
Esc: An Early-Stopping Checker for Budget-aware Index Tuning

Xiaoying Wang
Simon Fraser Universtiy

Burnaby, Canada

xiaoying_wang@sfu.ca

Wentao Wu
Microsoft Research

Redmond, USA

wentao.wu@microsoft.com

Vivek Narasayya
Microsoft Research

Redmond, USA

viveknar@microsoft.com

Surajit Chaudhuri
Microsoft Research

Redmond, USA

surajitc@microsoft.com

ABSTRACT

Index tuning is a time-consuming process. One major performance

bottleneck in existing index tuning systems is the large amount of

“what-if” query optimizer calls that estimate the cost of a given pair

of query and index configuration without materializing the indexes.

There has been recent work on budget-aware index tuning that

limits the amount of what-if calls allowed in index tuning. Existing

budget-aware index tuning algorithms, however, typically make

fast progress early on in terms of the best configuration found but

slow down when more and more what-if calls are allocated. This

observation of “diminishing return” on index quality leads us to

introduce early stopping for budget-aware index tuning, where user

specifies a threshold on the tolerable loss of index quality and we

stop index tuning if the projected loss with the remaining budget

is below the threshold. We further propose Esc, a low-overhead

early-stopping checker that realizes this new functionality. Experi-

mental evaluation on top of both industrial benchmarks and real

customer workloads demonstrates that Esc can significantly reduce

the number of what-if calls made during budget-aware index tun-

ing while incurring little or zero improvement loss and little extra

computational overhead compared to the overall index tuning time.

PVLDB Reference Format:

Xiaoying Wang, Wentao Wu, Vivek Narasayya, and Surajit Chaudhuri. Esc:

An Early-Stopping Checker for Budget-aware Index Tuning. PVLDB, 18(5):

1278 - 1290, 2025.

doi:10.14778/3718057.3718059

1 INTRODUCTION

Index tuning is a time-consuming process that may take hours to

finish for large and complex workloads. Existing index tuners typi-

cally adopt a cost-based tuning architecture [7, 41], as illustrated in

Figure 1. It consists of three main components: (1) workload parsing

and analysis, which parses each query in the workload and extracts

indexable columns, e.g., columns that appear in selection and join

predicates; (2) candidate index generation, which puts together the

extracted indexable columns to generate a set of indexes that can

potentially reduce the execution cost of the input workload; and (3)

configuration enumeration, which looks for a subset (a.k.a., configu-

ration) from the candidate indexes that meets the input constraints

(e.g., maximum configuration size or amount of storage to be taken

by the indexes) while minimizing the input workload cost. To eval-

uate the cost of a given query and configuration pair, index tuners

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 5 ISSN 2150-8097.
doi:10.14778/3718057.3718059

Figure 1: The architecture of cost-based index tuning using

what-if optimizer calls, where𝑊 is the input workload and

𝑞𝑖 ∈𝑊 is a single query, Γ is a set of tuning constraints, {𝑧 𝑗 }
is the set of candidate indexes generated for𝑊 , and 𝐶 ⊆ {𝑧 𝑗 }
represents an index configuration during enumeration.

rely on the so-called “what-if” utility [8]. It is an extended API

of the query optimizer that can estimate the cost by viewing the

indexes contained by the configuration as “hypothetical indexes”

instead of materializing them in a storage system, which would

be much more costly. Nevertheless, what-if optimizer calls are not

free—they are at least as expensive as a regular query optimizer

call. As a result, they become the major bottleneck when tuning

large and/or complex workloads [38].

To address this challenge, some technologies have been devel-

oped, such as cost derivation [7], caching/reusing what-if calls [26]

that requires code changes to the query optimizer beyond the what-

if API, or ML-based cost approximation [39]. Recent research has

proposed budget-aware index tuning, which constrains the number

of what-if calls allowed during configuration enumeration [51].

Here, the main challenge shifts from reducing the number of what-

if calls in classic index tuning to prioritizing what-if calls w.r.t. the

importance of query-configuration pairs in budget-aware index

tuning. This problem is termed as budget allocation, and there has

been recent work on optimizing budget allocation in a dynamic

manner that skips inessential what-if calls at index tuning runtime

by utilizing lower and upper bounds of what-if costs [43].

In practice, we have observed the following “diminishing return”

behavior of existing budget-aware index tuning algorithms: they

typically make fast progress at the beginning in terms of the best

index configuration found, but their progress slows down as more

budget on what-if calls is allocated. To put our discussion in context,

Figure 2 presents examples of the index tuning curve (ITC) when

using two state-of-the-art budget-aware index tuning algorithms

(see Section 2), namely, two-phase greedy search andMonte Carlo tree

search (MCTS for short), to tune the TPC-H benchmark workload

and a real customer workload Real-D (see Section 7.1.1). We defer

a formal discussion of ITC to Section 6.2. Roughly speaking, the

ITC represents a function that maps from the number of what-if

(a) TPC-H, two-phase greedy search (b) Real-D, MCTS

Figure 2: Examples of index tuning curves of two-phase greedy

search and MCTS, where we set the number of indexes al-

lowed 𝐾 = 20 and the budget on what-if calls 𝐵 = 20, 000.

calls made to the percentage improvement of the best configuration

found, where the percentage improvement is defined as

𝜂 (𝑊,𝐶) =
𝑐 (𝑊, ∅) − 𝑐 (𝑊,𝐶)

𝑐 (𝑊, ∅)
= 1 −

𝑐 (𝑊,𝐶)

𝑐 (𝑊, ∅)
. (1)

Here,𝑊 represents the input workload, 𝐶 represents a configura-

tion, and ∅ represents the existing configuration that index tuning

starts from. 𝑐 (𝑊,𝐶) =
∑
𝑞∈𝑊 𝑐 (𝑞,𝐶) represents the what-if cost of

the workload𝑊 on top of the configuration 𝐶 , which is the sum

of the what-if costs of individual queries contained by𝑊 . In each

plot of Figure 2, we use the red dashed line to represent the corre-

sponding ITC. Intuitively, the ITC is a profile of the index tuner that

characterizes its progress made so far with respect to the amount

of budget on what-if calls being allocated.

This “diminishing return” behavior of existing budget-aware

index tuning algorithms motivates us to introduce early stopping.

Specifically, let 𝜖 (e.g., 𝜖 = 5%) be a user-given threshold that con-

trols the loss on the percentage improvement, i.e., the gap between

the percentage improvement of the best configuration found so

far and the percentage improvement of the final best configura-

tion with all budget allocated. If the projected improvement loss

is below 𝜖 after certain amount of what-if calls are made, then we

can safely terminate index tuning. Early stopping enables further

savings on the number of what-if calls made in index tuning, and

the savings can often be considerable. For example, as shown in

Figure 2(a), two-phase greedy search requires making around 2,700

what-if calls to tune the TPC-H workload without early stopping.

However, it actually makes no further progress (i.e., the best index

configuration found does not change) after 1,000 what-if calls are

made. Therefore, we would have saved 1,700 what-if calls, i.e., a

reduction of 63%. While early stopping has been a well-known

technique in the machine learning (ML) literature for preventing

“overfitting” when training an ML model with an iterative method

such as gradient descent [30, 31, 53], to the best of our knowledge

we are the first to introduce it for index tuning with a very different

goal of saving the amount of what-if calls.

Enabling early stopping for budget-aware index tuning, however,

raises new challenges. First, to project the further improvement loss

that is required by triggering early stopping, we need to know (1)

the percentage improvement of the best configuration found so far

and (2) the percentage improvement of the final best configuration

assuming that all budget were allocated. Unfortunately, both are not

available at the time point where the projection needs to be made.

While it is clear that (2) is not available, one may wonder why (1) is

also not available. Note that the best configuration found so far in

budget-aware index tuning is based on derived cost (see Section 2.1)

rather than the true what-if cost [51]. Technically, we can obtain (1)

by making an extra what-if call for each query in the workload with

the best configuration found. However, this is too expensive to be

affordable in practice when tuning a large workload. Second, even

if we know (1) and (2) so that we can compute the gap between (1)

and (2) to verify whether the projected further improvement loss is

below the threshold 𝜖 , it is unclear when this verification should be

performed. Conducting this verification at the beginning of index

tuning seems unnecessary, as the index tuner is expected to make

fast progress; however, if this verification happens too late, then

most of the savings given by early stopping will vanish.

To address these challenges, in this paper we propose Esc, a low-

overhead early-stopping checker for budget-aware index tuning. It

is based on the following main ideas:

• Instead of measuring the gap between (1) and (2), which cannot

be obtained in practice, we develop a lower-bound for (1) and an

upper-bound for (2) and then measure the gap between the lower

and upper bounds. Clearly, if this gap is below the threshold 𝜖 ,
then the gap between (1) and (2) is also below 𝜖 . Figure 2 also
presents the lower and upper bounds of each index tuning curve.

• To avoid verifying early-stopping either too early or too late, we

develop a general approach that performs early-stopping verifi-

cation by monitoring improvement rate of the ITC. Specifically,

we measure the degree of convexity/concavity of the ITC based

on the variation observed in its improvement rate, and we only

verify early stopping when the ITC becomes concave.

In more detail, we develop the lower and upper bounds of per-

centage improvement by piggybacking on the previous work [43].

While [43] lays the foundation of deriving lower and upper bounds

for what-if cost, the bounds work only for individual what-if calls

but not the entireworkload. The extension toworkload-level bounds

is nontrivial—a straightforward approach that simply sums up call-

level bounds would lead to workload-level bounds that are too con-

servative to be useful (Section 4.1). Following this observation, we

develop new mechanisms to improve over the naive workload-level

bounds: (i) a simulated greedy search procedure that is designed for

optimizing the bounds in the context of greedy search, which has

been leveraged by both two-phase greedy search andMCTS as a basic

building block (Section 4.2) and (ii) a generic approach to refining

the bounds by modeling index interactions [33] at workload-level

(Section 5). On the other hand, there can be multiple concave stages

of an ITC, and only the final concave stage is worth early-stopping

verification. For instance, this final stage of the ITC shown by Fig-

ure 2(b) begins after 6,000 what-if calls are made. It is challenging

to identify whether a concave stage is the final one, and we further

propose techniques to address this challenge and therefore reduce

the chance of unnecessary early-stopping verification.

To summarize, this paper makes the following contributions:

• We introduce early stopping for budget-aware index tuning as

a new mechanism that can result in significant savings on the

number of what-if calls made (Section 3).

• We propose Esc, a novel framework that enables early-stopping

in budget-aware index tuning by developing lower/upper bounds

of workload-level what-if cost (Section 4) with refinement by

exploiting index interactions (Section 5) and lightweight veri-

fication schemes that leverage improvement rates and convex-

ity/concavity properties of the index tuning curve (Section 6).

Greedy
Step 2

Greedy
Step 1

Existing
configuration

(a) Greedy search (b) Two-phase greedy search

Phase 2:
Greedy search on

Phase 1:
Greedy search on

Phase 1:
Greedy search on

Figure 3: Example of budget-aware greedy search.

• We conduct extensive experimental evaluation using both in-

dustrial benchmarks and real workloads, and empirical results

demonstrate that Esc can significantly reduce the number of

what-if calls for state-of-the-art budget-aware tuning algorithms

with little extra computational overhead and little or no improve-

ment loss on the final configuration returned (Section 7).

