
The VLDB Journal
https://doi.org/10.1007/s00778-024-00845-0

REGULAR PAPER

Stochastic gradient descent without full data shuffle: with applications
to in-database machine learning and deep learning systems

Lijie Xu1,2 · Shuang Qiu3 · Binhang Yuan3 · Jiawei Jiang4 · Cedric Renggli1 · Shaoduo Gan1 · Kaan Kara1 ·
Guoliang Li5 · Ji Liu6 ·Wentao Wu7 · Jieping Ye8 · Ce Zhang9

Received: 19 July 2023 / Revised: 4 February 2024 / Accepted: 20 February 2024
© The Author(s) 2024

Abstract
Modern machine learning (ML) systems commonly use stochastic gradient descent (SGD) to train ML models. However,
SGD relies on random data order to converge, which usually requires a full data shuffle. For in-DB ML systems and deep
learning systems with large datasets stored on block-addressable secondary storage such as HDD and SSD, this full data
shuffle leads to low I/O performance—the data shuffling time can be even longer than the training itself, due to massive
random data accesses. To balance the convergence rate of SGD (which favors data randomness) and its I/O performance
(which favors sequential access), previous work has proposed several data shuffling strategies.
In this paper, we first perform an empirical study on existing data shuffling strategies, showing that these strategies suffer from
either low performance or low convergence rate. To solve this problem, we propose a simple but novel two-level data shuffling
strategy named CorgiPile, which can avoid a full data shuffle while maintaining comparable convergence rate of SGD as
if a full shuffle were performed. We further theoretically analyze the convergence behavior of CorgiPile and empirically
evaluate its efficacy in both in-DB ML and deep learning systems. For in-DB ML systems, we integrate CorgiPile into
PostgreSQL by introducing three new physical operators with optimizations. For deep learning systems, we extend single-
process CorgiPile to multi-process CorgiPile for the parallel/distributed environment and integrate it into PyTorch.
Our evaluation shows that CorgiPile can achieve comparable convergence rate with the full-shuffle-based SGD for both
linear models and deep learning models. For in-DB ML with linear models, CorgiPile is 1.6×−12.8× faster than two
state-of-the-art systems, Apache MADlib and Bismarck, on both HDD and SSD. For deep learning models on ImageNet,
CorgiPile is 1.5× faster than PyTorch with full data shuffle.

Keywords In-database machine learning · Stochastic gradient descent · Data shuffle · Deep learning

B Lijie Xu
lijie.xu@inf.ethz.ch

1 ETH Zürich, Zürich, Switzerland

2 Institute of Software, Chinese Academy of Sciences, Beijing,
China

3 Hong Kong University of Science and Technology, Clear
Water Bay, Hong Kong

4 Wuhan University, Wuhan, China

5 Tsinghua University, Beijing, China

6 Meta, Menlo Park, USA

7 Microsoft Research, Washington, USA

8 University of Michigan, Ann Arbor, USA

9 University of Chicago, Chicago, USA

1 Introduction

Stochastic gradient descent (SGD) is a popular iterative opti-
mization algorithm that has been widely used in machine
learning systems. With the growing data volume, SGD algo-
rithms have to access the data stored on the secondary storage
instead of main memory. There are two prominent scenarios:
(1) In-database machine learning (in-DBML) systems have
to access the data tables stored on the secondary storage via
the buffer manager [1]; (2)Deep learning (DL) systems such
as TensorFlow [2] and PyTorch [3] need specialized data
loader/scanner to access the datasets that are stored in paral-
lel/distributed file systems.

In-database ML and deep learning systems In-DB ML
systems and deep learning systems have been extensively
studied for many years [4–12]. For in-DB ML, its major

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-024-00845-0&domain=pdf
http://orcid.org/0009-0003-2013-4241

L. Xu et al.

benefit is that users do not need to move the data out of
DB to another specialized ML platform, since it is often
time-consuming or even infeasible (due to privacy or secu-
rity concerns). With the help of in-DB ML systems such as
MADlib [4, 13] and Bismarck [5], users can train an ML
model (e.g., SVM) using a simple SQL query as follows:

SELECT svm_train(table_name, parameters).

For deep learning systems such as PyTorch and Tensor-
Flow, they usually provide users with simple Dataset/
DataLoaderAPIs to load data from secondary storage into
memory and further into GPUs, as shown in the following
lines of code. Deep learning systems can automatically per-
formmodel training in train()with SGD, using a number
of GPUs.

train_data = Dataset(dataset_path, args)
train_loader = DataLoader(train_data, args)
train(train_loader, model, args)

A Fundamental Discrepancy A fundamental problem is that
SGD requires random data order to converge, but the data
are usually not guaranteed to be stored in a random order,
for both in-DB ML and deep learning systems. As identified
by previous work [5, 14, 15], the worst case is that the data
are stored in a clustered order. For example, if the data are
clustered by labels, data with negative labels might always
come before data with positive labels [5]. Another example
is that the data are ordered/clustered by one of the features.
There are common cases when the data are naturally ordered
by some features such as timestamps, usernames/types, item
prices, or there is a clustered B-tree index on a subset of the
feature columns or the label column (if data is stored in a rela-
tional database). In these cases, directly running sequential
scans over the clustered data can slow down the convergence
of SGD.

A common solution is to perform a full data shuffle on
the original data. However, when data are stored on block-
addressable secondary storage such as HDD and SSD, it can
be extremely time-consuming to either randomly access the
data during SGD, or shuffle the data once with data copy
and run SGD over the shuffled copy, due to massive random
I/O’s. For example, shuffling a 50GB dataset in PostgreSQL
using ‘ORDER BY RANDOM()’ took about 50 mins in our
experiments, and shuffling a scalability dataset in DB did
not finish even in one day, as reported by previous work [5].
Moreover, sometimes, it is infeasible to shuffle the data inDB
— in-place shuffling might have an impact on other indices,
whereas shuffling over a data copy leads to 2× storage over-
head. Likewise, the parallel/distributed file systems such as
HDFS and Lustre [16] do not support/recommend randomly
accessing small data tuples, which will significantly degrade
the I/O performance. How efficient SGD algorithms can be
designed without requiring even a single pass of full data

Fig. 1 The convergence rate and performance of SVM on the higgs
dataset clustered by labels, with different data shuffling strategies. a
Today’s ML systems, including in-DB ML systems (e.g., MADlib and
Bismarck) and TensorFlow, are sensitive to the data order. b Forcing a
full data shuffle before training accommodates this clustered data issue,
but introduces large overhead that is often more expensive than training
itself

shuffle? Understanding this question can have a profound
impact on the system design of both in-DB ML and deep
learning systems.

Existing Landscape and Challenges To solve the data shuf-
fling problem of SGD, previous work has proposed several
data shuffling strategies in the context of in-DB ML or
deep learning systems. TensorFlow adopts a sliding-window-
based shuffling strategy, which constantly loads data into a
buffer and randomly fetches data from the buffer for SGD
[17]. Bismarck [5] proposes a “multiplexed reservoir sam-
pling” (MRS) shuffling strategy, which leverages two threads
to update the model concurrently. One thread reads the data
sequentially with reservoir sampling, while the other thread
reads data from a small in-memory buffer filled with the
sampled data. Although these strategies improve the I/O per-
formance, they suffer from convergence shortcomings. As
demonstrated in Fig. 1a, both strategies proposed by Bis-
marck and TensorFlow suffer from lower accuracy given
a clustered data. In contrast, shuffling data once before
training, i.e., the curve corresponding to “MADlib/Bismarck
(Shuffle Once)”, can accommodate such convergence prob-
lem but introduce a significant overhead as shown in Fig. 1b.
Our Contributions Inspired by these previous efforts, we ask
the following questions in this paper:

Can we design an SGD-style algorithm with effi-
cient data shuffling strategy that can converge without
requiring a full data shuffle? Can we provide a rigor-
ous theoretical analysis on the convergence behavior
of such an algorithm? Further, can we integrate such
an algorithm into database systems as well as deep
learning systems?

In this paper, we systematically study these questions and
make the following contributions.

C1. An Anatomy and Empirical Study of Existing Algo-
rithms. We first conduct a systematic empirical study of
existing data shuffling strategies for SGD, including (1)
Epoch Shuffle, which performs a full shuffle before each

123

Stochastic gradient descent without full data shuffle: with applications to in-database…

epoch, (2) Shuffle Once, (3) No Shuffle, (4) Sliding-Window
Shuffle, and (5) MRS Shuffle. We compare them by using
SGD to train generalized linear models and deep learn-
ing models, over both label-clustered and feature-ordered
datasets. Our study reveals that existing strategies cannot
simultaneously achieve good hardware efficiency (i.e., I/O
performance) and statistical efficiency (i.e., convergence rate
and converged accuracy). Specifically, Epoch Shuffle and
Shuffle Once achieve the best statistical efficiency in terms
of convergence rate of SGD, since the data have been fully
shuffled; however, their hardware efficiency is suboptimal
due to additional shuffle overhead and storage overhead. In
contrast, No Shuffle achieves the best hardware efficiency as
no data shuffle is required; however, its statistical efficiency
suffers as it has the lowest accuracy. The other two strate-
gies, Sliding-Window Shuffle and MRS Shuffle, perform like
a compromise between Shuffle Once and No Shuffle, but still
suffer in terms of statistical efficiency (Sect. 3).

C2. A Simple but Novel Algorithm with Rigorous The-
oretical Analysis. To address the limitations of existing
strategies,weproposeCorgiPile, a novel SGD-style algo-
rithm with a two-level hierarchical data shuffling strategy.1

The main idea is to first sample and shuffle the data at block
level, and then shuffle data at tuple level within the sampled
data blocks. That is, we first randomly sample data blocks
(e.g., one block refers to a batch of table pages in DB) into a
buffer, and then shuffle the tuples from all the blocks in the
buffer for SGD. While this two-level strategy seems simple,
it can achieve both good hardware efficiency and statistical
efficiency. The hardware efficiency is intuitive—randomly
accessing data blocks is much faster than randomly access-
ing small tuples, especially for large block size. However,
the statistical efficiency requires some non-trivial analysis.
To this end, we further present a rigorous theoretical study
on the convergence behavior of CorgiPile.

