structure. For
example, Bitmap and Parallelisrrﬂ are ignored from the “skeleton”,
and Sort and Compute Scalar operators can be rearranged.

Second, the variance of runtime factors can lead to errors in cost
estimation. For example, when an operator executes with insuf-
ficient memory, it spills to disk. The execution cost of the spill
depends on the memory allocated, which is unpredictable and can
be different from the allocation from previous-executed plans. An-
other example is when the outer side of a Hash Join produces no
tuples. Since SQL Server executes the outer and inner side of the
Hash Join in parallel, the time to stop the execution of the inner
side depends on thread scheduling at runtime.

5.4 Coverage

In this section, we analyze how many plans and queries have
been improved with Plan Stitch. Figure [T3] shows the percent of
plans with a reduction of at least 10% in execution cost with Plan
Stitch and RBPC among all the test cases of each workload. Plan

"Parallelism operator either distributes or gather tuple streams for
multi-threaded processing.

Figure 8: Regression over RBPC

Error in Cost Estimation (%)

Figure 9: Cost estimation for TPC-DS

Stitch improves up to 20 x more plans compared with RBPC across
the workloads. Because a query can have multiple plans improved
with different configurations, we also analyze how the improved
plans are distributed over the queries. FigurelEl shows the percent
of queries which have at least one plan with 10% or more reduction
in execution cost. Plan Stitch covers up to 6x additional queries
compared with RBPC.

While both Plan Stitch and RBPC opportunistically improve plan
quality with the same set of previously-executed plans, Plan Stitch
improves the plan quality of significantly more plans and queries
compared with RBPC. Since there are still many opportunities for
plan quality improvement even without plan regression, it is worth
exploring using Plan Stitch routinely in query executions.

5.5 Overhead

In this section, we analyze the overhead of constructing and forc-
ing stitched plans with Plan Stitch, by breaking it into three ma-
jor components: stitching a plan from previously-executed plans
(Stitch), preparing a plan XML of the stitched plan for plan forcing
(Xml), and validating the stitched plan with the optimizer (Vali-
date). This includes the total overhead of the two-stage fall-back of
Plan Stitch as described in Section ]

Figure[[3]shows the overhead of Plan Stitch and its break down,
compared with the time spent on optimizing the corresponding query
by the optimizer without Plan Stitch, averaged over each workload.
We compare the overhead of Plan Stitch to that of optimizing the
same query because Plan Stitch re-optimizes an executed plan of
the query leveraging past executions of the query. Overall, the
overhead of Plan Stitch is less than 88% of the time compared with
optimizing the corresponding query with the optimizer.

We investigate the stitched plans in our customer workload Cust1,
where the overhead is significantly higher than other workloads. In
this workload, many queries have multiple self-joins of the same
table, which leads to more candidates of potential equivalent sub-
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plans among previously-executed plans than in other workloads.
Using our heuristics to construct the constrained search space be-
comes more expensive, and consequently, the stitch algorithm has
more overhead than that in other workloads.

5.6 Stitched Plan Analysis

In this section, we analyze the resulting stitched plans in detail.
First, how does the stitched plan differ from the original plan? We
classify plan changes into four categories: leaf operators (Leaf),
internal operators (Inter), join order (JoinO), and plan structure
(Struct). Comparing the original and stitched plans, if their sets
of physical leaf operators (e.g., Table Scan on A) are different, we
say the leaf operators change. Internal operators change when ei-
ther the physical (e.g., Hash Join) or logical operator (e.g., Inner
Join) changes for internal operators, or when the plan structures
are different. A plan structure change happens when different query
transformation rules apply (e.g., aggregate push down or join order
change). We also show a special kind of plan structure change — the
join order change. The four categories of changes are not exclusive
and could all happen in one stitched plan.