Last but not least, while we focus on budget-aware index tuning

algorithms in this work, early stopping can be applied to other

index tuning algorithms such as (i) classic index tuning algorithms

with unlimited budget of what-if calls [20, 43], which can be viewed

as a special case of budget-aware index tuning and (ii) anytime

index tuning algorithms [6], which are more sophisticated than

budget-aware index tuning by constraining the overall index tuning

time. Some of the technologies developed in this work, such as (a)

the lower/upper bounds of workload-level what-if cost and (b) the

general early-stopping verification scheme based on monitoring

improvement rates of the index tuning curve, remain applicable,

though their efficacy requires further investigation and evaluation.

We leave this as an interesting direction for future work.

2 PRELIMINARIES

We present an overview of the problem of budget allocation and

existing budget-aware index tuning algorithms.

2.1 Budget-aware Index Tuning

Budget-aware index tuning aims to constrain the amount of what-if

calls that can be made during index tuning, in particular, during

index configuration enumeration. An essential problem of budget-

aware index tuning is budget allocation, i.e., determining on which

query-configuration pairs to make what-if calls. For any query-

configuration pair without making what-if call, we use the derived

cost from cost derivation [7], defined by

𝑑 (𝑞,𝐶) = min𝑆⊆𝐶 𝑐 (𝑞, 𝑆), (2)

as an approximation of its true what-if cost. There are two existing

algorithms that address this budget allocation problem: (1) two-

phase greedy search and (2) Monte Carlo tree search (MCTS). Based

on the empirical study in [43], the gap between derived cost and

the true what-if cost is below 5% for 80% to 90% of the what-if calls

made by these two budget-aware index tuning algorithms.

2.1.1 Two-phase Greedy Search. A classic configuration enumer-

ation algorithm is greedy search [7], as illustrated in Figure 3(a).

It is a step-by-step procedure where it selects the next best candi-

date index in each greedy step that minimizes the workload cost,

until the selected index configuration meets the given constraints.

An improved version is the so-called two-phase greedy search [7],

which first runs greedy search on top of each query to find its best

candidate indexes and then runs greedy search again for the entire

workload by taking the union of the best candidate indexes found for

Notation Description

𝑐 (𝑞,𝐶) The what-if cost of a QCP (𝑞,𝐶)
𝑐 (𝑊,𝐶) The what-if cost of a WCP (𝑊,𝐶)
𝜂 (𝑊,𝐶) The percentage improvement of a WCP (𝑊,𝐶)

𝑑 (𝑞,𝐶) The derived cost of a QCP (𝑞,𝐶)
𝑑 (𝑊,𝐶) The derived cost of a WCP (𝑊,𝐶)
𝐿 (𝑞,𝐶) The lower bound of 𝑐 (𝑞,𝐶)
𝐿 (𝑊,𝐶) The lower bound of 𝑐 (𝑊,𝐶)
𝑈 (𝑞,𝐶) The upper bound of 𝑐 (𝑞,𝐶)
𝑈 (𝑊,𝐶) The upper bound of 𝑐 (𝑊,𝐶)

Δ(𝑞,𝐶) The CI of 𝑞 given𝐶
𝛿 (𝑞, 𝑧,𝐶) The MCI of an index 𝑧 w.r.t.𝐶 and 𝑞
𝑢 (𝑞, 𝑧) The MCI upper bound of an index 𝑧 w.r.t. 𝑞

Table 1: Notation and terminology (QCP: query-configuration

pair; WCP: workload-configuration pair; CI: cost improve-

ment; MCI: marginal cost improvement; 𝑞: a query; 𝑊 : a

workload; 𝑧: an index; 𝐶: an index configuration).

the individual queries. Figure 3(b) presents an example of two-phase

greedy search with two queries in the workload. What-if calls are al-

located in a “first come first serve” manner. Two-phase greedy search

can achieve state-of-the-art performance [7, 20, 43, 51] in terms of

the final index configuration found and has also been integrated

into commercial database tuning software such as the Database

Tuning Advisor (DTA) developed for Microsoft SQL Server [6],

2.1.2 Monte Carlo Tree Search. To better tackle the trade-off be-

tween exploration and exploitation in budget allocation, previous

work [51] proposed a budget-aware index tuning algorithm based

on Monte Carlo tree search (MCTS). It models budget allocation as a

Markov decision process (MDP) and allocates what-if calls with the

goal of maximizing the “reward” that is defined by the percentage

improvement (ref. Equation 1). After budget allocation is done, it

runs greedy search again to find the best index configuration with

the lowest derived cost (ref. Equation 2). It has been shown that

MCTS outperforms two-phase greedy search under limited budget

on the number of what-if calls [51].

2.2 What-if Call Interception

The two budget-aware index tuning algorithms discussed above

allocate what-if calls at amacro level by treating each what-if call as

a black box. That is, they use the what-if cost (or its approximation,

e.g., derived cost) as the only signal to decide the next what-if call to

be made. This results in wasted budget on inessential what-if calls

that can be accurately approximated by their derived costs without

affecting the result of index tuning. To skip these inessential what-if

calls, previous work developed Wii [43], a what-if call interception

mechanism that enables dynamic budget allocation in index tuning.

The main idea there is to use lower/upper bounds of what-if cost: a

what-if call can be skipped if the gap between the lower and upper

bounds is sufficiently small. We present more details in Section 3.2.

In this paper, we will build on top of these call-level lower/upper

bounds to develop Esc that enables early stopping at workload-

level index tuning. Moreover, in budget-constrained index tuning,

skipping these inessential what-if calls can sharpen the efficacy of

budget allocation by reallocating the budget to what-if calls that

cannot be skipped. This results in improved versions of two-phase

greedy search and MCTS algorithms with Wii integrated.

3 EARLY STOPPING IN INDEX TUNING

We start with the problem formulation of early stopping in budget-

aware index tuning and then present an overview of the solution

that is based on lower/upper bounds of what-if cost. Table 1 sum-

marizes the notation and terminology that will be used.

3.1 Problem Formulation

Let 𝐵 be the budget on the number of what-if calls. At time 𝑡 , i.e.,
when 𝑡 what-if calls have been allocated, we want to decide if it

is safe to skip allocating the remaining 𝐵 − 𝑡 what-if calls without
much loss on the improvement of the final index configuration

returned. Formally, let 𝐶∗
𝑡 be the configuration found with 𝑡 ≤ 𝐵

what-if calls allocated. That is, after 𝑡 what-if calls we can only use

derived cost when running the remaining part of configuration search.

Under this notation,𝐶∗
𝐵 is the configuration found with all 𝐵 what-if

calls allocated. We stop index tuning if
𝜂 (𝑊,𝐶∗

𝐵) − 𝜂 (𝑊,𝐶∗
𝑡) ≤ 𝜖, (3)

where 0 < 𝜖 < 1 is a user-defined threshold. By Equation 1,
𝑐 (𝑊,𝐶∗

𝑡) − 𝑐 (𝑊,𝐶∗
𝐵) ≤ 𝜖 · 𝑐 (𝑊, ∅). (4)

Unfortunately, computing the left side of Equation 4 is impossible

since 𝑐 (𝑊,𝐶∗
𝐵) would only be known when all the 𝐵 what-if calls

were allocated, which negates the very purpose of early stopping.

Moreover, the computation of 𝑐 (𝑊,𝐶∗
𝑡) would require making |𝑊 |

extra what-if calls for each time point 𝑡 , which would be prohibi-

tively expensive for large workloads. As a result, we need a different

approach instead of utilizing Equation 4 directly.

3.2 A Framework by Lower/Upper Bounds

We develop a lower bound 𝜂𝐿 (𝑊,𝐶∗
𝑡) for 𝜂 (𝑊,𝐶∗

𝑡) and an upper

bound𝜂𝑈 (𝑊,𝐶∗
𝐵) for𝜂 (𝑊,𝐶∗

𝐵). That is,𝜂𝐿 (𝑊,𝐶∗
𝑡) ≤ 𝜂 (𝑊,𝐶∗

𝑡) and

𝜂 (𝑊,𝐶∗
𝐵) ≤ 𝜂𝑈 (𝑊,𝐶∗

𝐵). As a result, if 𝜂𝑈 (𝑊,𝐶∗
𝐵) −𝜂𝐿 (𝑊,𝐶∗

𝑡) ≤ 𝜖 ,
it then implies 𝜂 (𝑊,𝐶∗

𝐵) − 𝜂 (𝑊,𝐶∗
𝑡) ≤ 𝜖 (i.e., Equation 3).

Figure 4 illustrates this framework in detail. The 𝑥-axis repre-
sents the number of what-if calls allocated, whereas the 𝑦-axis
represents the percentage improvement of the corresponding best

configuration found. Ideally, we should compare the true percent-

age improvements 𝜂 (𝑊,𝐶∗
𝑡) and 𝜂 (𝑊,𝐶∗

𝐵); however, since the true

improvements are not observable, we instead compare the lower

and upper bounds 𝜂𝐿 (𝑊,𝐶∗
𝑡) and 𝜂𝑈 (𝑊,𝐶∗

𝐵).

3.2.1 Conversion to Lower/Upper Bounds on What-if Costs. Our

problem is equivalent to developing an upper bound 𝑈 (𝑊,𝐶∗
𝑡) ≥

𝑐 (𝑊,𝐶∗
𝑡) and a lower bound 𝐿(𝑊,𝐶∗

𝐵) ≤ 𝑐 (𝑊,𝐶∗
𝐵). As a result,

𝜂𝐿 (𝑊,𝐶∗
𝑡) ≤ 𝜂 (𝑊,𝐶∗

𝑡) and 𝜂𝑈 (𝑊,𝐶∗
𝐵) ≥ 𝜂 (𝑊,𝐶∗

𝐵).

To derive 𝐿(𝑊,𝐶∗
𝐵) and 𝑈 (𝑊,𝐶∗

𝑡), we consider a more funda-

mental problem: Given an arbitrary configuration𝐶 , derive a lower
bound 𝐿(𝑊,𝐶) and an upper bound 𝑈 (𝑊,𝐶) such that 𝐿(𝑊,𝐶) ≤
𝑐 (𝑊,𝐶) ≤ 𝑈 (𝑊,𝐶). Since 𝑐 (𝑊,𝐶) =

∑
𝑞∈𝑊 𝑐 (𝑞,𝐶), it is natural to

first consider call-level lower and upper bounds 𝐿(𝑞,𝐶) and𝑈 (𝑞,𝐶)
for a given query 𝑞 such that 𝐿(𝑞,𝐶) ≤ 𝑐 (𝑞,𝐶) ≤ 𝑈 (𝑞,𝐶). For this
purpose, we reuse the results developed in previous work [43]. Be-

low we provide a summary of the call-level lower/upper bounds.

We will discuss extensions to workload-level bounds in Section 4.

3.2.2 Call-level Upper Bound. We assume the followingmonotonic-

ity property of the what-if cost:

Assumption 1 (Monotonicity). Let 𝐶1 and 𝐶2 be two index

configurations where 𝐶1 ⊆ 𝐶2. Then 𝑐 (𝑞,𝐶2) ≤ 𝑐 (𝑞,𝐶1).

That is, including more indexes into a configuration does not

increase its what-if cost. We then have the derived cost 𝑑 (𝑞,𝐶) ≥
𝑐 (𝑞,𝐶), which is a valid upper bound, i.e., 𝑈 (𝑞,𝐶) = 𝑑 (𝑞,𝐶).

0 Bt

?

Figure 4: A framework for early-stopping in budget-aware

index tuning based on workload-level bounds of what-if cost.