C3. Implementation, Optimization, and Deep Integra-
tion with PostgreSQL. For in-DB ML, we aim to inte-
grate CorgiPilewith PostgreSQL, which requires careful
design, implementation, and optimization. Unlike previous
in-DB ML systems such as MADlib and Bismarck that inte-
grate ML algorithms using user-defined aggregates (UDAs),
our technique requires a deeper system integration since it
needs to directly interact with the buffer manager and pages.
Therefore, we operate at the “physical level” and enable
in-DB ML inside PostgreSQL [18] via three new physical
operators: a BlockShuffle operator, a TupleShuffle
operator, and an SGD operator for our customized SGD
implementation. We can then construct an execution plan for

1 Although we have an unquestionable love for dogs, the name of
CorgiPile comes from the shuffling strategy that is a combination of
pile shuffle and corgi shuffle, two commonly used strategies to shuffle
a deck of cards.

the SGD computation by chaining these operators together
to form a pipeline, which naturally follows the built-in Vol-
cano query execution paradigm [19] of PostgreSQL. We
also design a double-buffering mechanism to optimize the
TupleShuffle operator, to reduce the data copy and shuf-
fle overhead.2

C4. Multi-Process CorgiPileand Integration with
PyTorch. Today’s deep learning systems usually work in
the parallel/distributed environment with multiple processes
and GPUs. To adapt to this environment, we further extend
single-process CorgiPile to multi-process CorgiPile,
by enhancing the tuple-level shuffle. The multi-process
CorgiPile also contains three operators:BlockShuffle,
TupleShuffle, and SGD. For block-level shuffling, we
randomly distribute data blocks to different processes. For
tuple-level shuffling, we use multi-buffer-based shuffling
instead of single-buffer-based shuffling—in each process
we allocate a local buffer to read blocks and shuffle their
tuples. The SGD operator performsmini-batch SGD and syn-
chronizes the computation of gradients/parameters among
different processes for each batch. We demonstrate that
multi-process CorgiPile generates random data order
similar to that of single-process CorgiPile. We further
integrate multi-process CorgiPile into PyTorch and wrap
it as a new CorgiPileDataset API for ease of use3.

C5. Comprehensive Empirical Evaluations.We perform
comprehensive evaluations to demonstrate hardware effi-
ciency and statistical efficiency of CorgiPile. For in-DB
ML, we compare our PostgreSQL implementation with two
state-of-the-art in-DBMLsystems,ApacheMADlib andBis-
marck, in terms of both convergence rate and end-to-end
performance. The results show that CorgiPile achieves
comparable model accuracy to the best Shuffle Once base-
line on both label-clustered and feature-ordered datasets.
Meanwhile, CorgiPile gains 1.6×−12.8× speedup com-
pared to MADlib and Bismarck, since it does not require
the full data shuffle. In contrast, other strategies suffer
from lower convergence rate or lower accuracy. For deep
learning systems, we compare CorgiPilewith other shuf-
fling strategies in PyTorch using deep learning models for
image classification. The results are similar to those in
PostgreSQL—CorgiPile in PyTorch again achieves sim-
ilar model accuracy compared to the (best) Shuffle Once
baseline, while other data shuffling strategies result in lower
accuracy. Specifically, on ImageNet CorgiPile is 1.5×
faster than Shuffle Once to converge, using 8 GPUs.

This paper is an extension of our previous work [20]. Our
new contributions beyond [20] are the following:

2 The code of CorgiPile in PostgreSQL is available at https://github.
com/DS3Lab/CorgiPile-PostgreSQL.
3 The code of CorgiPile in PyTorch is available at https://github.
com/DS3Lab/CorgiPile-PyTorch.

123

https://github.com/DS3Lab/CorgiPile-PostgreSQL
https://github.com/DS3Lab/CorgiPile-PostgreSQL
https://github.com/DS3Lab/CorgiPile-PyTorch
https://github.com/DS3Lab/CorgiPile-PyTorch

L. Xu et al.

– To enable CorgiPile to work in a parallel/distributed
environment, we extend the previous single-process
CorgiPile to multi-process CorgiPile (Sect. 6).
We further implement multi-process CorgiPile in
PyTorch, by enhancing two operators BlockShuffle
and TupleShuffle and wrapping them as a new
CorgiPileDataset API.

– We demonstrate that multi-process CorgiPile can
obtain random data order similar to that of single-process
CorgiPile for mini-batch SGD (Sect. 6.3).

– We evaluate the multi-process CorgiPile with deep
learning models for image classification (Sect. 7.3).
On ImageNet [21], CorgiPile achieves comparable
model accuracy to the (best) Shuffle Once baseline but is
1.5× faster to converge.

– We expand the evaluation in [20] with datasets ordered
by subsets of features. The new results reinforce the
result that CorgiPile is comparablewith ShuffleOnce,
whereas the other approaches suffer from lower accuracy
and/or lower convergence rate.

– We extend the evaluation in [20] by comparing con-
vergence rate among different shuffling strategies for
mini-batch linear models such as LR and SVM.

Paper Organization We first review the SGD algorithm
and its implementation in Sect. 2. We next perform an
empirical study on the existing data shuffling strategies for
SGD in Sect. 3. We then present our CorgiPile strat-
egy and provide a theoretical analysis on its convergence
in Sect. 4. We detail our implementation of CorgiPile
inside PostgreSQL in Sect. 5. We present the multi-process
CorgiPile and its implementation within PyTorch in
Sect. 6.We compare the end-to-end performance and conver-
gence rate of CorgiPilewith other baseline approaches in
Sect. 7. We summarize related work in Sect. 8 and conclude
in Sect. 9.

2 Preliminaries

In this section, we briefly review the standard SGD algorithm
and its implementation in state-of-the-art in-DBMLanddeep
learning systems.

2.1 Stochastic gradient descent (SGD)

Given a dataset with m training examples {ti }i∈[m], i.e., m
tuples if these examples are stored as a table in a database,
typical ML tasks essentially solve an optimization problem
of minimizing a finite sum over m training examples with
respect to model x.

F(x) = 1

m

m∑

i=1

fi (x)

Here each fi corresponds to the loss over each training tuple
ti . SGD is an iterative algorithm that takes as input hyper-
parameters such as the learning rate η and the maximum
number of epochs S. It works as follows:

1. Initialization—Initialize the parameters of model x, often
randomly or as zero.

2. Iterative computation—In each iteration, it draws a (batch
of) tuple ti , randomly with replacement, computes the
stochastic gradient ∇ fi (x) and updates the parameters of
model x. In practice, most systems implement a more
efficient variant, where the random tuples are drawn
without replacement [5, 22–24]. To achieve this, SGD
shuffles all tuples before each epoch and sequentially
scans these shuffled tuples. For each tuple, SGDcomputes
the stochastic gradient and updates the model parameters.

3. Termination—The iterative computation ends when it
converges (i.e., the parameters of model x no longer
change) or has attained the pre-definedmaximum number
of epochs.

2.2 In-databasemachine learning systems

There has been a plethora of work in the past decade focusing
on in-DB ML [4–12, 14, 15, 25–27]. Most existing in-DB
ML systems implement SGD algorithm using “user-defined
aggregates” (UDA) [4, 5]. In detail, each epoch of SGD is
done via an invocation of the corresponding UDA function,
where the parameters of model x are treated as the state and
updated for each tuple.

To implement the data shuffling step required by SGD,
different in-DB ML systems adopt distinct strategies. For
example, some systems such as MADlib [4] and DB4ML
[28] assume that the training data has already been shuffled,
so they do not perform any data shuffling. Other systems,
such as Bismarck [5], do not make this assumption. Instead,
they either perform a pre-shuffle of the data in an offline
manner and then store the shuffled data as a replica in the
database, or perform partial data shuffling based on sampling
technologies such as reservoir sampling and sliding-window
sampling. As we will see in the next section, such partial
data shuffling strategies, despite alleviating the computation
and storage overhead of the preshuffle strategy, raise new
issues regarding the convergence of SGD, since the data is
insufficiently shuffled and does not follow the purely random
order required.

123

Stochastic gradient descent without full data shuffle: with applications to in-database…

2.3 Deep learning systems

Deep learning systems such as PyTorch and TensorFlow are
now widely used in industry and academia for AI tasks,
including image classification, natural language processing,
speech recognition, etc. These systems usually leverage the
SGDoptimizer or its variants [29–31] for training deep learn-
ing models. To facilitate data loading, these systems classify
datasets into two types, namely, map-style datasets and
iterable-style datasets. Map-style datasets refer to datasets
whose tuples can be randomly accessed by indices. For exam-
ple, if an image dataset is stored in an in-memory array as
〈image,label〉 tuples, it is a map-style dataset that can be
randomly accessed by the array index. Iterable-style datasets
refer to datasets that can only be accessed in sequence, which
is usually used for datasets that cannot fit in memory. It
is easy to shuffle map-style datasets since we only need to
shuffle the indices and access the tuples based on the shuf-
fled indices. However, if map-style datasets are stored on
secondary storage such as HDD/SSD, this random access
usually leads to low I/O performance (see Fig. 4). To alleviate
this problem, TensorFlow provides Sliding-Window Shuffle
using sliding-window-based sampling. As we will see in
Sect. 3, Sliding-Window Shuffle often results in low accuracy
of the trained model.

3 Study of data shuffling strategies for SGD

In this section, we present a systematic analysis of data shuf-
fling strategies used by existing ML systems. We consider
five common data shuffling strategies: (1) Epoch Shuffle, (2)
ShuffleOnce, (3)No Shuffle, (4) Sliding-Window Shuffle [17],
and (5) MRS Shuffle [5]. We use diverse SGD workloads,
including generalized linear models such as logistic regres-
sion (LR) and support vectormachine (SVM), aswell as deep
learning models such as VGG [32] and ResNet [33].
Experimental Setups. We use the criteo dataset [34] for
generalized linear models, and use the cifar-10 image
dataset [35] for deep learning. Each dataset has two ver-
sions: a label-clustered (or clustered for short) version and a
feature-ordered version. In the clustered version, all tuples
are clustered by their labels, whereas in the feature-ordered
version all tuples are ordered by the first feature without loss
of generality—we observed similar results by ordering other
features, as shown in [20](Ref. Section 6.3.3). The usage of
clustered datasets is inspired by similar settings leveraged in
[5], with the goal of testing the worst-case scenarios of data
shuffling strategies for SGD. For example, the clustered ver-
sion of criteo dataset has the negative tuples (with “−1”
labels) ordered before the positive tuples (with “+1” labels).