Figure[T6]shows the percentage of stitched plans with each cate-
gory of changes. Across the workloads, in at least 94% of stitched
plans, the leaf operators change; in at least 83% of stitched plans,
the internal operators are different. The changes of leaf operators
and some internal operators are “local”, since we can correct the
original plan by replacing the corresponding operator. However,
for a significant number of stitched plans across the workloads,
the changes are substantial: more than 63% have plan structural
changes, including more than 33% with different join orders. Such
substantial changes require careful examination and correction of
the plan structure to ensure the validity of the query semantics if
done manually. This is precisely the challenge of combining effi-
cient subplans into a valid plan, which is addressed with an auto-
matic manner in Plan Stitch.

Second, how many previously-executed plans actually contribute
to the stitched plan? Figure [T7] shows the distribution. A signifi-

TPC-DS Custl

Figure 14: Query coverage
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cant number of stitched plans only consist of subplans from a small
number of previously-executed plans: more than 53% from up to 4
plans across our workloads. We empirically observed that simply
stitching the original plan with the cheapest valid plan does not nec-
essarily improve the plan quality beyond the valid plan itself. In-
stead, Plan Stitch benefits from the diverse subplans of previously-
executed plans, even if the plans themselves are more expensive in
execution cost than the original plan. This confirms the motivation
of Plan Stitch that even a suboptimal plan has efficient subplans
that can help improve plan quality.

Finally, since the original plan and the stitched plan always both
exist in the optimizer’s search space — one is found during normal
optimization and the other is found with plan forcing, why does the
optimizer fail to return the cheaper stitched plan in its optimization?
This can be either a cost misestimate where the optimizer thinks the
stitched plan is more expensive, or a search strategy issue where
the optimizer neglects such a plan. Figures 20 1] show
the optimizer’s estimated cost of the stitched plan over that of the
original plan. When the ratio is less than 1, the optimizer estimated
the stitched plan to be cheaper than the original plan and thus it has
an issue in its search strategy; otherwise, the optimizer thinks the
original plan is cheaper and thus it is a cost misestimate.

Perhaps surprisingly, for a significant number of plans (10%-
22%), the optimizer estimates the stitched plan to be cheaper (i.e.,
the ratio < 1.0). However, the estimated cost difference for such
plans is mostly small, i.e., the ratio > 0.9. The optimizer misses
plans with slightly lower cost estimate when it aggressively prunes
its search space under a limited time budget for optimization. For
majority of the plans, the optimizer misestimates the costs and finds
the original plans cheaper, which is caused by the fundamental
challenges of cardinality estimation and cost modeling.

5.7 Parametric Queries

In this experiment, we compare Plan Stitch to RBPC on paramet-
ric TPC-DS benchmark. We generate 50 query instances with dif-
ferent parameter bindings for each tuned query in TPC-DS bench-
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mark using dsqgen [45]]. For each query and configuration, we ran-
domly select 5 instances from the 50 instances and execute them
with the same plan chosen by the optimizer. To ensure the 5 in-
stances of different parameters share the same query plan under
the configuration, we compile the first query instance and cache its
plan. Microsoft SQL Server will use the cached plan to execute
other instances of the same query

As mentioned in Section [T} we average the execution cost over
multiple instances for each plan of a query template. For RBPC,
we average the execution cost statistics over instances of a plan as
the execution cost of the plan. For Plan Stitch, we average both
the operator-level execution cost and the number of executions of
subplans over instances of a plan. We assume the execution cost
and the number of executions of a subplan are independent. With
this independence assumption, Plan Stitch constructs the cheapest
stitched plan in average execution cost.

For parametric queries, we are interested in both the execution
cost of queries and the variance of the execution cost over differ-
ent instances of the same query. Figure@ shows the improvement
of plan quality using Plan Stitch compared to RBPC. For 61% of
the stitched plans, Plan Stitch further reduces the execution cost by
at least 10% compared to RBPC, with a reduction of more than
2x for 4% of the improved plans. For a small percent of stitched
plans (5.6%), the stitched plan regresses more than 10% compared
to the plan from RBPC. Such regressions are results of execution
cost misestimates of stitched plans due to reasons discussed in Sec-
tion 5.3} Figures 23] and 24 show the distribution of the standard
deviation of the improved plans for Plan Stitch and RBPC. The
standard deviation is less than 2% for more than 95% of the im-
proved plans, and the deviation of Plan Stitch is similar to RBPC.