3.2.3 Call-level Lower Bound. We define the cost improvement of

the query 𝑞 given the configuration𝐶 as Δ(𝑞,𝐶) = 𝑐 (𝑞, ∅) −𝑐 (𝑞,𝐶) .
Moreover, we define the marginal cost improvement (MCI) of an

index 𝑧 with respect to a configuration 𝐶 as 𝛿 (𝑞, 𝑧,𝐶) = 𝑐 (𝑞,𝐶) −
𝑐 (𝑞,𝐶 ∪ {𝑧}). Let𝐶 = {𝑧1, ..., 𝑧𝑚}. We can rewrite CI in terms of the

MCI’s, i.e., Δ(𝑞,𝐶) =
∑𝑚

𝑗=1 𝛿 (𝑞, 𝑧 𝑗 ,𝐶 𝑗−1) ≤
∑𝑚

𝑗=1 𝑢 (𝑞, 𝑧 𝑗), where

𝐶0 = ∅,𝐶 𝑗 = 𝐶 𝑗−1∪{𝑧 𝑗 }, and𝑢 (𝑞, 𝑧 𝑗) is an upper bound of the MCI

𝛿 (𝑞, 𝑧 𝑗 ,𝐶 𝑗−1), for 1 ≤ 𝑗 ≤ 𝑚. Hence, we can set the lower bound

𝐿(𝑞,𝐶) = 𝑐 (𝑞, ∅) −
∑𝑚

𝑗=1
𝑢 (𝑞, 𝑧 𝑗) ≤ 𝑐 (𝑞,𝐶) . (5)

3.2.4 MCI Upper Bounds. We further assume the following sub-

modularity property of the what-if cost:

Assumption 2 (Submodularity). Given two configurations 𝑋
and𝑌 s.t.𝑋 ⊆ 𝑌 and an index 𝑧 ∉ 𝑌 , we have 𝑐 (𝑞,𝑌)−𝑐 (𝑞,𝑌∪{𝑧}) ≤
𝑐 (𝑞,𝑋) − 𝑐 (𝑞,𝑋 ∪ {𝑧}). Or equivalently, 𝛿 (𝑞, 𝑧, 𝑌) ≤ 𝛿 (𝑞, 𝑧, 𝑋).

That is, the MCI of an index 𝑧 diminishes when 𝑧 is included

into a larger configuration with more indexes.

Assume monotonicity and submodularity of the cost function

𝑐 (𝑞,𝑋). Let Ω𝑞 be the best possible configuration for 𝑞 assuming

that all candidate indexes have been created. We can set

𝑢 (𝑞, 𝑧) = min{𝑐 (𝑞, ∅),Δ(𝑞,Ω𝑞),Δ(𝑞, {𝑧})}. (6)

In practice, there are situations where we do not know 𝑐 (𝑞, {𝑧})
and thus Δ(𝑞, {𝑧}). In previous work [43], the authors proposed a

lightweight approach to estimate 𝑐 (𝑞, {𝑧}) based on the coverage of

{𝑧} with respect to Ω𝑞 , assuming that 𝑐 (𝑞,Ω𝑞) is known.

4 WORKLOAD-LEVEL BOUNDS

We now discuss how to leverage the call-level lower and upper

bounds on what-if cost to establish lower/upper bounds that can be

used at workload-level. We discuss both general-purpose bounds

as well as optimized bounds for greedy search, which has been

an essential step in state-of-the-art budget-aware index tuning

algorithms such as two-phase greedy search and MCTS.

4.1 General-Purpose Bounds

4.1.1 Upper Bound of Workload Cost. The upper bound 𝑈 (𝑊,𝐶∗
𝑡)

can just be set to the derived cost 𝑑 (𝑊,𝐶∗
𝑡), since we can show

𝑑 (𝑊,𝐶) =
∑

𝑞∈𝑊
𝑑 (𝑞,𝐶) ≥

∑
𝑞∈𝑊

𝑐 (𝑞,𝐶) = 𝑐 (𝑊,𝐶)

for an arbitrary index configuration 𝐶 . To obtain 𝐶∗
𝑡 , however, we

need to continue with the index tuning algorithm on top of the

current best configuration 𝐶𝑡 found without making more what-if

calls. As an example, we will illustrate this simulation process for

greedy search in Section 4.2.1.

4.1.2 Lower Bound of Workload Cost. Let 𝐶∗
𝐵 = {𝑧1, ..., 𝑧𝑘 } for

some 𝑘 ≤ 𝐾 . By Equation 5, we could have set

𝐿(𝑊,𝐶∗
𝐵) =

∑
𝑞∈𝑊

𝐿(𝑞,𝐶∗
𝐵) =

∑
𝑞∈𝑊

(
𝑐 (𝑞, ∅) −

∑𝑘

𝑖=1
𝑢 (𝑞, 𝑧𝑖)

)
.

Unfortunately, this lower bound cannot be computed, because we

do not know 𝐶∗
𝐵 and therefore the {𝑧1, ..., 𝑧𝑘 } at time 𝑡 < 𝐵. How-

ever, for each query 𝑞 ∈ 𝑊 , if we order all candidate indexes 𝑧
decreasingly with respect to their 𝑢 (𝑞, 𝑧) and then take the top 𝐾
candidate indexes in this ranking, it is easy to show that∑𝑘

𝑖=1
𝑢 (𝑞, 𝑧𝑖) ≤

∑
𝑧∈U(𝑞,𝐾)

𝑢 (𝑞, 𝑧),

where U(𝑞, 𝐾) represents the set of candidate indexes of 𝑞 with

the top-𝐾 largest MCI upper bounds. Therefore, we can instead set

𝐿(𝑊,𝐶∗
𝐵) =

∑
𝑞∈𝑊

(
𝑐 (𝑞, ∅) −

∑
𝑧∈U(𝑞,𝐾)

𝑢 (𝑞, 𝑧)
)
. (7)

However, while this lower bound can be used for any budget-aware

tuning algorithm, it may be too conservative. We next present

optimizations of this lower bound for greedy search.

4.2 Optimizations for Greedy Search

Now let 𝐶∗
𝐵 = {𝑧1, ..., 𝑧𝑘 } for some 𝑘 ≤ 𝐾 where 𝑧𝑖 represents the

index selected by greedy search at the 𝑖-th step (1 ≤ 𝑖 ≤ 𝑘) with 𝐵
what-if calls allocated. The lower bound by applying Equation 5,

𝐿(𝑊,𝐶∗
𝐵) =

∑
𝑞∈𝑊

(
𝑐 (𝑞, ∅) −

∑𝑘

𝑖=1
𝑢 (𝑖) (𝑞, 𝑧𝑖)

)
, (8)

cannot be computed. Here, 𝑢 (𝑖) (𝑞, 𝑧) is the 𝑢 (𝑞, 𝑧) after the greedy
step 𝑖 and we use Procedure 1 to update the MCI upper bounds [43]:

Procedure 1. For each index 𝑧 that has not been selected by

greedy search, we update 𝑢 (𝑞, 𝑧) as follows:

(a) Initialize 𝑢 (𝑞, 𝑧) = min{𝑐 (𝑞, ∅),Δ(𝑞,Ω𝑞)} for each index 𝑧.
(b) During each greedy step 1 ≤ 𝑘 ≤ 𝐾 , update

𝑢 (𝑞, 𝑧) = 𝑐 (𝑞,𝐶𝑘−1) − 𝑐 (𝑞,𝐶𝑘−1 ∪ {𝑧}) = 𝛿 (𝑞, 𝑧,𝐶𝑘−1)

if both 𝑐 (𝑞,𝐶𝑘−1) and 𝑐 (𝑞,𝐶𝑘−1 ∪ {𝑧}) are available, where 𝐶𝑘
is the configuration selected by the greedy step 𝑘 and 𝐶0 = ∅.

Our idea is to further develop an upper bound for
∑𝑘
𝑖=1 𝑢

(𝑖) (𝑞, 𝑧𝑖)
by running a simulated greedy search procedure described below.

4.2.1 Simulated Greedy Search. For ease of exposition, consider

tuning a workload with a single query 𝑞 using greedy search.

Procedure 2. At time 𝑡 (i.e., when 𝑡 < 𝐵 what-if calls have been

made), run greedy search to get up to 𝐾 indexes in total, where each

greedy step 𝑗 selects the index 𝑧′𝑗 with the maximum 𝑢 (𝑗) (𝑞, 𝑧′𝑗) > 0.

Let the configuration found by Procedure 2 be𝐶𝑢
𝑡 = {𝑧′

1
, 𝑧′

2
, ..., 𝑧′

𝑙
}

where 𝑙 ≤ 𝐾 . If 𝑙 < 𝐾 , then it means that any remaining index 𝑧
satisfies 𝑢 (𝑞, 𝑧) = 0. As a result, we can assume 𝑙 = 𝐾 .

Theorem 1.
∑𝐾

𝑗=1 𝑢
(𝑗) (𝑞, 𝑧′𝑗) ≥

∑𝑘
𝑖=1 𝑢

(𝑖) (𝑞, 𝑧𝑖). As a result,

𝐿(𝑞,𝐶∗
𝐵) = 𝑐 (𝑞, ∅) −

∑𝐾

𝑗=1
𝑢 (𝑗) (𝑞, 𝑧′𝑗) (9)

is a lower bound of the what-if cost 𝑐 (𝑞,𝐶∗
𝐵) for greedy search.

Figure 5: An example of index interaction

Due to space constraints, all proofs are deferred to the full version

of this paper [42]. We next generalize this result to multi-query

workload with the understanding that the index 𝑧′𝑗 is selected for

the entire workload𝑊 with the maximum 𝑢 (𝑗) (𝑊,𝑧′𝑗) > 0, i.e.,

𝐿(𝑊,𝐶∗
𝐵) = 𝑐 (𝑊, ∅) −

∑𝐾

𝑗=1
𝑢 (𝑗) (𝑊,𝑧′𝑗), (10)

where 𝑢 (𝑊,𝑧) =
∑
𝑞∈𝑊 𝑢 (𝑞, 𝑧).

Moreover, as we mentioned in Section 4.1.1, the simulated greedy

search outlined in Procedure 2 can be reused for computing the

upper bound 𝑈 (𝑊,𝐶∗
𝑡) with slight modification. Details of this

revised simulated greedy search are included in the full version [42].

4.2.2 Lower Bound for Two-phase Greedy Search. We update the

MCI upper-bounds for two-phase greedy search as follows:

Procedure 3. For index 𝑧 and query 𝑞, update 𝑢 (𝑞, 𝑧) as follows:

(a) Initialize 𝑢 (𝑞, 𝑧) = min{𝑐 (𝑞, ∅),Δ(𝑞,Ω𝑞)} for each index 𝑧.
(b) In Phase 1, update 𝑢 (𝑞, 𝑧) based on Equation 6.

(c) In Phase 2, during each greedy step 1 ≤ 𝑘 ≤ 𝐾 , update

𝑢 (𝑞, 𝑧) = 𝑐 (𝑞,𝐶𝑘−1) − 𝑐 (𝑞,𝐶𝑘−1 ∪ {𝑧}) = 𝛿 (𝑞, 𝑧,𝐶𝑘−1)

if both 𝑐 (𝑊,𝐶𝑘−1) and 𝑐 (𝑞,𝐶𝑘−1∪{𝑧}) are available, where𝐶𝑘
is the configuration selected by greedy search in step 𝑘 (𝐶0 = ∅)

and 𝑧 has not been included in 𝐶𝑘 .

The update step (c) excludes pathological cases where 𝑐 (𝑊,𝐶𝑘)

is unknown but both 𝑐 (𝑞,𝐶𝑘) and 𝑐 (𝑞,𝐶𝑘 ∪ {𝑧}) are known for a

particular query 𝑞 (due to Phase 1).