3.1 “Shuffle once” and“Epoch shuffle”

The Shuffle Once strategy performs an offline shuffle of all
data tuples, either in-place or by storing the shuffled tuples as
a copy. SGD is then executed over this shuffled copy. Albeit
a simple (but costly) idea, it is arguably a strong baseline that
many state-of-the-art in-DB ML systems assume when they
take as input an already shuffled dataset. For Epoch Shuffle,
it shuffles the training dataset before each training epoch.
Therefore, the data shuffling cost of Epoch Shuffle grows
linearly with respect to the number of epochs.

Convergence. As illustrated in Fig. 2, Shuffle Once can
achieve a convergence rate comparable to Epoch Shuffle on
both clustered and feature-ordered datasets, confirming pre-
vious observations [5].

Performance. Although Shuffle Once reduces the number of
data shuffles to only once, the shuffle itself can be very expen-
sive on large datasets due to the random access of tuples, as
we will show in our experiments. Previous work has also
reported that shuffling a huge dataset could not be finished in
one day [5]. Another problem of Shuffle Once is that, when
in-place shuffle is not feasible, it needs to duplicate the data,
which can double the space overhead.

3.2 “No Shuffle”

The No Shuffle strategy does not perform any data shuffle at
all, i.e., the SGD algorithm runs over the given data order
in each epoch. Running MADlib over a dataset or running
PyTorchover an iterable-style dataset (IterableDataset)
picks the No Shuffle strategy.

Convergence.Onboth clustered and feature-ordered data,No
Shuffle suffers from the lowest model accuracy. This is not
surprising, as SGD relies on random data order to converge.

Performance. No Shuffle is the fastest among the five data
shuffling strategies, as it can always sequentially, instead of
randomly, access the data tuples [36].

3.3 “Sliding-Window Shuffle”

The Sliding-Window Shuffle strategy leverages a sliding win-
dow to perform partial data shuffling, which is used by
TensorFlow [17]. It includes the following steps:

1. Allocate a sliding window and fill tuples into the window
as they are scanned.

2. Randomly select a tuple from the window and use it for
the SGD computation. The slot of the selected tuple in the
window is then filled in by the next incoming tuple.

3. Repeat (2) until all tuples are scanned.

123

L. Xu et al.

Fig. 2 The convergence rates of SGD with different data shuffling
strategies for both label-clustered and feature-ordered datasets, using
the same buffer size (10% of the dataset size) for MRS and Sliding-

Window Shuffles. LR and SVM use the standard SGD, while VGG19
and ResNet18 use mini-batch SGD with batch size of 64

Convergence. As illustrated in Fig. 2, for clustered datasets,
Sliding-Window Shuffle can achieve higher model accuracy
than No Shuffle but lower accuracy than Shuffle Once when
SGD converges. The reason is that this strategy shuffles the
data only partially. For two data examples ti and t j where
ti is stored much earlier than t j (i � j), it is likely that
ti is still selected before t j . As a result, on the clustered
datasets used in our study, negative tuples are more likely
to be selected (for SGD) before positive ones, which dis-
torts the training data seen by SGD and leads to low model
accuracy. This accuracy degradation also happens in feature-
ordered datasets when training LR and SVM. For VGG and
ResNet on the feature-ordered cifar-10 dataset, Sliding-
Window Shuffle achieves only 0.3–0.4% lower accuracy than
Epoch Shuffle and Shuffle Once. The reason is that ordering
the feature pixels of cifar-10 images results in good data
randomness.

Performance. Sliding-Window Shuffle can achieve I/O per-
formance comparable to No Shuffle, as it also only needs to
sequentially access the data tuples with limited additional
CPU overhead to maintain and sample from the sliding win-
dow.

3.4 “Multiplexed reservoir sampling shuffle”

Multiplexed Reservoir Sampling (MRS) Shuffle uses two con-
current threads to read tuples and update a shared model [5].
The first thread sequentially scans the dataset and performs
the reservoir sampling. The sampled (i.e., selected) tuples
are stored in a buffer B1, and the dropped (i.e., not selected)
ones are used for SGD. The second thread loops over the
tuples fromanother buffer B2 for SGD,where tuples in B2 are
simply copied from B1 (by swapping B1 and B2 once reser-
voir sampling ends). PyTorch’s shuffling strategy uses pure

reservoir sampling [37], which is a weaker version of (i.e.,
has lower convergence rate than)MRS Shuffle, as detailed in
Section 3.4 in [5]. Therefore, we useMSR Shuffle instead of
reservoir sampling as one baseline.

Convergence. As illustrated in Fig. 2, MRS Shuffle achieves
higher accuracy than Sliding-Window Shuffle but lower accu-
racy than Shuffle Once for clustered datasets. The reason is
quite similar to that given to Sliding-Window Shuffle, as the
shuffle based on reservoir sampling is again partial. Specifi-
cally, the order of the dropped tuples is also increasing, i.e.,
if i � j , ti is likely to be processed by SGD before t j . More-
over, looping over the sampled tuplesmay lead to suboptimal
data distribution—the sampled tuples in the looping buffer
B2 may be used multiple times, which can cause data skew
and lowermodel accuracy (e.g., the accuracy ofVGG/ResNet
on the feature-ordered cifar-10 dataset).

Performance. MRS Shuffle is fast, as the first thread only
needs to sequentially scan the tuples for reservoir sampling.
However, it is slightly slower than Sliding-Window Shuffle
and No Shuffle, as there is a second thread that loops over the
buffered tuples.

3.5 Analysis and summary

Table 1 summarizes the characteristics of different data
shuffling strategies. As discussed, the effectiveness of data
shuffling strategies for SGD largely depends on two some-
what conflicting factors, namely, (1) the degree of data
randomness of the shuffled tuples and (2) the I/O efficiency
when scanning data from disk. There is an apparent trade-off
between these two factors:

– The more random the tuples are, the better the con-
vergence rate of SGD is. Epoch Shuffle introduces data

123

Stochastic gradient descent without full data shuffle: with applications to in-database…

Table 1 A summary of different data shuffling strategies, where bold fonts represent the “ideal” scenario. We assume all strategies that require an
in-memory buffer have reasonably large buffer size, e.g., 10% of dataset size

Shuffling strategy Convergence behavior I/O Perf. Buffer Additional disk space

No Shuffle Slow; lower accuracy Fast No No

Epoch Shuffle Fast; high accuracy Slow Yes 2× data size

Shuffle Once Fast; high accuracy Slow Yes 2× data size

MRS Shuffle [5] Worse than Shuffle Once Fast Yes No

Sliding-Window [17] Worse than Shuffle Once Fast Yes No

CorgiPile Comparable to Shuffle Once Fast Yes No

Fig. 3 The tuple id distribution (a–e) and corresponding label distribution (f–j). Tuple id denotes the tuple position after shuffling. #tuple refers to
the number of negative/positive tuples in every 20 tuples shuffled

randomness at the highest level, but is too expensive to
implement in in-DBMLanddeep learning systems. Shuf-
fle Once also introduces good data randomness, which is
usually the best practice in terms of SGD convergence
for in-DB ML systems.

– Ahigher degree of randomness impliesmore randomdisk
accesses and thus lower I/O efficiency.As a result, theNo
Shuffle strategy is the best in terms of I/O efficiency.

The other strategies (Sliding-Window Shuffle andMRS Shuf-
fle) try to sacrifice data randomness for better I/O efficiency,
leaving a room for improvement.

Example 1 To better understand these issues, consider a clus-
tered dataset with 1,000 tuples, each of which has a tuple-id
and a label, where tuple-id of the i-th tuple is i . The first
500 tuples are negative and the next 500 tuples are positive.
Figure3 plots the tuple-id distributions and corresponding
label distributions after Sliding-Window Shuffle and MRS
Shuffle, with a comparison to the ideal distributions from a
full shuffle. The tuple-id distribution illustrates the positions
of the tuples after shuffling, whereas the label distribution

illustrates the number of negative/positive tuples in every 20
tuples shuffled.

We can observe that Sliding-Window Shuffle results in a
“linear”-shape distribution of the tuple-id after shuffling, as
shown in Fig. 3b, which suggests that the tuples are almost
not shuffled. The corresponding label distribution in Fig. 3g
further confirms this, where almost all negative labels still
appear before positive ones after shuffling. Similar pat-
terns can be observed for MRS Shuffle in Fig. 3c, h, though
MRS Shuffle has improved over Sliding-Window Shuffle. In
summary, the data randomness achieved by Sliding-Window
Shuffle orMRS Shuffle is far from the ideal case, as shown in
Fig. 3d, i. In contrast, we will see in the next section that the
data randomness of our CorgiPile is closer to the ideal
full shuffle (Fig. 3e, j).

4 CorgiPile

As illustrated in the previous section, data shuffling strategies
used by existingMLsystems can be suboptimalwhen dealing
with data that are not fully shuffled. Although recent efforts

123

L. Xu et al.

Fig. 4 Randomaccess performance vs. block size. Randomly accessing
a data block is faster than randomly accessing a data tuple. Larger block
size results in more sequential accesses on data tuples and fewer cache
misses. When data block is large (e.g., 10 MB), random block access
can be as efficient as sequential scan

have significantly improved over baseline methods, there is
still a large room for improvement. Inspired by these previous
efforts, we present a simple but novel data shuffling strategy
named CorgiPile. The key idea of CorgiPile lies in
the following two-level hierarchical shuffling mechanism:

We first randomly select a set of blocks (each block
refers to a set of contiguous tuples) and put them into an
in-memory buffer; we then randomly shuffle all tuples
in the buffer and use them for the SGD computation.

Despite its simplicity, CorgiPile is highly effective. In
terms of hardware efficiency, when the block size is large
enough (e.g., 10MB+), a random access on the block level
can be as efficient as a sequential scan, as shown in the
I/O performance test on HDD and SSD in Fig. 4. In terms
of statistical efficiency, as we will show, given the same
buffer size,CorgiPile convergesmuchbetter thanSliding-
Window Shuffle and MRS Shuffle. Nevertheless, both the
convergence analysis and its integration into PostgreSQLand
PyTorch are non-trivial. In the following,we first describe the
CorgiPile algorithm precisely and then present a theoret-
ical analysis on its convergence behavior.

Notations and definitions. The following is a list of notations
and definitions that we will use:

– ‖ · ‖: the �2-norm for vectors and the spectral norm for
matrices;

– �: For two arbitrary vectors a, g, we use as � gs to
denote that there exists a certain constant C that satisfies
as ≤ Cgs for all s;

– N , the total number of blocks (N ≥ 2);
– n, the buffer size (i.e., the number of blocks kept in the
buffer);

Algorithm 1 CorgiPile Algorithm
1: Input: N blocks withm total tuples, total epochs S (S ≥ 1), a ≥ 1,

F(·) = 1
m

∑m
i=1 fi (·).