8Some queries have different semantics for different instances in
parameterized TPC-DS, e.g., when a column name is a parameter.
We ensure the selected instances have the same semantics.
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Figure 20: Query optimizer’s cost estima-
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Thus, Plan Stitch improves the plan quality without introducing
more variance of execution cost compared to RBPC.

5.8 Data Changes

In this section, we evaluate how the quality of the stitched plan
can degrade when the data changes and the execution feedback is
less accurate. Stale execution feedback can increase errors in Plan
Stitch’s cost estimation, which can increase the risk of regression
with the resulting stitched plan. We measure the accuracy of Plan
Stitch’s cost estimation and compare the stitched plan to RBPC’s
plan in the presence of data changes.

We consider three types of operations that change the data distri-
bution or the database size: update, insertion, and deletion. Updates
change the data distribution, while insertions and deletions change
both the size and data distribution of the database.

We populate a TPC-DS database based on its specification [44]
using dsdgen [45]] with scale factor 10 (i.e., 10g) as the original
database. Based on the original database, we create 5 changed data-
bases with the three types of operations, including three databases
with different degrees of updates, one database decreased in size,
and one database increased in size.

Based on the data maintenance specification of TPC-DS bench-
mark, we generate three refresh runs (with insertions and deletions)
as three streams of updates. Starting from the original TPC-DS
database (10g), we apply the three streams sequentially and get
three snapshots of the database: u1 with only the first update stream
applied to 10g, u©12 with the first two update streams applied to
10g, and ©123 with all three update streams applied to 10g. We
simulate database size change by populating TPC-DS databases
with scale factor 9 (i.e., 9¢g) and 11 (i.e., 11g), again based on the
TPC-DS benchmark specification.

As with previous experiments, for each query, we execute the
plans under multiple configurations on the original database 10g
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and collect the execution feedback. To simulate the scenario where
execution feedback becomes stale after data changes, Plan Stitch
constructs stitched plans based on the execution feedback from the
original database, and executes them after data changes have been
applied. Similarly, RBPC chooses plans based on stale execution
feedback and executes them on the changed databases.

We evaluate Plan Stitch’s cost estimation with stale execution
feedback. As reported in Section[5.3] Plan Stitch can have cost es-
timation errors even without data changes. To isolate the effect of
data changes, we compare the percent of stitched plans with differ-
ent degrees of cost estimation errors with and without data changes.

Figure[23]shows the cost estimation errors using Plan Stitch when
forcing the stitched plans on the original and the changed TPC-DS
databases. On the databases with updates alone (ul,u12, u123),
the percent of stitched plans with < 20% error in cost estimation
is similar to that when forcing the stitched plans on the original
database (i.e., 81%). With more significant data changes, however,
we observe noticeable increase in cost estimation errors. When the
stitched plans execute on the 9g database, only 70% of them has
< 20% error in cost estimation. The number is even less on the
11g database, i.e., 52%.

Figure 2] shows the percent of stitched plans that regress sig-
nificantly (> 10% in CPU cost) compared with RBPC. While the
error in cost estimate can increase with data changes, the chance
of regression compared with RBPC is still low for all five data-
bases. There are three main reasons that keep the regression rate
low. First, Plan Stitch constructs plans that are significantly cheaper
than RBPC on the original database, which provides a buffer to tol-
erate the increased error in cost estimation even when the execution
feedback becomes inaccurate on the changed databases. Second,
while the cost estimate has large error, the rank order of the plans
can stay the same, e.g., the original plan and the plan chosen by
RBPC also become more expensive. So the error in cost estimate

Og mm

N

11g mm

Stitched Plans (%)

N\ EN

10g ul

ul2 ul23 9g

11g

Figure 26: Regression for original and
changed TPC-DS databases over RBPC

does not necessarily lead to a relatively more expensive plan. Fi-
nally, with stale execution feedback, the plan quality with RBPC
can degrade more than that of Plan Stitch. Thus, Plan Stitch can
even regress less in the changed databases than in the original data-
base compared with RBPC.