Theorem 2. The 𝐿(𝑊,𝐶∗
𝐵) defined in Equation 10 remains a lower

bound of 𝑐 (𝑊,𝐶∗
𝐵) for two-phase greedy search if we maintain the

MCI upper-bounds by following Procedure 3.

4.2.3 Lower Bound for Monte Carlo Tree Search. We can use the

same simulated greedy search to obtain 𝐿(𝑊,𝐶∗
𝐵), given that there

is a final greedy search stage in MCTS after all budget allocation is

done. However, we are only able to use Equation 6 for maintaining

the MCI upper bounds—we can prove that it is safe to do so using

the same argument as in two-phase greedy search when 𝑡 is in Phase

1 (see the full version [42]). It remains future work to investigate

further improvement over Equation 6 for MCTS.

5 REFINEMENTWITH INDEX INTERACTION

Our approach of computing the lower bounds𝐿(𝑞,𝐶∗
𝐵) and𝐿(𝑊,𝐶∗

𝐵)

in Equations 9 and 10 basically sums up the MCI Upper-bounds

of individual indexes. This ignores potential index interactions, as

illustrated by the following example.

Example 1 (Index Interaction). As shown in Figure 5, let 𝑅 be a

table with four columns 𝑎, 𝑏, 𝑐 , and 𝑑 . Let 𝑧1 and 𝑧2 be two indexes on
𝑅, where 𝑧1 has a single key column 𝑏 with 𝑎 as an included column,

and 𝑧2 has a compound key with three columns 𝑏, 𝑎, and 𝑐 in order.

Consider the SQL query 𝑞1 in Figure 5. Both 𝑧1 and 𝑧2 have very

similar, if not the same, cost improvement for 𝑞1, as one can use an

index scan on top of either 𝑧1 and 𝑧2 to evaluate 𝑞1 without consulting

the table 𝑅. As a result, if 𝑧1 (resp. 𝑧2) has been included in some

configuration, including 𝑧2 (resp. 𝑧1) cannot further improve the cost

of 𝑞1. In other words, we have roughly the same cost improvements for

𝑧1, 𝑧2, and {𝑧1, 𝑧2}, i.e., Δ(𝑞1, {𝑧1}) ≈ Δ(𝑞1, {𝑧2}) ≈ Δ(𝑞1, {𝑧1, 𝑧2}).

Note that index interaction is query-dependent. To see this, con-

sider the same 𝑧1 and 𝑧2 in Example 1 but a different SQL query 𝑞2
in Figure 5. Since 𝑧1 can hardly be used for evaluating 𝑞2, we have
Δ(𝑞2, {𝑧1}) ≈ 0 (see [42] for details). As a result, in the presence

of both 𝑧1 and 𝑧2, the query optimizer will pick 𝑧2 over 𝑧1; hence,
we have Δ(𝑞2, {𝑧1, 𝑧2}) = Δ(𝑞2, {𝑧2}) ≈ Δ(𝑞2, {𝑧1}) + Δ(𝑞2, {𝑧2}).
Therefore, 𝑧1 and 𝑧2 do not interact in the case of 𝑞2.

5.1 Index Interaction

Motivated by Example 1, given two indexes 𝑧1, 𝑧2 and a query 𝑞,
we define the index interaction between 𝑧1 and 𝑧2 w.r.t. 𝑞 as

I(𝑧1, 𝑧2 |𝑞) =
Δ𝑈 (𝑞, {𝑧1, 𝑧2}) − Δ(𝑞, {𝑧1, 𝑧2})

Δ𝑈 (𝑞, {𝑧1, 𝑧2}) − Δ𝐿 (𝑞, {𝑧1, 𝑧2})
.

Here,Δ𝐿 (𝑞, {𝑧1, 𝑧2}) = max{Δ(𝑞, {𝑧1}),Δ(𝑞, {𝑧2})} is a lower bound
of Δ(𝑞, {𝑧1, 𝑧2}) based on Assumption 1 (i.e., monotonicity), and

Δ𝑈 (𝑞, {𝑧1, 𝑧2}) = Δ(𝑞, {𝑧1}) + Δ(𝑞, {𝑧2}) is an upper bound of

Δ(𝑞, {𝑧1, 𝑧2}) based on Assumption 2 (i.e., submodularity).

We now extend the above definition to define the interaction

between an index 𝑧 and an index configuration 𝐶 w.r.t. a query 𝑞:

I(𝑧,𝐶 |𝑞) =
Δ𝑈 (𝑞,𝐶 ∪ {𝑧}) − Δ(𝑞,𝐶 ∪ {𝑧})

Δ𝑈 (𝑞,𝐶 ∪ {𝑧}) − Δ𝐿 (𝑞,𝐶 ∪ {𝑧})
.

Similarly,Δ𝐿 (𝑞,𝐶∪{𝑧}) = max{Δ(𝑞,𝐶),Δ(𝑞, {𝑧})} is a lower bound
of Δ(𝑞,𝐶 ∪ {𝑧}) by Assumption 1, and Δ𝑈 (𝑞,𝐶 ∪ {𝑧}) = Δ(𝑞,𝐶) +
Δ(𝑞, {𝑧}) is an upper bound of Δ(𝑞,𝐶 ∪ {𝑧}) by Assumption 2.

5.2 A Similarity-based Approach

Note that the interaction I(𝑧,𝐶 |𝑞) defined above cannot be directly
computed if we do not have knowledge about Δ(𝑞,𝐶) and Δ(𝑞,𝐶 ∪

{𝑧}). Therefore, we propose an implicit approach to measure index

interaction based on the similarity between indexes. Intuitively, if

two indexes are similar, e.g., they share similar key columns where

one is a prefix of the other, then it is likely that one of them cannot

improve the workload cost given the presence of the other. As a

result, there is strong interaction between the two indexes.

Specifically, given a query 𝑞 and two indexes 𝑧1, 𝑧2, we compute

the similarity S(𝑧1, 𝑧2 |𝑞) between 𝑧1 and 𝑧2 w.r.t. 𝑞 as follows:

(1) Convert the query and indexes into feature vectors �q, �z1, and �z2.

We reuse the feature representation in previous work [37, 43]

for this purpose. In more detail, we collect all indexable columns

from the workload. Let 𝐷 be the number of indexable columns

collected. We then represent �q, �z1, and �z2 as 𝐷-dimensional vec-

tors. We assign weights to each indexable column in the query

representation �q by using the approach proposed in ISUM [37].

Specifically, the weight of a column is computed based on its

corresponding table size and the number of candidate indexes

that contain it. We further assign weights to each indexable

column in the index representation �z by using the approach

proposed in Wii [43]. Specifically, the weight of a column is

determined by its position in the index 𝑧, e.g., whether it is a
key column or an included column of 𝑧.

Figure 6: Relationship between pairwise index interaction

and pairwise index similarity (TPC-H).

(2) Project the index vectors onto the query vector using dot prod-

uct, i.e., �z
q

𝑖 = �z𝑖 · �q for 𝑖 ∈ {1, 2}. Note that the resulting vectors

�z
q

𝑖 for 𝑖 ∈ {1, 2} remain 𝐷-dimensional vectors. This projection

filters out columns in �z𝑖 that do not appear in �q and therefore

do not have impact on the query performance of 𝑞.

(3) Calculate the cosine similarity S(𝑧1, 𝑧2 |𝑞) =
�z
q

1
·�z
q

2

‖�z
q

1
‖ · ‖�z

q

2
‖
.

We can further extend S(𝑧1, 𝑧2 |𝑞) to represent the similarity be-

tween an index 𝑧 and an index configuration 𝐶 w.r.t. a query 𝑞:

S(𝑧,𝐶 |𝑞) = �zq · �Cq

‖�zq ‖ · ‖ �Cq ‖
. All we need is a feature representation �C of

the configuration 𝐶 . For this purpose, we use the same approach

as in Wii [43], where we featurize an index configuration as a 𝐷-

dimensional vector as follows. For each dimension 𝑑 (1 ≤ 𝑑 ≤ 𝐷),

we take the maximum of the feature values from the corresponding

dimensions 𝑑 of the feature representations of the indexes con-

tained by the configuration. The intuition is that, if an indexable

column appears in multiple indexes of the configuration, we take

the largest weight that represents its most significant role (e.g., a

leading key column in some index).

Ideally, we would wish the S(𝑧,𝐶 |𝑞) to be equal to I(𝑧,𝐶 |𝑞).
Unfortunately, this is not the case. To shed some light on this, we

conduct an empirical study to measure the correlation between

pairwise index interaction I(𝑧1, 𝑧2 |𝑞) and pairwise index similarity

S(𝑧1, 𝑧2 |𝑞), using the workloads summarized in Table 2. Specifically,

we pick the most costly queries for each workload and evaluate

the what-if costs of all single indexes (i.e., singleton configurations)

for each query. We then select the top 50 indexes w.r.t. their cost

improvement (CI) in decreasing order and evaluate the what-if costs

of all 50×49 = 2, 450 configurations that contain a pair of the top-50
indexes. Finally, we compute the pairwise index interaction and

the pairwise index similarity of these index pairs. Figure 5 presents

their correlation for the two most costly queries of TPC-H, and

similar results over the other queries and workloads are included in

the full version [42]. We observe that there is no strong correlation

between the two. Instead, for most of the queries, there is a sudden

jump on the pairwise index interaction when the pairwise index

similarity increases. That is, when the pairwise index similarity

exceeds a certain threshold (e.g., 0.2), the pairwise index interaction

will increase to a high value (e.g., close to 1). This motivates us to

propose a threshold-based mechanism to utilize the index similarity

to characterize the impact of index interaction.

5.3 Refined Workload-Level Lower Bound

Our basic idea is the following. During each step of the simulated

greedy search (SGS) when selecting the next index to be included,

we consider not only the benefit of the index, but also its interaction

with the indexes that have been selected in previous steps of SGS.

Specifically, we quantify the conditional benefit 𝜇 (𝑗) (𝑞, 𝑧′𝑗) of the

candidate index 𝑧′𝑗 based on its interaction with the SGS-selected

configuration 𝐶 𝑗−1 = {𝑧′
1
, ..., 𝑧′𝑗−1} and use it to replace the MCI

upper bound 𝑢 (𝑗) (𝑞, 𝑧′𝑗) in Procedure 2 as follows:

𝜇 (𝑗) (𝑞, 𝑧′𝑗) =

{
0, if S(𝑧′𝑗 ,𝐶 𝑗−1 |𝑞) > 𝜏 ;

𝑢 (𝑗) (𝑞, 𝑧′𝑗), otherwise.
(11)

Here, 0 ≤ 𝜏 ≤ 1 is a threshold. In our experimental evaluation

(see Section 7), we found that this threshold-based mechanism

can significantly improve the lower bound for two-phase greedy

search but remains ineffective for MCTS, due to the presence of

many query-index pairs with unknown what-if costs. We therefore

further propose an optimization for MCTS. Specifically, for a query-

index pair (𝑞, 𝑧) with unknown what-if cost, we initialize its MCI

upper bound by averaging the MCI upper bounds of indexes with

known what-if costs that are similar to 𝑧 w.r.t. 𝑞 (see [42] for details).