2: Initialize x00;
3: for s = 0, · · · , S do
4: Randomly pick n blocks without replacement, each containing b

tuples. Load these blocks into the buffer;
5: Shuffle tuple indices among all n blocks in the buffer and obtain

the permutation ψ s ;
6: for k = 1, ..., bn do
7: Update xsk = xsk−1 − ηs∇ fψs (k)

(
xsk−1

)
;

8: end for
9: xs+1

0 = xsbn ;
10: end for
11: Return x Sbn ;

– b, the size (number of tuples) of each data block;
– Bl , the set of tuple indices in the l-th block (l ∈ [N] and

|Bl | = b);
– m, the number of tuples for the finite-sum objective (m =

Nb);
– fi (·), the function associated with the i-th tuple;
– ∇F(·) and∇ fi (·), the gradients of the functions F(·) and

fi (·);
– Hi (·) := ∇2 fi (·), the Hessian matrix of the function

fi (·);
– x∗, the global minimizer of the function F(·);
– xsk , the model x in the k-th iteration at the s-th epoch;
– μ-strongly convexity: function F(x) is μ-strongly con-
vex if ∀x, y,

F(x) ≥ F(y) + 〈x − y,∇F(y)〉 + μ

2
‖x − y‖2. (1)

4.1 The CorgiPile algorithm

Algorithm 1 illustrates the details of CorgiPile. At
each epoch (say, the s-th epoch), CorgiPile runs the fol-
lowing steps:

1. (Sample) Randomly sample n blocks out of N data blocks
without replacement and load the n blocks into the buffer.
Note that we use sample without replacement to avoid
visiting the same tuple multiple times for each epoch,
which can converge faster and is a standard practice in
most ML systems [5, 22, 38–40].

2. (Shuffle) Shuffle all tuples in the buffer. We use ψ s to
denote an ordered set, whose elements are the indices of
the shuffled tuples at the s-th epoch. The size of ψ s is bn,
where b is the number of tuples per block. ψ s(k) is the
k-th element in ψ s .

3. (Update) Perform gradient descent by scanning each
tuple with the shuffle indices in ψ s , yielding the updating

123

Stochastic gradient descent without full data shuffle: with applications to in-database…

rule

xsk = xsk−1 − ηs∇ fψs (k)
(
xsk−1

)
,

where ∇ fψs (k)(·) is the gradient of the function associ-
ated with the data sample with index ψ s(k), and ηs is the
learning rate for gradient descent at the epoch s. We ini-
tialize x00, and the parameter update is performed for all
k = 1, . . . , bn in one epoch.

Intuition behind CorgiPile. Before we present the formal
theoretical analysis, we first illustrate the intuition behind
CorgiPile, following the same example used in Sect. 3.5.

Example 2 Consider the same settings as those in Example 1.
Recall that CorgiPile contains both block-level and tuple-
level shuffles. Suppose that the block-level shuffle generates
a random order of blocks as {b20, b8, b45, b0,…} and the
buffer can hold 10 blocks. The tuple-level shuffle will put the
first 10 blocks into the buffer, whose tuple_ids are {b20[400,
419], b8[160, 179], b45[900, 919], b0[0, 19],…}. After shuf-
fling, the buffered tuples will have random tuple_ids in a
large non-contiguous interval that is the union of {[0, 19],
[160, 179],…, [900, 919]}, as shown in the first 200 tuples in
Fig. 3e. The buffered tuples therefore follow a random order
closer to what is given by a full shuffle. As a result, the cor-
responding label distribution, as shown in Fig. 3j, is closer to
a uniform distribution.

Performance. While No Shuffle only requires sequential
I/O’s, our CorgiPile needs to (1) randomly access blocks,
(2) copy all tuples in these blocks into a buffer, and (3) shuffle
the tuples inside the buffer. Here, random accessing a block
means randomly picking a block and reading the tuples of
this block from secondary storage (e.g., the disk) into mem-
ory. If the block size is large enough, the I/O performances
of random and sequential accesses are close. CorgiPile
incurs additional overheads for buffer copy and in-memory
shuffle. However, these I/O overheads can be hidden via stan-
dard techniques such as double buffering. As we will show
in our experiments on PostgreSQL, the optimized version of
CorgiPile only incurs 11.7% additional overhead com-
pared to the most efficient No Shuffle baseline.

4.2 Convergence analysis

Despite its simplicity, the convergence analysis of our
CorgiPile is not trivial—even reasoning about the con-
vergence of SGD with sample without replacement is an
open question for decades [40–43], not to say a hierarchical
sampling scheme like ours. Fortunately, a recent theoretical
advancement [40] provides us with the technical language to
reason about CorgiPile’s convergence. In the following,
we present a novel theoretical analysis for CorgiPile.

Note that in our following analysis, one epoch denotes
going through all tuples in the sampled n blocks.

Assumption 1 Wemake the following standard assumptions,
as that in other previous work on SGD convergence analysis
[44, 45]:

1. F(·) and fi (·) are twice continuously differentiable.
2. L-Lipschitz gradient: ∃L ∈ R+, ‖∇ fi (x) − ∇ fi (y)‖ ≤

L‖x − y‖ for all i ∈ [m].
3. LH -LipschitzHessianmatrix:‖Hi (x)−Hi (y)‖ ≤ LH‖x−

y‖ for all i ∈ [m].
4. Bounded gradient: ∃G ∈ R+, ‖∇ fi (xsk)‖ ≤ G for all

i ∈ [m], k ∈ [K − 1], and s ∈ {0, 1 . . . , S}.
5. Bounded Variance: Eξ [‖∇ fξ (x) − ∇F(x)‖2]

= 1
m

∑m
i=1 ‖∇ fi (x) − ∇F(x)‖2 ≤ σ 2 where ξ is the

random variable that takes the values in [m] with equal
probability 1/m. Here σ 2 denotes the upper bound of the
variance for sampling the gradient ∇ fξ (x).

Factor hD . In our analysis, we use the factor hD to charac-
terize the upper bound of a block-wise data variance:

1

N

N∑

l=1

∥∥∇ fBl (x) − ∇F(x)
∥∥2 ≤ hD

σ 2

b
,

where b = |Bl | is the size of each data block (recall the defi-
nition of b). Here, hD is an essential parameter tomeasure the
“cluster” effect within the original data blocks. Let’s consider
two extreme cases: (1) (hD = 1) all samples in the data set
are fully shuffled, such that the data in each block follows the
same distribution; (2) (hD = b) samples are well clustered
in each block, for example, all samples in the same block are
identical. Therefore, the larger hD , the more “clustered” the
data.

We now present the results for both strongly convex
objectives (corresponding to generalized linear models) and
non-convex objectives (corresponding to deep learning mod-
els), respectively, in order to show the correctness and
efficiency of CorgiPile. Due to the space limitation, we
detail the proof of the following theorems in Appendix of our
technical report [46].

Strongly convex objectiveWefirst show the result for strongly
convex objective that satisfies the strong convexity condi-
tion (1).

Theorem 1 Suppose that F(x) is a smooth and μ-strongly
convex function. Let T = Snb, that is, the total number
of samples used in training and S ≥ 1 is the number
of tuples iterated, and choosing ηs = 6

bnμ(s+a)
where

a ≥ max
{
8LG+24 L2+28LHG

μ2 , 24 L
μ

}
, under Assumption 1,

123

L. Xu et al.

CorgiPile has the following convergence rate

E[F (x̄S) − F(x∗)] � (1 − α)hDσ 2 1

T
+ β

1

T 2 + γ
m3

T 3 ,

(2)

where x̄S =
∑

s (s+a)3xs∑
s (s+a)3

, and

α := n − 1

N − 1
, β := α2 + (1 − α)2(b − 1)2, γ := n3

N 3 .

Tightness. The convergence rate of CorgiPile is tight in
the following sense:

– α = 1: It means that n = N , i.e., all tuples are fetched
to the buffer. Then CorgiPile reduces to full shuffle
SGD algorithm [40]. In this case, the upper bound in
Theorem 1 is O(1/T 2 + m3/T 3), which matches the
result of the full shuffle SGD algorithm [40].

– α = 0: It means that n = 1, i.e., only sampling one block
each time. Then CorgiPile is very close tomini-batch
SGD (by viewing a block as a mini-batch), except that
the model is updated once per data tuple. Ignoring the
higher-order terms in (2), our upper bound O(hDσ 2/T)

is consistent with that of mini-batch SGD.

Comparison to vanilla SGD. In the vanilla SGD,we only ran-
domly select one tuple from the dataset to update the model.
It admits the convergence rate O(σ 2/T). For our algorithm,
when T is sufficiently large, the term (1−α)hD(σ 2/T) in (2)
will be dominating. If n
 (hD − 1)(N − 1)/hD + 1 for
hD > 0 (i.e., sampling sufficiently many blocks), the factor
(1−α)hD in the dominating term will be much smaller than
1. Therefore, ignoring the higher order terms in (2) for a large
T , our algorithm admits a faster convergence rate compared
to O(σ 2/T) for the vanilla SGD. It is also worth noting that,
even if n is small, CorgiPile may still significantly out-
perform vanilla SGD in practice. Assuming that reading a
random single tuple incurs an overhead of tlat + tt and read-
ing a block of b tuples incurs an overhead of tlat + btt, where
tlat is the “latency” for one read/write operation that does
not grow linearly with respect to the amount of data that one
reads/writes (e.g., SSD read/write latency or HDD “seek and
rotate” time), and tt is the time that one needs to transfer a
single tuple. To reach an error of ε, vanilla SGD requires time

O

(
σ 2

ε
tlat + σ 2

ε
tt

)
,

whereas CorgiPile requires time

O

(
(1 − α)

hD

b
· σ 2

ε
tlat + (1 − α)hD · σ 2

ε
tt

)
.

Because (1−α) hDb < 1, CorgiPile always provides ben-
efit over vanilla SGD in terms of the read/write latency tlat.
When tlat dominates tt, CorgiPile can outperform vanilla
SGD even for small buffers.

Non-convex objective We further conduct an analysis on
objectives that are non-convex or satisfy the Polyak–Łojasi-
ewicz condition, which leads to similar insights on the
behavior of CorgiPile.