5.9 Summary

We summarize our key findings with our experiments as below:

e Plan Quality. Compared to reversion-based plan correction,
Plan Stitch further reduces the execution cost by at least 10%
for up to 83% of the improved plans across our workloads, with
a reduction of at least 50% for 28% of the improved plans in
one workload. That is, by combining subplans from different
plans, Plan Stitch can significantly reduce execution costs over
the plans returned by the optimizer. Plan Stitch also has a low
risk of plan regression, where among all the workloads, only
2.7% of the stitched plans regresses for more than 10% in ex-
ecution cost in one workload among all the workloads.

e Cost Estimation. Estimated execution cost is within 20% of the
true execution cost for at least 70% of the stitched plans across
all the workloads. This confirms that our costing assumptions in
Section B]mostly hold in practice.

e Coverage. Plan Stitch improves plan quality for up to 33% of
plans across our workloads, with up to 20 x additional plan cov-
erage compared with RBPC. This confirms that there are abun-
dant opportunities of improving plan quality by combining effi-
cient subplans from multiple plans.

e Overhead. Plan Stitch constructs plans with less than the time
taken to optimize the corresponding query by the optimizer.

e Stitched Plan Analysis. More than 63% of the stitched plans
have different plan structures than the original plans. This sup-
ports our initial claim that combining efficient subplans manu-
ally is challenging. We also show that Plan Stitch requires less
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than four previously-executed plans to construct the cheapest
stitched plans for up to 80% of the cases across our workloads.
Finally, we find that the optimizer misses the cheaper stitched
plan mostly due to errors in its cost estimates.

o Parameterized Queries. Compared to reversion-based plan cor-
rection, Plan Stitch further improves plan quality without intro-
ducing noticeable variance for parameterized queries.

e Data Changes. With data changes, the execution feedback be-
comes inaccurate. While the error in cost estimate of Plan Stitch
can increase if the data changes significantly, Plan Stitch can still
improve the plan quality and keep the risk of regression low.

6. RELATED WORK

Execution feedback to improve plan quality. Using execution
feedback to improve plan quality has been an area of active research
for the past few decades. Previous work can be broadly classified
into three categories: (a) using observed cardinality of a query’s
expressions to improve optimization of the same query; (b) using
observed cardinality to improve summary statistics to help many
queries; and (c¢) improving the optimizer’s cost model.

Chen et al. [17] and Stillger et al. [43|] collect cardinality feed-
back to improve cost estimates and hopefully the end-to-end plan
quality. Chaudhuri et al. [[16] extends the query execution frame-
work to proactively obtain additional cardinality feedback by eval-
uating alternative subexpressions that are not in the final plan. One
important observation in previous work is that since the search
space of the optimizer is huge, collecting execution feedback of
every subexpression is infeasible. In such cases, partial feedback,
i.e., using true cardinality of some expressions and estimated car-
dinality for others, introduces inconsistencies which can lead to
bias in subexpression selection and plans worse in execution com-
pared to plans obtained with estimated cardinalities only. Markl et
al. [33] proposes a consistent selectivity estimation method based
on maximum entropy. Wu et al. [47] iteratively samples subexpres-
sion cardinalities and requests the optimizer for a new query plan
with updated cardinality until the output plan reaches a fixed point.
Herodotou et al. [26] enumerates the plan space and executes plans
to get true cardinalities until a desired plan is found.

Another line of work focuses on using observed cardinality to
improve the summary statistics, such as histograms [[1411114]. While
the approaches in category (a) primarily focuses on reusing the
cardinality for future optimizations of the same query, these ap-
proaches can improve cardinality estimates for expressions from
multiple queries, thus providing broader benefit.