6 EARLY-STOPPING VERIFICATION

Based on theworkload-level lower/upper bounds in Sections 4 and 5,

we develop Esc, an early-stopping checker for budget-aware index

tuning. One main technical challenge faced by Esc is to understand

when to invoke early-stopping verification. While one can employ

simple strategies such as a fixed-step verification scheme where

a verification is invoked every 𝑠 what-if calls, as we will see in

our experimental evaluation (Section 7) such strategies may incur

high computation overhead since obtaining the lower and upper

bounds (e.g., by using the simulated greedy search procedure in

Section 4.2.1) comes with a cost. In this section, we present our

solutions to this problem. We start by giving a heuristic solution to

two-phase greedy search that exploits special structural properties

of this algorithm (Section 6.1). We then propose a generic solution

(Section 6.3) by only leveraging improvement rates and convexity

properties of the index tuning curve (Section 6.2) without requiring

any algorithm-specific knowledge.

6.1 Heuristic Verification Scheme

There is some trade-off in terms of when to invoke early-stopping

verification (ESV): if we invoke ESV too frequently, then the com-

putation overhead may become considerable; on the other hand, if

we invoke ESV insufficiently, then we may miss opportunities for

stopping index tuning earlier and allocate more what-if calls than

necessary. Clearly, in the early stages of index tuning, there is no

need to check for early-stopping, as the index tuning algorithm is

still making rapid progress. Ideally, one needs to detect when the

progress of the index tuning algorithm starts to slow down.

For two-phase greedy search, this inflection point is not difficult

to tell. As an example, consider Figure 2(a) where we run two-phase

greedy search to tune the TPC-H workload. In Figure 2(a) we have

marked each greedy step within both Phase 1 and Phase 2. We

observe that the progress starts to slow down significantly after

the search enters Phase 2, especially during or after the first greedy

step of Phase 2. As a result, we can simply skip Phase 1 and start

checking early-stopping at the beginning of each greedy step of

Phase 2. Our experiments in Section 7 confirm that this simple

0 t

Figure 7: Characterization of the relationship between dif-

ferent definitions of index tuning curve.

scheme can result in effective early-stopping while keeping the

computation overhead negligible.

This heuristic early-stopping verification scheme clearly cannot

work for other algorithms such as MCTS. However, the above dis-

cussion hinted us to focus on looking for similar inflection points of

index tuning curves. It leads to a generic early-stopping verifica-

tion scheme that only relies on improvement rates and convexity

properties of index tuning curves, as we will present next.

6.2 Index Tuning Curve Properties

We define the index tuning curve (ITC) as a function that maps from

the number of what-if calls allocated at time 𝑡 to the percentage im-

provement 𝜂 (𝑊,𝐶∗
𝑡) of the corresponding best index configuration

found. By definition, the ITC is monotonically non-decreasing. The

dash line in Figure 4 presents an example of ITC.

Unfortunately, as we have discussed in Section 3.1, the ITC de-

fined above cannot be directly observed without making extra

what-if calls. One option is to replace 𝜂 (𝑊,𝐶∗
𝑡) with its lower bound

𝜂𝐿 (𝑊,𝐶∗
𝑡). However, the computation of 𝜂𝐿 (𝑊,𝐶∗

𝑡) = 1 −
𝑑 (𝑊,𝐶∗

𝑡)

𝑐 (𝑊,∅)
is not free (e.g., requiring running the simulated greedy search)

and we therefore choose to use 𝜂𝐿 (𝑊,𝐶𝑡) = 1 −
𝑑 (𝑊,𝐶𝑡)
𝑐 (𝑊,∅) , where

𝐶𝑡 is the observed best configuration at time 𝑡 without continuing
tuning, in lieu of 𝜂𝐿 (𝑊,𝐶∗

𝑡). 𝜂𝐿 (𝑊,𝐶𝑡) is directly available at time

𝑡 without extra computation. Assuming monotonicity of what-if

cost (i.e., Assumption 1), we have 𝜂 (𝑊,𝐶𝑡) ≤ 𝜂𝐿 (𝑊,𝐶∗
𝑡), because

𝑑 (𝑊,𝐶𝑡) ≥ 𝑑 (𝑊,𝐶∗
𝑡) given that 𝐶𝑡 is a subset of 𝐶

∗
𝑡 . Figure 7 char-

acterizes the relationship between different definitions of ITC.

6.2.1 Improvement Rate. Suppose that we check early stopping at 𝑛
time points with 𝐵 𝑗 what-if calls allocated at time point 𝑗 , where 1 ≤

𝑗 ≤ 𝑛. We call this sequence {𝐵 𝑗 }
𝑛
𝑗=1 an early-stopping verification

scheme (ESVS). Let the observed percentage improvement at time

point 𝑗 be 𝐼 𝑗 , i.e., 𝐼 𝑗 = 𝜂𝐿 (𝑊,𝐶𝐵 𝑗). We further define a starting

point (𝐵0, 𝐼0) where we have known both 𝐵0 and 𝐼0. By default, we

choose 𝐵0 = 0 and 𝐼0 = 0.

Definition 1 (Improvement Rate). We define the improvement

rate 𝑟 𝑗 at time point 𝑗 as 𝑟 𝑗 =
𝐼 𝑗−𝐼0
𝐵 𝑗−𝐵0

.

The projected improvement at time point 𝑗 for budget 𝑏 of what-if

calls (i.e., by making 𝑏 − 𝐵 𝑗 more what-if calls) is then defined as

𝑝 𝑗 (𝑏) = 𝐼 𝑗 + 𝑟 𝑗 · (𝑏 − 𝐵 𝑗). (12)

For the default casewhere𝐵0 = 0 and 𝐼0 = 0, we have 𝑝 𝑗 (𝑏) = 𝐼 𝑗 ·
𝑏
𝐵 𝑗

.

For ease of exposition, we will use this default setup in the rest of

our discussion throughout this section.

Definition 2 (Latest Improvement Rate). We define the latest

improvement rate 𝑙 𝑗 at time point 𝑗 as 𝑙 𝑗 =
𝐼 𝑗−𝐼 𝑗−1
𝐵 𝑗−𝐵 𝑗−1

.

Convex

Concave

Figure 8: Relationship between improvement rates and con-

vexity/concavity of index tuning curve. The latest improve-

ment rate 𝑙 𝑗 approximates the tangent of the index tuning

curve at the point (𝐵 𝑗 , 𝐼 𝑗).

6.2.2 Convexity and Concavity. Let 𝐼 = 𝑓 (𝑏) be the function that

represents the index tuning curve. That is, 𝑓 (𝑏) = 𝜂𝐿 (𝑊,𝐶𝑏) where
𝐶𝑏 is the observed best configuration with 𝑏 what-if calls allocated.

Lemma 1. If 𝑓 is strictly concave and twice-differentiable, then

𝑓 ′ (𝑏) <
𝑓 (𝑏)
𝑏 for any 0 < 𝑏 ≤ 𝐵.

We have the following immediate result based on Lemma 1:

Theorem 3. If 𝑓 is strictly concave and twice-differentiable, then

𝑙 𝑗 < 𝑟 𝑗 for a given early-stopping verification scheme {𝐵 𝑗 }
𝑛
𝑗=1.

We have a similar result for a convex index tuning curve:

Theorem 4. If 𝑓 is strictly convex and twice-differentiable, then

𝑙 𝑗 > 𝑟 𝑗 for a given early-stopping verification scheme {𝐵 𝑗 }
𝑛
𝑗=1.

6.2.3 Summary andDiscussion. The previous analysis implies some

potential relationship between the improvement rates that we de-

fined and the convexity/concavity properties of an index tuning

curve: (1) if the index tuning curve in (𝐵 𝑗−1, 𝐵 𝑗) is convex, i.e., it is

making accelerating progress, then we will observe 𝑙 𝑗 > 𝑟 𝑗 ; (2) on
the other hand, if the index tuning curve in (𝐵 𝑗−1, 𝐵 𝑗) is concave,

then we will observe 𝑙 𝑗 < 𝑟 𝑗 . Figure 8 illustrates this relationship.
In practice, an index tuning curve can be partitioned into ranges

where in each range the curve can fall into one of the three cate-

gories: (1) convex, (2) concave, and (3) flat (i.e., 𝑙 𝑗 = 0). In general,

we would expect that the curve is more likely to be convex in early

stages of index tuning and is more likely to be concave or flat to-

wards the end of tuning. This observation leads us to develop a

generic ESVS that will be detailed next, where we leverage the con-

vexity of the ITC to skip unnecessary invocations of early-stopping

verification and put the overall verification overhead under control.

6.3 Generic Verification Scheme

We start from the aforementioned simple ESVS with fixed step size

𝑠 , i.e., 𝐵 𝑗 = 𝐵 𝑗−1 + 𝑠 , where 𝑠 can be a small number of what-if calls.

We then compute 𝑙 𝑗 and 𝑟 𝑗 at each 𝐵 𝑗 accordingly.

Now consider a specific time point 𝑗 . If we observe that 𝑙 𝑗 >
𝑟 𝑗 , then it is likely that the index tuning curve in (𝐵 𝑗−1, 𝐵 𝑗) is

convex. Note that the condition in Theorem 4 is not necessary, so

the convexity is not guaranteed when observing 𝑙 𝑗 > 𝑟 𝑗 . In this

case we can skip the early-stopping verification, because the index

tuner is still making accelerating progress. On the other hand, if we

observe that 𝑙 𝑗 < 𝑟 𝑗 , then it is likely that the index tuning curve

in (𝐵 𝑗−1, 𝐵 𝑗) is concave, i.e., the progress is decelerating, which

implies that we perhaps can perform a verification.

There are some subtleties in the above proposal. First, although it

is reasonable to assume that the index tuning curve will eventually

become concave/flat, it is not guaranteed that the index tuner has

entered this final stage of tuning when 𝑙 𝑗 < 𝑟 𝑗 is observed. Second,
even if the index tuner has entered the final stage, the deceleration

process may be slow before we can conclude that the improvement

loss will be lower than the user-given threshold 𝜖 , which voids the

necessity of the (expensive) early-stopping verification.

6.3.1 Significance of Concavity. To address these challenges, we

measure the significance of the potential concavity of the index

tuning curve. For this purpose, we project the percentage improve-

ment at 𝐵 𝑗+1 using the improvement rates 𝑙 𝑗 and 𝑟 𝑗 and compare

it with 𝐼 𝑗+1 to decide whether we want to invoke early-stopping

verification (ESV) at the time point 𝑗 + 1. Specifically, we define the

projected improvement gap between the projected improvements

𝑝𝑟𝑗+1 and 𝑝𝑙𝑗+1 (using Equation 12) as Δ 𝑗+1 = 𝑝𝑟𝑗+1 − 𝑝𝑙𝑗+1 . Clearly,

Δ 𝑗+1 > 0 since 𝑙 𝑗 < 𝑟 𝑗 . Moreover, the larger Δ 𝑗+1 is, the more

significant the corresponding concavity is. Therefore, intuitively,

we should have a higher probability of invoking ESV.

Now consider the relationship between 𝐼 𝑗+1 and 𝑝𝑙,𝑟𝑗+1. We have

the following three possible cases:

• 𝑝𝑙𝑗+1 < 𝑝𝑟𝑗+1 < 𝐼 𝑗+1: This suggests that 𝑓 grows even faster than

𝑟 𝑗 whenmoving from𝐵 𝑗 to𝐵 𝑗+1, which implies that a verification

at 𝑗 + 1 is unnecessary.