Theorem 2 Suppose that F(x) is a smooth function. Letting
T = Snb be the number of tuples iterated, under Assump-
tion 1, CorgiPile has the following convergence rate:

1. When α ≤ N−2
N−1 , choosing ηs = 1√

bn(1−α)hDσ 2S
and

assuming S ≥ bn(1043 L+ 4
3 LH)2

σ 2(1−α)hD
, we have

1

S

S∑

s=1

E‖∇F(xs0)‖2 �(1 − α)1/2
√
hDσ√
T

+ β
1

T
+ γ

m3

T
3
2

,

where the factors are defined as

α := n − 1

N − 1
, β := α2

1 − α

1

hDσ 2 + (1 − α)
(b − 1)2

hDσ 2 ,

γ := n3

(1 − α)N 3 ;

2. When α = 1, choosing ηs = 1

(mS)
1
3
and assuming S ≥

(4163 L + 16
3 LH)3b2n3/N, we have

1

S

S∑

s=1

E‖∇F(xs0)‖2 � 1

T
2
3

+ γ ′m3

T
,

where we define γ ′ := n3

N3 .

We can apply a similar analysis as that of Theorem 1 to
compare CorgiPilewith vanilla SGD, in terms of conver-
gence rate, and reach similar insights.

5 Implementation in the database

We have integrated CorgiPile into PostgreSQL. Our
implementation provides a simple SQL-based interface for
users to invoke CorgiPile, with the following query tem-
plate:

SELECT * FROM table TRAIN BY model WITH params

This interface is similar to that offered by existing in-DBML
systems like MADlib [4, 13] and Bismarck [5]. Examples of

123

Stochastic gradient descent without full data shuffle: with applications to in-database…

the params include learning_rate = 0.1, max_epoch_num
= 20, and block_size = 10MB. CorgiPile outputs various
metrics after each epoch, including the training loss, accu-
racy, and execution time.

The Need of a Deeper Integration Unlike existing in-DB
ML systems, we choose not to implement our CorgiPile
strategy using user-defined aggregates (UDAs). Instead, we
choose to integrate CorgiPile into PostgreSQL by intro-
ducing physical operators. Is it necessary for such a deeper
integration with database system internals, compared to a
potential UDA-based implementation without modifying the
internals?

While a UDA-based implementation is conceptually pos-
sible, it is not natural for CorgiPile, which requires
accessing low-level data layout information such as table
pages, tuples, and buffers. A deeper integrationwith database
internals makes it much easier to reuse such functionalities
that have been built into the core APIs offered by database
system internals but not yet have been externally exposed as
UDAs. Moreover, such a physical-level integration opens up
the door for more advanced optimizations, such as double-
buffering that will be illustrated in Sect. 5.3.

5.1 Design considerations

As discussed in Sect. 4.1, CorgiPile consists of three
steps: (1) block-level shuffling, (2) tuple-level shuffling, and
(3) SGD computation. Accordingly, we design three physical
operators:

– BlockShuffle, an operator for randomly accessing
blocks;

– TupleShuffle, an operator for buffering a batch of
blocks and shuffling their tuples;

– SGD, an operator for the SGD computation.

We then chain these three operators together to form
a pipeline and implement the getNext() method for
each operator, following the classic Volcano-style execution
model [19] that is also the query execution paradigm of Post-
greSQL.

One challenge is the implementation of the SGD operator,
which requires an iterative procedure that is not typically
supported by database systems. We choose to implement it
by leveraging the built-in re-scanmechanism of PostgreSQL
to reshuffle and reread the data after each epoch.

We store datasets as tables in PostgreSQL using the
schema of 〈id, features_k[], features_v[], label〉, which is
similar to the one used by Bismarck [5]. For sparse datasets,
features_k[] indicates which dimensions have nonzero val-
ues, and features_v[] refers to the corresponding nonzero
feature values. For dense dataset, only features_v[] is used.

Currently, we store the (learned) machine learning model
as an in-memory object (a C-style Struct) with an ID in
the PostgreSQL’s kernel instead of using UDA. Users can
initialize the model hyperparameters via the query. For the
inference, users can execute a query as “SELECT table
PREDICT BY model ID”, which invokes the learned
model for prediction.

5.2 Physical operators

The control flow of the three operators is illustrated in
Fig. 5, which leverages a PostgreSQL’s pull-style dataflow
to read tuples and perform the SGD computation. In the
following, we assume that the readers are familiar with the
structure of PostgreSQL’s operators, e.g., functions such as
ExecInit() and getNext().

After parsing the input query, CorgiPile invokes
ExecInit() of each operator to initialize their states such
as ML models and I/O buffers. At each epoch, the SGD
operator pulls tuples from the TupleShuffle operator
for SGD computation, which further pulls tuples from the
BlockShuffle operator. The BlockShuffle operator
is responsible for shuffling blocks and reading their tuples.
We now present the implementation of these operators.

(1) BlockShuffle: This operator first obtains the total num-
ber of pages by PostgreSQL’s internal function as
RelationGetNumberOfBlocks(). It then com-
putes the number of blocks BN by BN = page_num ∗
page_size/block_size. After that, it shuffles the block
indices [0, . . . ,BN − 1] and gets shuffled block ids,
where each block corresponds to a batch of contigu-
ous table pages. For each shuffled block id, it reads
the corresponding pages using heapgetpage() and
returns each fetched tuple to the TupleShuffle
operator. The BlockShuffle operator is similar to
PostgreSQL’s Scan operator, although the Scan oper-
ator reads pages sequentially instead of randomly.

(2) TupleShuffle: It first allocates a buffer, and then pulls
the tuples one by one from the BlockShuffle oper-
ator by invoking its ExecTupleShuffle(), namely
getNext(). Each pulled tuple is transformed to an
SGDTuple object, which is then copied to the buffer.
Once the buffer is filled, it shuffles the buffered tuples,
which is similar to how the Sort operator works in the
PostgreSQL. After that, the shuffled tuples are returned
one by one to the SGD operator.

(3) SGD: It first initializes an ML model in the
ExecInitSGD() and then executes SGD computa-
tion in ExecSGD(). At each epoch,ExecSGD() pulls
tuples from TupleShuffle one by one, and runs
SGD computation. Once all tuples are processed, an
epoch ends. It then has to reshuffle and reread the

123

L. Xu et al.

Fig. 5 CorgiPile in PostgreSQL, with three new operators and the “double-buffering” optimization

tuples for the next epoch, using the re-scan mecha-
nism of PostgreSQL. Specifically, after each epoch,
SGD invokes ExecReScan() of TupleShuffle
to reset the I/O states of the buffer. It further invokes
ExecReScan() of BlockShuffle to reshuffle the
block ids. After that, SGD operator can reread shuf-
fled tuples via ExecSGD() for the next epoch. This
is similar to the behavior of multiple table/index scans
in PostgreSQL’s NestedLoopJoin.

5.3 Optimizations

As discussed in Sect. 4.1,CorgiPile introduces additional
overheads for buffer copy and shuffle. To reduce them, we use
a double-buffering strategy as shown in Fig. 5. Specifically,
we launch two concurrent threads for TupleShufflewith
two buffers. Onewrite thread is responsible for pulling tuples
from BlockShuffle into one buffer and shuffling the
buffered tuples; the other read thread is responsible for read-
ing tuples from another buffer and returning them to SGD.
The two buffers are swapped once one is full and the other
has been consumed bySGD. As a result, the data loading (i.e.,
block-level and tuple-level shuffling) and SGD computation
can be executed concurrently, reducing the overhead.

6 Multi-process CorgiPile in PyTorch

We also integrated CorgiPile into PyTorch, one state-
of-the-art deep learning system. The main challenge is
how to extend our single-process CorgiPile to work
in the parallel/distributed environment of deep learning
systems, which usually use multiple processes with mul-
tiple GPUs to train models. For example, PyTorch offers
a DistributedDataParallel (DDP) mode [47] for
multi-process training, where PyTorch runs multiple pro-

cesses in a single machine with multiple GPUs or across
a number of machines to train models.

6.1 Amulti-process mode of CorgiPile

CorgiPile can be naturally extended to work in a multi-
process mode, by enhancing the tuple-level shuffle under
the data-parallel computation paradigm. As mentioned in
Sect. 4.1, CorgiPile contains both block-level shuffle and
tuple-level shuffle. As shown in Fig. 6a, we can naturally
implement block-level shuffle by randomly distributing data
blocks to different processes. For tuple-level shuffle, we
can usemulti-buffer-based shuffling instead of single-buffer-
based shuffling—in each processwe allocate a local buffer to
read blocks and shuffle their tuples. The deep learning system
can then read the shuffled tuples when running SGD to per-
form the forward/backward/update computation as well as
gradient/parameter communication/synchronization among
different processes.

We implement this enhanced multi-process CorgiPile
as a new CorgiPileDataset API in PyTorch:

train_dataset = CorgiPile Dataset(
dataset_path,
block_index,
other_args)

train_loader = torch.utils.data.
DataLoader(
train_dataset,
other_args)

train(train_loader, model, other_args).

Similar to usage of the original Dataset API, users only
need to initialize the CorgiPileDatasetwith necessary
parameters and then use it as usual in the DataLoader
API offered by PyTorch. The train() method constantly
extracts a batch of tuples from DataLoader and then

123

Stochastic gradient descent without full data shuffle: with applications to in-database…

Fig. 6 a The implementation of CorgiPile in a parallel/distributed
environment (e.g., PyTorch) with multiple processes and GPUs. b The
shuffled data generated by multi-process CorgiPile is similar to c

the shuffled data generated by single-process CorgiPile. d further
confirms this statement using more (four) processes

performs mini-batch SGD. Multi-process CorgiPile can
achieve random data order similar to that of the single-
process CorgiPile (Sect. 6.3).

6.2 Implementation details

We next detail the implementation of multi-process
CorgiPile in PyTorch:

(1) Block partitioning: We first partition the dataset into
blocks. In a parallel/distributed environment, we typ-
ically store the dataset on the block-based paral-
lel/distributed file systems such as HDFS [48], Amazon
EBS [49], and Lustre [50]. For example, the ETH Euler
cluster [51] uses Lustre, which reads/writes data in
blocks (by default 4 MB) [52] and does not allow users
to store/read massive small files like raw images in a

directory. Therefore, for training ∼150GB ImageNet
with 1.3 million raw images [21] that cannot be fit
into memory, we need to convert these images into
binary data files such as the widely used iterable dataset
TFRecords [53, 54] and store them in Lustre before
training. In addition, we build a block index to identify
the start/end of each block, by using the block informa-
tion provided by the file system or indexing tools such
asPyTorch-TFRecord [54]. If the dataset itself con-
tains tuple index (e.g., themap-style dataset in PyTorch),
we can also partition the dataset into blocks based on the
tuple index.