The third category of work focuses on the optimizer’s cost model
(assuming better cardinality estimates are available). Wu et al. [25]
carefully tunes the optimizer’s cost model for better cost estima-
tion. Data-driven, sophisticated machine learning techniques are
also studied to predict query execution cost [3[201/32].

Plan Stitch differs from the above approaches because we rely
directly on observed execution cost without decoupling cost esti-
mation into cardinality estimation and cost modeling. Thus, Plan
Stitch can circumvent inaccuracies in cardinality estimates, cost
modeling, or both. By using observed execution cost, Plan Stitch
results in very low risk of identifying a stitched plan which is even
more expensive than the original plan returned by the optimizer.
Such low risk is crucial for an automated solution in a production
environment. Note, however, since Plan Stitch limits itself to only
observed subplans, it cannot use the feedback to cost or explore
unseen subplans which may be even more efficient.

Plan regression correction. As noted in Section[I] Plan Stitch
improves upon reversion-based plan correction [J5,6]] techniques

used in commercial DBMSs. Plan Stitch preserves the desirable
properties of low risk and low overhead while leveraging efficient

subplans from previous plans to further improve plan quality, re-
sulting in plans which are often 2x to two orders of magnitude bet-
ter compared to just using the cheapest previously-executed plan.
Query hinting. Commercial databases expose query hints to re-
strict and/or influence the search space of the optimizer. Microsoft
SQL Server supports query hints to influence the join order, ac-
cess paths, up to providing the entire plan [38]. Oracle Database
and IBM DB2 provide similar functionalities [18}/34]. Bruno et
al. [[15]] proposes a general language to specify a rich set of con-
straints to influence the optimizer to pick plans. While these hint-
ing techniques provide a way to influence the optimizer, the task
of identifying which hint is appropriate to improve a given query’s
execution cost still relies on human experts, such as a DBA. Such
manual tuning is labor-intensive, time consuming, and often error-
prone. Plan Stitch fills this void by automatically identifying good
subplans from previously-executed plans, thus it eliminates man-
ual tuning and is applicable to complex applications at the scale of
millions of databases in a cloud platform such as Azure SQL DB.
Exploring alternative plans. AND-OR graph [24]] represents a
search space that allows the exploration of alternative plans. Bruno
et al. [12], Chaudhuri et al. [13]], and Dash et al. [35]] encode a plan
with an AND-OR graph and modify leaf AND nodes of the graph to
reuse the internal plan structure and the query optimizer’s cost, and
thus reduce the overhead of physical configuration tuning. Sudar-
shan et al. [27] optimizes parametric queries and reduces the num-
ber of optimizer calls by caching plans and reusing optimizer’s cost
for shared subexpressions. Plan Stitch focuses on execution cost
and improves plan quality with execution feedback. It constructs
the cheapest plan in execution cost, which can be different from
previously executed plans with both local and structural changes.

7. CONCLUSION

We propose Plan Stitch, a novel, fully-automated, low-overhead
technique that uses operator-level execution cost statistics of previ-
ously-executed plans to opportunistically construct new plans that
are cheaper in execution cost than the cheapest valid previous plan,
with low risk of plan regression. We implement Plan Stitch on top
of Microsoft SQL Server without any changes to the DBMS.

We comprehensively evaluate Plan Stitch on both industry-stan-
dard TPC-DS benchmark and three real-world customer workloads.
Our evaluation shows that Plan Stitch significantly improves the
plan quality compared with reversion-based plan correction (RBPC),
with a reduction in execution cost of up to two orders of magnitude
for some plans. In addition, Plan Stitch has a wider applicability
than RBPC, improving the quality of up to 20x more plans. More-
over, Plan Stitch is often able to leverage previously-executed plans
to find new plans which are significantly cheaper than the plan re-
turned by the optimizer with an overhead lower than the time taken
to optimize the corresponding query by the optimizer. Given its
benefits and low overhead, it is worth exploring the potential op-
portunities of improving plan quality when multiple executed plans
are available using Plan Stitch, with or without query regression.
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