• 𝑝𝑙𝑗+1 < 𝐼 𝑗+1 < 𝑝𝑟𝑗+1: This suggests that 𝑓 grows more slowly than

𝑟 𝑗 but faster than 𝑙 𝑗 . We further define 𝛿 𝑗+1 = 𝑝𝑟𝑗+1 − 𝐼 𝑗+1 and

define the significance of concavity 𝜎 𝑗+1 as 𝜎 𝑗+1 =
𝛿 𝑗+1

Δ𝑗+1
. Clearly,

0 < 𝛿 𝑗+1 < Δ 𝑗+1. We then set a threshold 0 < 𝜎 < 1 and perform

an early-stopping verification if 𝜎 𝑗+1 ≥ 𝜎 .

• 𝐼 𝑗+1 < 𝑝𝑙𝑗+1: This suggests that 𝑓 grows even more slowly than

𝑙 𝑗 , which implies that a verification at 𝑗 + 1 is perhaps helpful.

6.3.2 A Probabilistic Mechanism for Invoking ESV. One problem

is that, if the observed improvement is flat (i.e., 𝑙𝑖 = 0) but the

lower and upper bounds are not converging yet, then it may re-

sult in unnecessary ESV invocations. We therefore need to further

consider the convergence of the bounds. Specifically, we use the

following probabilistic mechanism for invoking ESV. We define

𝜌 𝑗 =
𝑈 𝑗 (𝑊,𝐶∗

𝐵)−𝐿𝑗 (𝑊,𝐶∗
𝑡)

𝜖 as the relative gap w.r.t. the threshold 𝜖 of
improvement loss. Instead of always invoking ESV as was outlined

in Section 6.3.1, we invoke it with probability 𝜆 𝑗 = 1
𝜌 𝑗
.

6.3.3 Refinement of Improvement Rates. If early-stopping verifica-

tion is invoked at 𝐵 𝑗+1, there will be two possible outcomes:

• The early-stopping verification returns true, then we terminate

index tuning accordingly.

• The early-stopping verification returns false. In this case, we let

𝐿𝑗+1 (𝑊,𝐶∗
𝑡) and 𝑈 𝑗+1 (𝑊,𝐶∗

𝐵) be the lower and upper bounds

returned. We can use 𝐿𝑗+1 and 𝑈 𝑗+1 to further refine the im-

provement rates 𝑙 𝑗+1 and 𝑟 𝑗+1. Specifically, we have 𝑝𝑟𝑗+2 =

𝐼 𝑗+1 + 𝑟 𝑗+1 · 𝑠 < 𝑈 𝑗+1 and 𝑝𝑙𝑗+2 = 𝐼 𝑗+1 + 𝑙 𝑗+1 · 𝑠 < 𝑈 𝑗+1, which

gives 𝑟 𝑗+1 <
𝑈 𝑗+1−𝐼 𝑗+1

𝑠 and 𝑙 𝑗+1 <
𝑈 𝑗+1−𝐼 𝑗+1

𝑠 . Therefore, 𝑟 𝑗+1 =

min{
𝐼 𝑗+1
𝐵 𝑗+1

,
𝑈 𝑗+1−𝐼 𝑗+1

𝑠 }, and 𝑙 𝑗+1 = min{
𝐼 𝑗+1−𝐼 𝑗

𝑠 ,
𝑈 𝑗+1−𝐼 𝑗+1

𝑠 }. This re-

finement can be applied to all later steps 𝑗 + 3, 𝑗 + 4, · · · as well.

(a) Time Overhead (b) Improvement Loss (c) What-If Call Savings (d) Learning Curve

Figure 9: Two-phase greedy search, TPC-H, 𝐾 = 20, 𝐵 = 20𝑘 .

(a) Time Overhead (b) Improvement Loss (c) What-If Call Savings (d) Learning Curve

Figure 10: Two-phase greedy search, TPC-DS, 𝐾 = 20, 𝐵 = 20𝑘 .

(a) Time Overhead (b) Improvement Loss (c) What-If Call Savings (d) Learning Curve

Figure 11: Two-phase greedy search, Real-D, 𝐾 = 20, 𝐵 = 20𝑘 .
Name DB Size #Queries #Tables #Joins #Scans #Indexes

TPC-H sf =10 22 8 2.8 3.7 168
TPC-DS sf =10 99 24 7.7 8.8 848
JOB 9.2GB 33 21 7.9 2.5 66

Real-D 587GB 32 7,912 15.6 17 417
Real-M 26GB 31 474 13.3 14.3 642

Table 2: Summary of database and workload statistics.

7 EVALUATION

We conduct extensive experimental evaluation of Esc and report

the evaluation results in this section.

7.1 Experiment Settings

7.1.1 Databases and Workloads. We use standard benchmarks as

well as real customer workloads in our experiments. For benchmark

workloads, we use (1) TPC-H, (2) TPC-DS, and (3) the “Join Order

Benchmark” (JOB) [22]. We also use two real workloads, denoted

by Real-D and Real-M. Table 2 summarizes some basic properties

of the workloads, in terms of schema complexity (e.g., the number

of tables), query complexity (e.g., the average number of joins and

table scans contained by a query), database/workload size, and the

number of candidate indexes found for index tuning.

7.1.2 Budget-aware Index Tuning Algorithms. We focus on evaluat-

ing two state-of-the-art budget-aware index tuning algorithms, (1)

two-phase greedy search and (2) MCTS, as well as their enhanced

versions with Wii, i.e., what-if call interception [43].

7.1.3 Variants of Early-Stopping Verification Schemes. We use the

heuristic ESVS in Section 6.1 for two-phase greedy search and use the

generic ESVS in Section 6.3 for MCTS. We compare four variants:

(1) Esc-B, where we use the corresponding ESVS with lower/upper

bounds that do not consider index interaction; (2) Esc-I, which fur-

ther uses index interaction to refine the lower bound, as discussed

in Section 5.3; (3) Esc-B (FixStep), which is a baseline of Esc-B

that instead adopts the fixed-step ESVS; and similarly, (4) Esc-I

(FixStep), a baseline of Esc-I with the fixed-step ESVS.

7.1.4 Evaluation Metrics. We vary the improvement-loss threshold

𝜖 from 1% to 10% in our evaluation. For each 𝜖 , let 𝑏𝜖 be the number

of what-if calls allocated when early-stopping is triggered, and let

�̃� be the number of what-if calls allocated without early-stopping.

Note that �̃� can be smaller than the budget 𝐵 on the number of

what-if calls, because algorithms such as greedy search can termi-

nate if no better configuration can be found (regardless of whether

there is remaining budget on the number of what-if calls). We then

measure the following performance metrics of early-stopping: (a)

extra time overhead of early-stopping verification, which is measured

as the total time spent on invoking early-stopping verification; (b)

improvement loss, defined as Δ(𝑏𝜖) = 𝜂 (𝑊,𝐶∗
𝐵) −𝜂 (𝑊,𝐶∗

𝑏𝜖
); and (c)

savings on the number of what-if calls, defined as (1 − 𝑏𝜖
�̃�
) × 100%.

7.1.5 Other Experimental Settings. We vary the number of indexes

allowed 𝐾 ∈ {10, 20}. We set the budget on what-if calls 𝐵 = 20, 000
to make sure that index tuning can finish without early stopping;

otherwise, early stopping would have never been triggered, which

is correct but a tedious situation. Moreover, we set the threshold of

index interaction for refinement of the lower-bound in Section 5.3

to be 𝜏 = 0.2, based on our empirical study in [42]. For the generic

ESVS in Section 6.3 and the baseline fixed-step ESVS, we set the

step size 𝑠 = 100 (see [42] for results with 𝑠 = 500); furthermore,

we set the threshold 𝜎 = 0.5 for the significance of concavity.

7.1.6 Baselines. We also compare Esc with baseline approaches

that are based on simple heuristics. Specifically, for two-phase greedy

search, we compare Esc with a baseline that simply stops tuning

after the first phase of greedy search; for MCTS, we compare Esc

with a baseline that simply stops tuning if the observed percentage

improvement 𝐼 𝑗 over the existing configuration is greater than some

fixed threshold (we set the threshold to be 30% in our evaluation).

7.2 Two-phase Greedy Search

Figures 9 to 11 present the results when running two-phase greedy

search on top of TPC-H, TPC-DS, and Real-D. The results on

JOB and Real-M are included in [42]. In each figure, we present (a)

the extra time overhead (in minutes) of early-stopping verification,

(b) the improvement loss when early-stopping is triggered, (c) the

savings on the number of what-if calls, and (d) the index tuning

curve as well as the corresponding lower and upper bounds.

7.2.1 Extra Time Overhead of Early-Stopping Verification. As a ref-

erence point, in each plot (a) the red dashed line represents the

corresponding index tuning time without early-stopping verifica-

tion, whereas the gray bars represent the net index tuning time

with early-stopping verification. We observe that the extra time

overhead of both Esc-B and Esc-I is negligible compared to the

index tuning time, across all workloads tested. On the other hand,

Esc-B (FixStep) and Esc-I (FixStep) sometimes result in consider-

able extra time overhead. For example, as shown in Figure 10(a), on

TPC-DS the extra time overhead of Esc-B (FixStep) is comparable

to the index tuning time when varying the threshold 𝜖 from 1% to

7%. Overall, the savings in terms of end-to-end index tuning time by

applying Esc resonate with the corresponding savings on what-if

calls shown in each plot (c).

7.2.2 Improvement Loss. The red dashed line in each plot (b) delin-

eates the acceptable improvement loss. That is, any improvement

loss above that line violates the threshold 𝜖 set by the user. We

observe that violation occurs rarely, e.g., when setting 𝜖 = 1% on

TPC-H and using Esc-I for early stopping. Moreover, the actual

improvement loss is often much smaller than the threshold 𝜖 when

early-stopping is triggered. One reason for this is that our lower

bound 𝜂𝐿 (𝑊,𝐶∗
𝑡) and upper bound 𝜂𝑈 (𝑊,𝐶∗

𝐵) are more conserva-

tive than the actual improvements 𝜂 (𝑊,𝐶∗
𝑡) and 𝜂 (𝑊,𝐶∗

𝐵) needed

for triggering early-stopping (ref. Section 3.2).

7.2.3 Savings on What-If Calls. The plot (c) in each figure rep-

resents the (percentage) savings on the number of what-if calls.

We have the following observations. First, the savings typically

increase as the threshold 𝜖 increases. Intuitively, a less stringent

𝜖 can trigger early-stopping sooner. Second, the savings vary on

different workloads. For example, with 𝜖 = 5%, the savings are

around 60% on TPC-H; however, the savings drop to 25% on TPC-

DS and Real-D. We can understand this better by looking at the

corresponding index tuning curve in the plot (d). Third, consider-

ing index interaction typically leads to an improved upper bound,

which results in more savings on what-if calls.

7.2.4 Comparison with Baseline. We now compare Esc with the

baseline approach that simply stops tuning after the first phase of

greedy search, in terms of the improvement loss and the savings

on what-if calls. As shown by the plots (b) and (c) of each figure,

the baseline can achieve higher savings on what-if calls but can

suffer from significantly higher improvement loss. For example,

as Figure 10(b) shows, on TPC-DS the improvement loss of the

baseline is around 12% while Esc has zero improvement loss.

7.3 Monte Carlo Tree Search

Figures 12 and 13 present the results for MCTS on TPC-H and

Real-D. The results on the other workloads can be found in [42].

7.3.1 Extra Time Overhead of Early-Stopping Verification. Again,

we observe that the extra time overhead of early-stopping verifi-

cation is negligible compared to the index tuning time in most of

the cases tested. However, we also notice a few cases where the

extra time overhead of early-stopping verification is considerable.

This typically happens when it is difficult to trigger early-stopping

using the lower and upper bounds. As a result, all the ESV invo-

cations are unnecessary, which indicates opportunities for further

improvement of the generic ESVS proposed in Section 6.3.