(2) Block shuffle: Each process randomly picks BN/PN
blocks, where BN is the number of blocks and PN is
the number of processes. We implement block shuffle
in our CorgiPileDatasetAPI. At the beginning of
each epoch, it first shuffles the block indices and then

123

L. Xu et al.

splits the indices into PN parts. The i-th process only
reads the blocks with indices in the i-th part.

(3) Tuple shuffle: Each process first allocates a small buffer
in memory and then constantly reads the blocks into
the buffer. Once the buffer is full, the process will
shuffle the buffered tuples. This is implemented in
CorgiPileDataset as its iter() method, which
reads blocks into a buffer, shuffles their tuples, and
returns the shuffled tuples one by one. The buffer size
here is much smaller than that used in single-process
CorgiPile—if we set buffer_size = BS in single-
process CorgiPile, we can choose buffer_size =
BS/PN for each local buffer in multi-process
CorgiPile.

(4) SGD computation: After block shuffle and tuple shuf-
fle, each process performs mini-batch SGD on the
shuffled tuples. Unlike single-process CorgiPile
that performs mini-batch SGD on the whole dataset
with batch_size = bs, each process in multi-process
CorgiPile performs mini-batch SGD on partial
dataset with a smaller batch size (bs/PN) and updates
the model with gradient synchronization every batch.
As shown in Fig. 6a, after each batch the processes
will synchronize/aggregate the gradients using a com-
munication protocol (e.g., AllReduce); each pro-
cess then updates its local copy of the ML model.
This procedure is encapsulated inside the train()
method, which automatically performs gradient compu-
tation/communication/synchronization andmodel update
every time after reading a batch of tuples from
CorgiPileDataset.

6.3 Single-process vs. multi-process CorgiPile

The shuffled data order of multi-process CorgiPile is
comparable to that of single-process CorgiPile. Indeed,
any data order generated by multi-process CorgiPile can
also be generated by single-process CorgiPile (see The-
orem 3). Here, we use a simple example (shown in Fig. 6)
to demonstrate this. As shown in Fig. 6a, there are two pro-
cesses and each randomly picks four blocks from the dataset.
Each process can read two blocks into the buffer at once and
shuffle their tuples in the buffer. As shown in Fig. 6b, the
shuffled tuples of process 0 are in sequence from block 1/7
(denoted as b1|7) and then from block 5/3. Likewise, the shuf-
fled tuples of process 1 are in sequence from block 0/6 and
then from block 2/4. Since PyTorch sequentially performs
mini-batch SGD on the first batch_size/PN tuples of each
process (denoted as g1 on block 1/7 and block 0/6) and aggre-
gates their gradients (sums and averages g1) every batch, this
parallel mini-batch SGD is equivalent to the mini-batch SGD
on the first batch_size tuples from block 1/7/0/6 (i.e., g1 on
b1|7|0|6) in a single process. Therefore, from the view of the

whole dataset, PyTorchwithmulti-processCorgiPileper-
forms mini-batch SGD on the tuples first from block 1/7/0/6
and then from block 5/3/2/4. This is similar to the data order
generated by single-process CorgiPile in Fig. 6c, where
the buffer size is PN times larger. Here, PN = 2 and the
buffer can keep 4 blocks at once.

To demonstrate more general cases with PN > 2, we
increase the number of processes from two to four in Fig. 6d.
In this case, each process first loads two blocks into the
local buffer, shuffles their tuples, and then performs mini-
batch SGD on a number of (batch_size/PN) shuffled tuples
in each batch. For the first batch, PyTorch computes the
gradient g1 in each process and then aggregates them. The
aggregated g1 can be viewed as the result of performing
mini-batch SGD on the first batch_size shuffled tuples from
block 1/7/0/11/10/6/9/5 (denoted as b1|7|0|11|10|6|9|5). This
b1|7|0|11|10|6|9|5 can also be generated in a single process,
by shuffling blocks as shown in Fig. 6d and then shuf-
fling their tuples in a large single buffer. Thus, given a
data order generated by multi-process CorgiPile, we
can also find an equivalent data order generated by single-
process CorgiPile. The same observation holds for the
next batches (e.g., g2).

Theorem 3 Any order of data tuples generated by the multi-
process CorgiPile can also be generated by the single-
process CorgiPile.

Proof Suppose that the dataset contains n blocks. After
the block-level shuffle, the shuffled blocks are denoted as
b1, b2, . . . , bn . Suppose that the buffer can keep m blocks.
The next step is tuple-level shuffle for both single-process
CorgiPile and multi-process CorgiPile.

For single-process CorgiPile, it puts m blocks into
the buffer each time. Without loss of generality, suppose
that the buffer holds [b1, b2, . . . , bm]. Then, after tuple-level
shuffle, each tuple in the buffer comes from a mixture of
[b1, b2, . . . , bm], denoted as b1|2|...|m .

For multi-process CorgiPile, suppose that there are
p processes. Each process i has a smaller buffer that can
hold m

p blocks. We use round-robin to assign blocks to pro-
cesses, i.e., the blockbi goes to the process i%p. Suppose that
m%p = 0, i.e., m is a multiple of p, and m = k · p The pro-
cess j will buffer [b j , bp+ j , . . . , b(k−1)p+ j] for 1 ≤ j ≤ p.
After tuple-level shuffle, tuples in process j come from the
mixture of b j |p+ j |...|(k−1)p+ j . Note that mini-batch SGD
will sequentially compute the gradients of shuffled tuples
in each process and then sum them together. As a result,
mini-batch SGD will compute the gradients of tuples from
the union {b j |p+ j |...|(k−1)p+ j }kj=1, which is equivalent to
b1|2|...|m , i.e., the shuffled tuples generated by the single-
process CorgiPile. ��

123

Stochastic gradient descent without full data shuffle: with applications to in-database…

7 Evaluation

We evaluate CorgiPile in both in-DBML and deep learn-
ing systems, to study the statistical and hardware efficiency of
CorgiPile, i.e., whether it can achieve both high accuracy
and high performance. For in-DB ML systems, we compare
our PostgreSQL-based implementation with two state-of-
the-art systems, Apache MADlib and Bismarck with diverse
linear models and datasets4. We first evaluate linear mod-
els with standard SGD in PostgreSQL (Sect. 7.2). We further
evaluate linear models with mini-batch SGD as well as other
types of (continuous, multi-class) datasets in PostgreSQL.
For deep learning systems, we compare CorgiPile with
other shuffling strategies in PyTorch, using image classifica-
tion workloads (Sect. 7.3).

7.1 Experimental setup

7.1.1 Runtime

For in-DB ML workloads, we perform the experiments on
a single ecs.i2.xlarge node in Alibaba Cloud, which has 2
physical cores (4 vCPU), 32 GB RAM, 1000 GB HDD, and
894 GB SSD. The HDD has a maximum 140 MB/s band-
width, and the SSD has a maximum 1 GB/s bandwidth. We
run all experiments in PostgreSQL under CentOS 7.6, and
we clear the OS cache before running each experiment.

For deep learning workloads, we perform them on ETH
Euler cluster [51] as batch jobs. Each job can use maximum
16 CPU cores, 160 GB RAM, and 8 NVIDIA GeForce RTX
2080 Ti GPUs. The datasets are stored in the cluster’s block-
based Lustre parallel file system.

7.1.2 Datasets

For in-DB ML, we use a variety of datasets in our evalua-
tion, including dense/sparse and small/large ones with two
classes as shown in Table 2. The datasets in Table 2 are stored
in PostgreSQL for in-DB ML experiments and we use both
label-clustered and feature-ordered datasets. For deep learn-
ing, we use both the cifar-10 dataset with 10 classes [35]
and the ImageNet dataset with 1,000 classes [21] for image
classification.

7.1.3 Models and parameters

Models for in-DBML systems. For the evaluation on in-DB
ML systems, we mainly train two popular generalized linear

4 Although MADlib contains DL models, these models are essentially
backended/trained by TensorFlow [55]. TensorFlow uses a sliding-
window shuffling strategy, which we implemented and compared
against in PyTorch.

Table 2 Datasets: The first four are from LIBSVM [34]. For criteo,
we extract 98M tuples from thecriteo terabyte dataset. Foryfcc,we
extract 3.6M tuples from the yfcc100m dataset [56]; the outdoor and
indoor tuples aremarked as negative (-1) and positive (+1). #Tuples like
4.5/0.5M refer to 4.5M tuples for training and 0.5M tuples for testing

Name Type #Tuples #Features Size

higgs Dense 10.0/1.0M 28 2.8 GB

susy Dense 4.5/0.5M 18 0.9 GB

epsilon Dense 0.4/0.1M 2000 6.3 GB

criteo Sparse 92/6.0M 1,000,000 50 GB

yfcc Dense 3.3/0.3M 4096 55 GB

ImageNet Image 1.3/0.05M 224*224*3 150 GB

cifar-10 Image 0.05/0.01M 3072 178 MB

models, logistic regression (LR) and support vector machine
(SVM), that are also supported by Bismarck and MADlib.
We briefly report the evaluation results for other liner models
such as linear regression and softmax regression, which are
currently only supported by MADlib. Currently, Bismarck
and MADlib only support two of the baseline data shuf-
fling strategies, namely, No Shuffle and Shuffle Once, which
we compare our PostgreSQL-based implementation against.
Note that the code of MRS Shuffle has not been released by
Bismarck yet. Therefore, we leave it out of our end-to-end
comparisons. Instead, we implemented MRS Shuffle by our-
selves in PyTorch and compare with it when we discuss the
convergence behavior of different data shuffling strategies
(like Fig. 8).

Models for DL system. For the evaluation on deep learning
system,we perform the classicalVGG19 andResNet18mod-
els on the cifar-10 dataset, and perform more complex
ResNet50 model on the ImageNet dataset.

Model hyperparameters.Themodel hyperparameters include
the learning rate, the decay factor, and the maximum num-
ber of epochs. By default, we use an exponential learning
rate decay with 0.95. We set the number of epochs to 20
for in-DB ML and 50 for deep learning models. Only for
ResNet50 on ImageNet, we set the number of epochs to
100 and decay the learning rate every 30 epochs, following
the official PyTorch-ImageNet code [57]. We use grid search
to tune the best learning rate from {0.1, 0.01, 0.001}. For
in-DB ML, we use the same initial parameters and hyperpa-
rameters among the compared systems, including MADlib,
Bismarck, and CorgiPile.