Meanwhile, the generic ESVS again significantly reduces the ex-

tra time overhead compared to the fixed-step ESVS, by comparing

Esc-B and Esc-I with Esc-B (FixStep) and Esc-I (FixStep), respec-

tively. Moreover, like in two-phase greedy search, the relationship

between the extra time overhead of Esc-B and Esc-I is inconclusive.

In general, each invocation of early-stopping verification using Esc-

B is less expensive than using Esc-I, because considering index

interactions requires more computation. However, since Esc-I im-

proves the upper bound 𝜂𝑈 (𝑊,𝐶∗
𝐵), it can trigger early-stopping

sooner, which leads to fewer invocations of early-stopping veri-

fication. Therefore, the overall extra time overhead of Esc-I can

be smaller than that of Esc-B, as showcased in Figure 12(a) for

TPC-H. On the other hand, the overall extra time overhead of

Esc-I is considerably larger than that of Esc-B for the workload

Real-D, as evidenced by Figure 13(a). Regarding the savings on

end-to-end tuning time, for TPC-H the savings are similar to the

corresponding savings on what-if calls, as Figure 12(c) shows; for

Real-D the savings are similar when Esc-B is used but are vanished

when Esc-I is used due to its much higher computation overhead.

7.3.2 Improvement Loss. Like in two-phase greedy search, we see

almost no violation of the improvement-loss threshold 𝜖 when early-
stopping is triggered for MCTS. Moreover, the actual improvement

loss is typically much lower than the threshold 𝜖 .

7.3.3 Savings on What-If Calls. The (percentage) savings on the

number of what-if calls again vary across the workloads tested. For

example, on TPC-H we can save 60% what-if calls by using Esc-I

when the improvement-loss threshold 𝜖 is set to 5%, as shown in

Figure 12(c). The actual improvement loss when early-stopping is

triggered, however, is less than 2% instead of the 5% threshold, based

on Figure 12(b). For Real-D we can only start saving on what-if

calls with 𝜖 > 5%, though we can save up to 40% what-if calls when

setting 𝜖 = 10% and using Esc-B, as Figure 13(c) indicates. Note

that, although we can save up to 50% what-if calls by using Esc-I,

its extra time overhead is prohibitively high based on Figure 13(a),

while the extra time overhead of using Esc-B is significantly lower

than the overall index tuning time. Moreover, a larger threshold 𝜖
typically leads to larger savings on the what-if calls, as it is easier for

the gap between the lower and upper bounds to meet the threshold.

7.3.4 Comparison with Baseline. Compared to Esc, the baseline

approach that simply stops tuning after observing 30% improvement

again can suffer from significant improvement loss. For example, as

Figure 13(b) shows, the improvement loss of the baseline onReal-D

(a) Time Overhead (b) Improvement Loss (c) What-If Call Savings (d) Learning Curve

Figure 12: MCTS, TPC-H, 𝐾 = 20, 𝐵 = 20𝑘 .

(a) Time Overhead (b) Improvement Loss (c) What-If Call Savings (d) Learning Curve

Figure 13: MCTS, Real-D, 𝐾 = 20, 𝐵 = 20𝑘 .

(a) Time Overhead (b) Improvement Loss (c) What-If Call Savings (d) Learning Curve

Figure 14: Two-phase greedy search (with Wii-Coverage), Real-M, 𝐾 = 20, 𝐵 = 20𝑘 .

 0
 10
 20
 30
 40
 50
 60
 70
 80

Original Wii Wii−Cov.

Im
p

ro
v
e

m
e

n
t

(%
)

Index Tuning Algorithm

TPG + Esc DTA

(a) JOB

 0

 10

 20

 30

 40

 50

 60

 70

Original Wii Wii−Cov.

Im
p

ro
v
e

m
e

n
t

(%
)

Index Tuning Algorithm

TPG + Esc DTA

(b) TPC-DS

 0
 10
 20
 30
 40
 50
 60
 70
 80

Original Wii Wii−Cov.

Im
p

ro
v
e

m
e

n
t

(%
)

Index Tuning Algorithm

TPG + Esc DTA

(c) Real-D

 0

 10

 20

 30

 40

 50

 60

 70

Original Wii Wii−Cov.

Im
p

ro
v
e

m
e

n
t

(%
)

Index Tuning Algorithm

TPG + Esc DTA

(d) Real-M

Figure 15: Comparison of two-phase greedy (TPG) search with Esc (without or with what-if call interception) against DTA.

is around 25%, whereas Esc has almost no loss. One could argue

that having a threshold different than the 30% used may make a

difference; however, choosing an appropriate threshold upfront for

the baseline approach is itself a challenging problem.

7.4 What-If Call Interception

We have observed several cases where early-stopping offers little

or no benefit, e.g., when running two-phase greedy search on top of

Real-M, or when running MCTS on top of TPC-DS and Real-M,

as shown in the full version [42]. The main reason for this inefficacy

is the slow convergence of the gap between the lower and upper

bounds used for triggering early-stopping. This phenomenon can

be alleviated by using Wii, the what-if call interception mechanism

developed in [43], which skips inessential what-if calls whose what-

if costs are close to their derived costs.

For example, the heuristic ESVS in Section 6.1 only invokes early-

stopping verification when two-phase greedy search enters Phase

2, when the upper bound is expected to drop sharply. With Wii

integrated into two-phase greedy search, it can enter Phase 2 faster

by skipping inessential what-if calls in Phase 1. As a result, we can

expect Esc to be more effective for Wii-enhanced two-phase greedy

search. To demonstrate this, we present the corresponding results

for Real-M in Figure 14 using the Wii-enhanced two-phase greedy

search with the coverage-based refinement. We observe that the

savings on the number of what-if calls can further increase to 30%

(using Esc-B) and 40% (using Esc-I), as Figure 14(c) presents.

Remarks. While Wii can often significantly bring down the num-

ber of what-if calls, this is a side effect that is not by design. Indeed,

the goal of Wii is only to skip inessential what-if calls. Nevertheless,

it does reduce the number of what-if calls that need to be made—if

this number is smaller than the given budget we will see a (some-

times significant) drop on the total number of what-if calls made.

Therefore, the contributions of early stopping and Wii in terms of

reducing what-if calls are orthogonal and should not be directly

compared. That is, there are cases where Wii can and cannot reduce

the number of what-if calls while early stopping can make similar

(e.g., 20% to 40%) reductions.

7.5 Comparison with DTA

To understand the overall benefit of budget-aware index tuning

with Esc enabled, when compared to other index tuning algorithms,

we further compare two-phase greedy search with Esc (TPG-Esc)

against DTA, which employs anytime index tuning techniques [6]

that can achieve state-of-the-art tuning performance [20]. In our

evaluation, we set the threshold of improvement loss 𝜖 = 5%. We

measure the corresponding time spent by TPG-Esc and use that as

the tuning time allowed for DTA [1], for a fair comparison.

Figure 15 presents the results. We omit the results on TPC-H as

TPG-Esc and DTA achieve the same 79% improvement. We have the

following observations on the other workloads. On JOB, TPG-Esc

significantly outperforms DTA when Wii-coverage is enabled (67%

by TPG-Esc vs. 24% by DTA). On TPC-DS, TPG-Esc and DTA per-

form similarly. On Real-D, TPG-Esc outperforms DTA by around

10%. On Real-M, TPG-Esc significantly outperforms DTA, again

when Wii-coverage is enabled (64% by TPG-Esc vs. 17% by DTA).

Overall, we observe that TPG-Esc either performs similarly to DTA

or outperforms DTA by a noticeable margin in terms of percent-

age improvement, within the same amount of tuning time. Note

that DTA leverages additional optimizations (e.g., “table subset”

selection [2, 6], index merging [9], prioritized index selection [6],

etc.) that we did not implement for TPG-Esc. On the other hand,

it remains interesting to see the further improvement on DTA by

integrating Esc, which is beyond the scope of this paper.

7.6 Discussion and Future Work

Violation of Improvement Loss. Violation is very rare based on

our evaluation results, but it can happen if the assumptions about

the what-if cost function, i.e., monotonicitiy and submodularity, are

invalid. In such situations, the lower and upper bounds derived for

the workload-level what-if cost are also invalid and therefore can

mislead the early-stopping checker. One possible solution is then to

validate the assumptions of monotonicity and submodularity while

checking for early stopping. If validation fails frequently, then we

will have lower confidence on the validity of the bounds and thus

we can stop running the early-stopping checker to avoid potential

violation on the promised improvement loss.

Hard Cases. As an example, the TPC-DS results in Figure 10

represent a difficult case for Esc when applied to two-phase greedy

search. From Table 2, we observe a large search space for two-phase

greedy search over TPC-DS with 848 candidate indexes. Moreover,

the workload size of TPC-DS with 99 queries is also considerably

larger than the other workloads in Table 2. As a result, the heuristic

early-stopping verification scheme designed for two-phase greedy

search (Section 6.1) works less effectively, because verification will

not be invoked until entering the second phase of greedy search.

Lots of what-if calls have been made in the first phase as well as the

first step of the second phase, before the bounds start converging

sharply. To improve on this case, we have to make the bounds

converge earlier, which is challenging given the conservative nature

of the bounds. We therefore leave this for future work.

8 RELATEDWORK

Cost-based Index Tuning. Offline index tuning has been exten-

sively studied in the literature (e.g., [5–7, 11, 18, 20, 32, 41, 44, 51]).

Early work focused on index configuration enumeration algorithms,

including, e.g., Drop [44], AutoAdmin [7], DTA [6], DB2Advisor [41],

Relaxation [5],CoPhy [11],Dexter [18], and Extend [32].We refer the

readers to the recent benchmark studies [20, 56] for more details and

performance comparisons of these solutions. More recent work has

been focusing on addressing scalability issues of index tuning when

dealingwith large and complexworkloads (e.g., [4, 37, 39, 43, 51, 54])

and query performance regressionswhen the recommended indexes

are actually deployed (e.g., [12, 13, 35, 46, 55]). The latter essentially

addresses the problem of modeling query execution cost in the

context of index tuning, and there has been lots of work devoted

to this problem (e.g., [3, 16, 17, 23–25, 27, 36, 40, 47–50, 52]). There

has also been recent work on online index tuning with a focus of

applying deep learning and reinforcement learning technologies

(e.g. [21, 28, 29, 34]). Online index tuning assumes a continuous

workload model where queries are observed in a streaming manner,

which is different from offline index tuning that assumes all queries

have been observed before index tuning starts.

Learning Curve and Early Stopping. Our notion of index tuning

curve is akin to the term “learning curve” in the machine learning

(ML) literature, which is used to characterize the performance of an

iterative ML algorithm as a function of its training time or number

of iterations [14, 19]. It is a popular tool for visualizing the concept

of overfitting: although the performance of the ML model on the

training dataset improves over time, its performance on the test

dataset often degrades eventually. The study of learning curve

has led to early stopping as a form of regularization used to avoid

overfitting when training an ML model with an iterative method

such as gradient descent [30, 31, 53]. Early-stopping in budget-aware

index tuning, however, is different, with the goal of saving what-if

calls instead of improving index quality, though the generic early-

stopping verification scheme developed in Section 6.3 relies on the

convexity/concavity properties of the index tuning curve.