7.1.4 Settings of CorgiPile

CorgiPile has two more parameters, i.e., the buffer size
and the block size. We experiment with a diverse range of
buffer sizes in {1%, 2%, 5%, 10%} and the block size is

123

L. Xu et al.

Fig. 7 The end-to-end execution time of SGD with different data shuf-
fling strategies in PostgreSQL, for clustered datasets on HDD and SSD.
Block-Only Shuffle refers to CorgiPile without tuple-level shuffle.
We only show the first 5 epochs for Shuffle Once and CorgiPile, as

they converge in 1–3 epochs due to better shuffled data order. We show
all the 20 epochs for other shuffling strategies to observe if they can
converge to high accuracy

chosen in {2 MB, 10 MB, 50 MB}. We always use the same
buffer size (by default 10% of the whole dataset size) for
Sliding-Window Shuffle,MRS Shuffle, and our CorgiPile.

7.1.5 Settings of PostgreSQL

For PostgreSQL, we set the work_mem to be the maximum
RAM size and tune shared_buffers. Note that Post-
greSQL can further compress the high-dimensional datasets
using the so-called TOAST [58] technology, which tries to
compress large field value or break it into multiple physi-
cal rows. For our dense epsilon and yfcc datasets with
2000+ dimensions, PostgreSQL uses TOAST to compress
their features_v columns.

7.2 Evaluation on SGDwith in-DBML systems

For in-DBML, we first evaluate CorgiPile in terms of the
end-to-end execution time. The compared systems include
No Shuffle and Shuffle Once strategies in MADlib and Bis-
marck, as well as a simpler version of our CorgiPile
named Block-Only Shuffle, to see how CorgiPile behaves
without tuple-level shuffle. We then analyze the conver-
gence rates, in comparison with other strategies, including
MRS Shuffle and Sliding-Window Shuffle. We finally study

the overhead of CorgiPile by comparing the per-epoch
execution time of CorgiPile with the fastest No Shuffle
baseline.

In the following, we set the buffer size to 10% of the
whole dataset and block size to 10 MB for all methods. We
choose these settings according to our sensitivity analysis in
Sect. 7.2.4.

7.2.1 End-to-end execution time

Figure 7 presents the end-to-end execution time of SGD for
in-DB ML systems, for clustered datasets on both HDD and
SSD. The end-to-end execution time includes: (1) the time
for shuffling the data, i.e., Shuffle Once needs to perform
a full data shuffle before SGD starts running5; (2) the data
caching time, i.e., the time spent on loading data from disk
to the OS cache during the first epoch6; and (3) the execution
time of all epochs.

From Fig. 7, we can observe that CorgiPile converges
the fastest among all systems, and simultaneously achieves

5 Therefore, Shuffle Once in MADlib and Bismarck starts later than the
others.
6 This is determined by the I/O bandwidth. Since SSD has higher I/O
performance than HDD, the GLMs’ first epoch on SSD starts earlier
than that on HDD.

123

Stochastic gradient descent without full data shuffle: with applications to in-database…

Fig. 8 The convergence rates of LR and SVM with different shuffling strategies, for clustered datasets

comparable converged accuracy to the best Shuffle Once
baseline, usuallywithin 1–3 epochs because of the large num-
ber of data tuples. In particular, CorgiPile is 2.9−12.8×
faster than MADlib and 2.0−4.7× faster than Bismarck,
to converge to the same accuracy when data is stored on
HDD and SSD. This is due to the eliminated data shuffling
time. For example, for the clustered yfcc dataset on HDD,
CorgiPile can converge in 16min, whereas Shuffle Once
in Bismarck needs 50min to shuffle the dataset and another
15min to execute the first epoch (to converge). That is, when
CorgiPile converges, ShuffleOnce is still performing data
shuffling. For other datasets like criteo and epsilon,
similar observations hold. Moreover, data shuffling using
ORDER BY RANDOM() in PostgreSQL, as implemented by
ShuffleOnce inMADlib/Bismarck, requires 2× disk space to
generate and store the shuffled data. Therefore,CorgiPile
is both more efficient and requires less space.

MADlib is slower than Bismarck given that it performs
more computation on some auxiliary statistical metrics and
has less efficient implementation [28]. Moreover, for high-
dimensional dense datasets, such as epsilon and yfcc,
MADlib’s LR cannot finish even a single epoch within 4h,
due to some expensive matrix computations on a metric
named stderr.7 MADlib’s SVM implementation does not
have this problem and can finish its execution on high-
dimensional dense datasets. In addition, MADlib currently
does not support training LR/SVM on sparse datasets such
as criteo dataset.

7.2.2 Convergence rate comparison

For all datasets inspected, the gap between Shuffle Once
and CorgiPile is below 1% for the final testing accu-
racy, as shown in Table 3. We attribute this to the fact that
CorgiPile can yield good data randomness in each epoch
of SGD (Sect. 4.2). No Shuffle results in the lowest accuracy

7 We have confirmed this behavior with MADlib developers.

Table 3 The final testing accuracy of Shuffle Once (SO) and
CorgiPile

Dataset LR (SO | CorgiPile) SVM (SO | CorgiPile)
Higgs 64.04 | 64.06 63.93 | 63.95
Susy 78.69 | 78.66 78.73 | 78.66
Epsilon 89.77 | 89.74 89.81 | 89.80
Criteo 78.77 | 78.69 78.45 | 78.44
yfcc 96.14 | 96.11 96.23 | 96.20

when SGD converges, as illustrated in Fig. 7. TheBlock-Only
Shuffle baseline, where we simply omit tuple-level shuffle in
CorgiPile, can achieve higher accuracy than No Shuf-
fle but lower accuracy than Shuffle Once. The reason is that
Block-Only Shuffle can only yield a partially random order,
and the tuples in each block can all be negative or positive
for the clustered data.

Since MRS Shuffle and Sliding-Window Shuffle are not
available in the current MADlib/Bismarck, we use our
own implementations (in PyTorch) and compare their con-
vergence rates. Figure8 shows the convergence rates on
clustered datasets for all strategies, where Sliding-Window,
MRS, and CorgiPile all use the same buffer size (10% of
the whole dataset). As shown in Fig. 8, Sliding-Window Shuf-
fle suffers from lower accuracy, whereas MRS Shuffle only
achieves comparable accuracy to Shuffle Once on epsilon
and yfcc but suffers on the other datasets. We further per-
form these strategies on the feature-ordered datasets with
results in Fig. 9. Although No Shuffle, MRS, and Sliding-
Window achieve higher accuracy on the feature-ordered
datasets, they still have gaps with the Shuffle Once and
CorgiPile for the higgs, susy, and criteo datasets.
Only for the epsilon (with synthetic features [59]) and
yfcc with image-extracted features, they can achieve simi-
lar convergence rate to Shuffle Once and our CorgiPile.
We observe the similar results for mini-batch SGD, which
will be detailed in Sect. 7.2.5.

123

L. Xu et al.

Fig. 9 The convergence rates of LR and SVM with different shuffling strategies, for feature-ordered datasets

Fig. 10 The average per-epoch time of SGD with Bismarck (No Shuffle), CorgiPile, and CorgiPile with single buffer in PostgreSQL, for
clustered datasets on HDD and SSD. It shows that CorgiPile is up to 11.7% slower than the fastest No Shuffle

7.2.3 Per-epoch overhead

To study the overhead of CorgiPile, we compare its per-
epoch execution time with the fastest No Shuffle baseline, as
well as the single-buffer version of CorgiPile, as shown
in Fig. 10. We make the following three observations.

– For small datasets with in-memory I/O bandwidth, the
average per-epoch time of CorgiPile is comparable
to that of No Shuffle.

– For large datasets with disk I/O bandwidth, the average
per-epoch time of CorgiPile is up to ∼1.1× slower
than that ofNo Shuffle, i.e., it incurs at most an additional
11.7% overhead, due to buffer copy and tuple shuffle.

– By using double-buffering optimization, CorgiPile
can achieve up to 23.6% shorter per-epoch execution
time, compared to its single-buffering version.

The above results reveal that CorgiPile with double-
bufferingoptimization can introduce limitedoverhead (11.7%
longer per-epoch execution time), compared to the best No
Shuffle baseline.

7.2.4 Sensitivity analysis

We next study the effects of different buffer sizes and block
sizes for CorgiPile.

The effects of buffer size. Figure11a reports the convergence
behavior of CorgiPile on the two largest datasetswith dif-
ferent buffer sizes: 1%, 2%, and 5%of the dataset size.We see
that CorgiPile only requires a buffer size of 2% to main-
tain the same convergence behavior as Shuffle Once. With
a 1% buffer, it only converges slightly slower than Shuffle
Once, but achieves the samefinal accuracy.On theother hand,
as discussed in previous sections,Sliding-WindowShuffle and
MRS Shuffle achieve amuch lower accuracy evenwhen given
a much larger buffer (10%).

The effects of block size. We vary the block size in {2 MB,
10 MB, 50 MB} on the large criteo and yfcc datasets.
Figure11b shows that the per-epoch time decreases as the
block size increases from 2MB to 50 MB, due to the higher
I/O bandwidth (throughput). However, the time difference
between 10 MB and 50 MB is limited (under 10%), because
using 10 MB has achieved the highest possible I/O band-
width (130 MB/s on HDD). As the I/O performance of
CorgiPile depends on the random accessing speed of
blocks. A key question is how to choose an appropriate block
size. In practice, as illustrated in Fig. 4, we recommend users
to choose the smallest block size that can achieve similar I/O
bandwidth to the sequential read on their devices. To assist
CorgiPile users on this task, we further developed a tool
that explores the relationship between block size and disk
I/O bandwidth via profiling, which is available at [60].

123

Stochastic gradient descent without full data shuffle: with applications to in-database…

Fig. 11 The effects of buffer size and block size on CorgiPile

Fig. 12 The end-to-end execution time of LR and SVM using mini-batch SGD (batch_size = 128) in PostgreSQL, for clustered datasets on SSD

In the previous experiments, we focused on the standard
SGD algorithm, which updates the model per tuple. Since it
is also common to use mini-batch SGD, we implemented
mini-batch SGD for CorgiPile, Once Shuffle, No Shuffle,
and Block-Only Shuffle, using our in-DB operators in Post-
greSQL.We compare these shuffling strategies only based on
our PostgreSQL implementations, since MADlib and Bis-
marck currently do not support mini-batch SGD for linear
models.