Index Interaction. Some early work (e.g. [10, 15, 45]) has noted

down the importance of modeling index interactions. A more sys-

tematic study of index interaction was performed by Schnaitter et

al. [33], and our definition of index interaction presented in Sec-

tion 5.1 can be viewed as a simplified case of the definition proposed

in that work. Here, we are only concerned with the interaction be-

tween the next index to be selected and the indexes that have been

selected in the simulated greedy search outlined by Procedure 2.

In contrast, the previous work [33] aims to quantify any pairwise

index interaction within a given configuration, with respect to the

presence of all other indexes within the same configuration. To com-

pute the index interaction so defined, one then needs to enumerate

all possible subsets of the configuration, which is computationally

much more expensive. Since we need a rough but efficient way

of quantifying index interaction, we do not pursue the definition

proposed by [33] due to its computational complexity.

9 CONCLUSION

We have presented Esc, an early-stopping checker for budget-aware

index tuning. It extends call-level lower and upper bounds of what-if

cost to develop workload-level improvement bounds that converge

efficiently as index tuning proceeds. It further adopts a generic early-

stopping verification scheme that exploits the convexity/concavity

properties of the index tuning curve to skip unnecessary invo-

cations of early-stopping verification. Evaluation on top of both

industrial benchmarks and real customer workloads demonstrates

that Esc can effectively terminate index tuning with improvement

loss below the user-specified threshold while at the same time sig-

nificantly reduce the amount of what-if calls made for index tuning.

Moreover, the extra computation time introduced by early-stopping

verification is negligible compared to the overall index tuning time.

REFERENCES
[1] 2023. DTA utility. https://docs.microsoft.com/en-us/sql/tools/dta/dta-utility?

view=sql-server-ver15.
[2] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Automated

Selection ofMaterialized Views and Indexes in SQLDatabases. In VLDB. 496–505.
[3] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik.

2012. Learning-based Query Performance Modeling and Prediction. In ICDE.
390–401.

[4] Matteo Brucato, Tarique Siddiqui, Wentao Wu, Vivek Narasayya, and Surajit
Chaudhuri. 2024. Wred: Workload Reduction for Scalable Index Tuning. Proc.
ACM Manag. Data 2, 1, Article 50 (2024), 26 pages.

[5] Nicolas Bruno and Surajit Chaudhuri. 2005. Automatic Physical Database Tuning:
A Relaxation-based Approach. In SIGMOD. 227–238.

[6] Surajit Chaudhuri and Vivek Narasayya. 2020. Anytime Algorithm of Database
Tuning Advisor for Microsoft SQL Server.

[7] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server. In VLDB. 146–155.

[8] Surajit Chaudhuri and Vivek R. Narasayya. 1998. AutoAdmin ’What-if’ Index
Analysis Utility. In SIGMOD. 367–378.

[9] Surajit Chaudhuri and Vivek R. Narasayya. 1999. Index Merging. In ICDE.
[10] Sunil Choenni, Henk M. Blanken, and Thiel Chang. 1993. On the Selection of

Secondary Indices in Relational Databases. Data Knowl. Eng. 11, 3 (1993).
[11] Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. 2011. CoPhy: A

Scalable, Portable, and Interactive Index Advisor for Large Workloads. Proc.
VLDB Endow. 4, 6 (2011), 362–372.

[12] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Executions to Improve
Index Recommendations. In SIGMOD. 1241–1258.

[13] Bailu Ding, Sudipto Das, WentaoWu, Surajit Chaudhuri, and Vivek R. Narasayya.
2018. Plan Stitch: Harnessing the Best of Many Plans. Proc. VLDB Endow. 11, 10
(2018), 1123–1136.

[14] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding Up
Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapo-
lation of Learning Curves. In IJCAI. 3460–3468.

[15] S. J. Finkelstein, M. Schkolnick, and P. Tiberio. 1988. Physical Database Design
for Relational Databases. ACM Trans. Database Syst. 13, 1 (1988).

[16] Archana Ganapathi, Harumi A. Kuno, Umeshwar Dayal, Janet L. Wiener, Ar-
mando Fox, Michael I. Jordan, and David A. Patterson. 2009. Predicting Multiple
Metrics for Queries: Better Decisions Enabled by Machine Learning. In ICDE.

[17] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for Out-
of-the-box Learned Cost Prediction. Proc. VLDB Endow. 15, 11 (2022), 2361–2374.

[18] Andrew Kane. 2017. Introducing Dexter, the Automatic Indexer for Post-
gres. https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-
for-postgres-5f8fa8b28f27.

[19] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. 2017.
Learning Curve Prediction with Bayesian Neural Networks. In ICLR.

[20] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020. Magic
mirror in my hand, which is the best in the land? An Experimental Evaluation
of Index Selection Algorithms. Proc. VLDB Endow. 13, 11 (2020), 2382–2395.

[21] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An Index Advisor Using Deep
Reinforcement Learning. In CIKM. 2105–2108.

[22] Viktor Leis. 2015. Join Order Benchmark. https://github.com/gregrahn/join-
order-benchmark.

[23] Jiexing Li, Arnd Christian König, Vivek R. Narasayya, and Surajit Chaudhuri.
2012. Robust Estimation of Resource Consumption for SQL Queries using Statis-
tical Techniques. Proc. VLDB Endow. 5, 11 (2012), 1555–1566.

[24] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718.

[25] Ryan C. Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural
Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11
(2019), 1733–1746.

[26] Stratos Papadomanolakis, Debabrata Dash, and Anastassia Ailamaki. 2007. Effi-
cient Use of the Query Optimizer for Automated Database Design. ACM.

[27] Debjyoti Paul, Jie Cao, Feifei Li, and Vivek Srikumar. 2021. Database Workload
Characterization with Query Plan Encoders. Proc. VLDB Endow. 15, 4 (2021),
923–935.

[28] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata
Borovica-Gajic. 2021. DBA bandits: Self-driving index tuning under ad-hoc,
analytical workloads with safety guarantees. In ICDE. IEEE, 600–611.

[29] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata
Borovica-Gajic. 2022. HMAB: Self-Driving Hierarchy of Bandits for Integrated

Physical Database Design Tuning. Proc. VLDB Endow. 16, 2 (2022), 216–229.
[30] Lutz Prechelt. 2012. Early Stopping — But When? Neural Networks: Tricks of the

Trade: Second Edition (2012), 53–67.
[31] Garvesh Raskutti, Martin J. Wainwright, and Bin Yu. 2014. Early stopping and

non-parametric regression: an optimal data-dependent stopping rule. J. Mach.
Learn. Res. 15, 1 (2014), 335–366.

[32] Rainer Schlosser, Jan Kossmann, and Martin Boissier. 2019. Efficient Scalable
Multi-attribute Index Selection Using Recursive Strategies. In ICDE. 1238–1249.

[33] Karl Schnaitter, Neoklis Polyzotis, and Lise Getoor. 2009. Index Interactions
in Physical Design Tuning: Modeling, Analysis, and Applications. Proc. VLDB
Endow. 2, 1 (2009), 1234–1245.

[34] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. The Case for
Automatic Database Administration using Deep Reinforcement Learning. CoRR
abs/1801.05643 (2018).

[35] Jiachen Shi, Gao Cong, and Xiaoli Li. 2022. Learned Index Benefits: Machine
Learning Based Index Performance Estimation. Proc. VLDB Endow. 15, 13 (2022),
3950–3962.

[36] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.
Cost Models for Big Data Query Processing: Learning, Retrofitting, and Our
Findings. In SIGMOD. ACM, 99–113.

[37] Tarique Siddiqui, Saehan Jo, Wentao Wu, Chi Wang, Vivek R. Narasayya, and
Surajit Chaudhuri. 2022. ISUM: Efficiently Compressing Large and Complex
Workloads for Scalable Index Tuning. In SIGMOD. ACM, 660–673.

[38] Tarique Siddiqui andWentaoWu. 2023. ML-Powered Index Tuning: An Overview
of Recent Progress and Open Challenges. SIGMOD Rec. 52, 4 (2023), 19–30.

[39] Tarique Siddiqui, Wentao Wu, Vivek R. Narasayya, and Surajit Chaudhuri. 2022.
DISTILL: Low-Overhead Data-Driven Techniques for Filtering and Costing In-
dexes for Scalable Index Tuning. Proc. VLDB Endow. 15, 10 (2022), 2019–2031.

[40] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator.
Proc. VLDB Endow. 13, 3 (2019), 307–319.

[41] Gary Valentin, Michael Zuliani, Daniel C. Zilio, GuyM. Lohman, and Alan Skelley.
2000. DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes.
In ICDE. 101–110.

[42] Xiaoying Wang, Wentao Wu, Vivek Narasayya, and Surajit Chaudhuri. 2024.
Esc: An Early-Stopping Checker for Budget-aware Index Tuning (Extended Ver-
sion). Technical Report. Microsoft Research. https://www.microsoft.com/en-
us/research/people/wentwu/publications/

[43] XiaoyingWang,WentaoWu, ChiWang, Vivek Narasayya, and Surajit Chaudhuri.
2024. Wii: Dynamic Budget Reallocation In Index Tuning. Proc. ACM Manag.
Data 2, 3, Article 182 (2024), 26 pages.

[44] Kyu-YoungWhang. 1985. Index Selection in Relational Databases. In Foundations
of Data Organization. 487–500.

[45] Kyu-Young Whang, Gio Wiederhold, and Daniel Sagalowicz. 1981. Separability -
An Approach to Physical Data Base Design. In VLDB. 320–332.

[46] Wentao Wu. 2025. Hybrid Cost Modeling for Reducing Query Performance
Regression in Index Tuning. IEEE Trans. Knowl. Data Eng. 37, 1 (2025), 379–391.

[47] Wentao Wu, Yun Chi, Hakan Hacigümüs, and Jeffrey F. Naughton. 2013. To-
wards Predicting Query Execution Time for Concurrent and Dynamic Database
Workloads. Proc. VLDB Endow. 6, 10 (2013), 925–936.

[48] Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan Hacigümüs, and
Jeffrey F. Naughton. 2013. Predicting query execution time: Are optimizer cost
models really unusable?. In ICDE. 1081–1092.

[49] Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. 2016. Sampling-Based
Query Re-Optimization. In SIGMOD. ACM, 1721–1736.

[50] Wentao Wu and Chi Wang. 2024. Budget-aware Query Tuning: An AutoML
Perspective. SIGMOD Rec. 53, 3 (2024), 20–26.

[51] Wentao Wu, Chi Wang, Tarique Siddiqui, Junxiong Wang, Vivek R. Narasayya,
Surajit Chaudhuri, and Philip A. Bernstein. 2022. Budget-aware Index Tuning
with Reinforcement Learning. In SIGMOD. ACM, 1528–1541.

[52] Wentao Wu, Xi Wu, Hakan Hacigümüs, and Jeffrey F. Naughton. 2014. Uncer-
tainty Aware Query Execution Time Prediction. Proc. VLDB Endow. 7, 14 (2014),
1857–1868.

[53] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. 2007. On early stopping in
gradient descent learning. Constructive Approximation 26, 2 (2007), 289–315.

[54] Tao Yu, Zhaonian Zou, Weihua Sun, and Yu Yan. 2024. Refactoring Index Tuning
Process with Benefit Estimation. Proc. VLDB Endow. 17, 7 (2024), 1528–1541.

[55] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A
Tree Transformer Model for Query Plan Representation. Proc. VLDB Endow. 15,
8 (2022), 1658–1670.

[56] Wei Zhou, Chen Lin, Xuanhe Zhou, and Guoliang Li. 2024. Breaking It Down: An
In-depth Study of Index Advisors. Proc. VLDB Endow. 17, 10 (2024), 2405–2418.