7.2.5 Mini-batch LR and SVMmodels

We first perform LR and SVM using mini-batch SGD on the
clustered datasets. Figure12 illustrates the end-to-end exe-
cution time of these two models in PostgreSQL on SSD.
The result is similar to that of the standard SGD. Our
CorgiPile achieves comparable convergence rate and
accuracy to Shuffle Once but 1.7−3.3× faster than it to con-
verge. Other strategies likeNo Shuffle andBlock-Only Shuffle
suffer from either lower converged accuracy or lower con-
vergence rate.

In comparison with other shuffling strategies, Figs. 13 and
14 demonstrate the convergence rates of different shuffling
strategies with batch_size = 128, for both clustered datasets
and feature-ordered datasets, respectively. We observe that
CorgiPile (aswell as the best ShuffleOnce baseline) often
significantly outperforms Sliding-Window Shuffle and MRS

Shuffle, in terms of convergence rate and/or model accuracy,
on both clustered and feature-ordered datasets. This result
reveals that our CorgiPile alsoworks formini-batch SGD
while other shuffling strategies are suboptimal.

7.2.6 Linear regression and softmax regression models

Apart from LR/SVM on binary-class datasets, users may
also want to train ML models on continuous and multi-class
datasets in the database. Thus, we further implemented linear
regression for training continuous dataset and softmax regres-
sion (i.e., multinomial logistic regression) for multi-class
datasets, based on our in-DB operators inside PostgreSQL.
Figure15 shows the end-to-end execution time of linear
regression for the continuousYearPredictionMSD clus-
tered dataset [34] and softmax regression for the 10-class
mini8m clustered dataset [34], with different batch sizes
on SSD. CorgiPile again achieves convergence rate and
model accuracy (i.e., coefficient of determination R2 for lin-
ear regression) similar to ShuffleOnce, but is 1.6−2.1× faster
to converge.

7.3 Evaluation with deep learning system

CorgiPile is a general data shuffling strategy for any SGD
implementation. To understand its impact on deep learn-
ing systems and workloads, we implement the CorgiPile

123

L. Xu et al.

Fig. 13 The convergence rates of LR and SVM using mini-batch SGD (batch_size = 128), for clustered datasets

Fig. 14 The convergence rates of LR and SVM using mini-batch SGD (bs = 128), for feature-ordered datasets

Fig. 15 The end-to-end time of linear and softmax regression in PostgreSQL using different batch sizes (bs = 1 and bs = 128), for clustered datasets
on SSD

strategy as well as others in PyTorch and compare them using
deep learning models, for image classification. In the follow-
ing parts, we first evaluate the end-to-end performance and
convergence rate of CorgiPile on theImageNet dataset.
We then study the convergence rate of CorgiPile in detail.

7.3.1 Performance comparison

To evaluate the performance of CorgiPile in PyTorch, we
train ResNet50 on ImageNet, which has 1.3million images
in 1000 classes. We run this experiment using multi-process
CorgiPile with 8 GPUs and 16 CPU cores in our cluster.
We evaluate two different block sizes (5MBand 10MB,with
about 50 and 100 images per block), as our cluster reads data
in terms of 4MB+blocks. The batch size is set to 512 images,

so each process performs SGD computation on 512/8 = 64
images per batch. The buffer size of each process is 1.25% of
the whole dataset, thus the total buffer size of all processes
is 10% of the whole dataset. The number of data loading
threads for each process is set to two, as we have twice as
many CPU cores as GPUs. The learning rate is initialized as
0.1 and is decayed every 30 epochs with multiplicative factor
of 0.1.

Figure 16 illustrates the end-to-end execution time of
ResNet50 model on the large ImageNet dataset, using dif-
ferent shuffling strategies.We report both the Top 1 andTop 5
accuracy. FromFig. 16a, b, we can observe that CorgiPile
is 1.5× faster than Shuffle Once to converge and the con-
verged accuracy of CorgiPile is similar to that of Shuffle
Once. The main reason of the slowness of Shuffle Once is

123

Stochastic gradient descent without full data shuffle: with applications to in-database…

Fig. 16 The convergence rates of ResNet50 with different data shuffling strategies, for the clustered ImageNet dataset. Note that the original
ImageNet dataset is clustered by the labels. TopN refers to the Top-N accuracy

Fig. 17 The convergence rates of deep learningmodels with different data shuffling strategies and batch sizes, for the clustered 10-class cifar-10
image dataset

that it needs about 8.5h to shuffle the large (∼150 GB)
ImageNet dataset and store the shuffled dataset in our clus-
ter (using about 8.5h to randomly access raw images and
merge them into large binary files [54], as Lustre file system
does not allow users to store/access small raw image files
[61]). Lustre iswidely used inHPCclusters andhas beenused
by many of the top supercomputers and large multi-cluster
sites.8 In contrast, CorgiPile eliminates this long data
shuffling time. The second reason is that our CorgiPile
has limited per-epoch overhead. Although CorgiPile has
block shuffle and tuple shuffle overhead, the per-epoch time
of CorgiPile with 5 MB or 10 MB block is only ∼15%
longer than that of the fastest No Shuffle baseline, which
is similar to that observed in the previous experiments on
PostgreSQL. Recall that CorgiPile reads data in terms
of blocks, which is comparable to sequential read on block-
based parallel file system.

We further compare the convergence rate in Fig. 16c, d.
We can see that the convergence rates of CorgiPile with
5 MB/10 MB block sizes are comparable to that of Shuf-
fle Once. Although CorgiPile with 10 MB block size
has lower convergence rate than Shuffle Once in the first 30
epochs, it can catch up in the following epochs and converge
to similar accuracy.

8 https://en.wikipedia.org/wiki/Lustre_(file_system)

7.3.2 Convergence rate comparison

To compare CorgiPile with other data shuffling strate-
gies, we perform deep learning (VGG19 and ResNet18)
models on cifar-10 image dataset using a single GPU.
The cifar-10 dataset contains 50,000 training images in
10 classes, and we use both the clustered and feature-ordered
cifar-10 dataset.

Figure 17 illustrates the convergence rates of VGG19 and
ResNet18 models with different batch sizes (64 and 128) for
the clustered cifar-10 dataset. The buffer size is 10% of
the whole dataset and the block size is set to 100 images per
block. This figure shows that CorgiPile achieves com-
parable convergence rate and accuracy to the Shuffle Once
baseline, whereas other strategies suffer from lower accu-
racy due to the partially random order of the shuffled tuples.
Specifically, the Sliding-Window Shuffle used by TensorFlow
only performs better than No Shuffle, and suffers from large
(50%+) accuracy gap with Shuffle Once and CorgiPile.

We further repeat the experiments on the feature-ordered
cifar-10 dataset, and Fig. 18 presents the results. It again
shows that the convergence rate of CorgiPile is compa-
rable to Shuffle Once, whereas No Shuffle and MRS Shuffle
suffer from lower accuracy or lower convergence rate. Only
Sliding-Window Shuffle can achieve similar convergence rate
compared to Shuffle Once and CorgiPile.

The above results indicate that CorgiPile can achieve
both good statistical efficiency and hardware efficiency for
deep learning models on non-convex optimization problems.
When integrated to PyTorch, CorgiPile is 1.5× faster

123

https://en.wikipedia.org/wiki/Lustre_(file_system)

L. Xu et al.

Fig. 18 The convergence rates of deep learning models with different data shuffling strategies and batch sizes, for the feature-ordered 10-class
cifar-10 image dataset

than the Shuffle Once baseline on the large ImageNet
dataset in our experiments.

8 Related work

Stochastic gradient descent (SGD). SGD is broadly used in
machine learning to solve large-scale optimization problems
[62]. It admits the convergence rate O(1/T) for strongly con-
vex objectives, and O(1/

√
T) for the general convex case

[63, 64], where T refers to the number of iterations. For
non-convex optimization problems, an ergodic convergence
rate O(1/

√
T) is proved in [64], and the convergence rate is

O(1/T) (e.g., [40]) under the Polyak-Łojasiewicz condition
[65]. In the analysis of the above cases, the common assump-
tion is that data is sampled uniformly and independentlywith
replacement in each epoch. We call SGD methods based on
this assumption as vanilla SGD.

Data shuffling strategies for SGD. In practice, full shuffle
SGD is a more practical and efficient way of implementing
SGD [22]. In each epoch, the data is reshuffled and iterated
one by one without replacement. Empirically, it can also be
observed that random-shuffle SGD converges much faster
than vanilla SGD [38–40]. In Sect. 3, we empirically studied
the state-of-the-art data shuffling strategies for SGD, includ-
ing Epoch Shuffle, No Shuffle, Shuffle Once, Sliding-Window
Shuffle [17] andMRS Shuffle [5]. Our empirical study shows
that Shuffle Once achieves good convergence rate but suf-
fers from low performance, whereas other strategies suffer
from low accuracy. In addition, there has been previous work
on bi-sampling [66], which has been used in the context of
online aggregation [67]. Bi-sampling first selects/samples
pages using Bernoulli sampling and then shuffles/samples
the tuples inside each page. Unlike CorgiPile, it does not
shuffle tuples across pages,which is similar to theBlock-Only
Shuffle used in our experimental evaluation.

In-DB ML. Previous work [4–12, 14, 15, 25–27, 68, 69]
has intensively discussed how to implement ML models on
relational data, such as linear models [6–8], linear algebra
[9, 12, 26], factorization models [10], neural networks [25–

27] and other statistical learning models [11], using batch
gradient descent (BGD) or SGD, over join or self-defined
matrix/tensors, etc. The most common way of integrating
ML algorithm into RDBMS is to use user-defined aggre-
gate functions (UDA). The representative in-DB ML tools
are Apache MADlib [4, 13] and Bismarck [5], which use
PostgreSQL’s UDAs to implement SGD, and leverage SQL
LOOP (Bismarck) or Python driver (MADlib) to imple-
ment iterations. Recently, DB4ML [28] proposes another
approach called iterative transactions to implement iterative
SGD/graph algorithm in DB. However, it still uses/assumes
the Shuffle Once strategy as that of Bismarck/MADlib. Since
the source code of DB4ML has not been released yet, we
only compare with MADlib and Bismarck.

ScalableML for the distributed data systems. In recent years,
there are active research on integrating ML models into dis-
tributed database systems to enable scalable ML, such as
MADlib onGreenplum [70], Vertica-ML [71], Google’s Big-
Query ML [72], Microsoft SQL Server ML Services [73],
etc. Another trend is to leverage big data systems to build
scalable ML models based on different architectures, e.g.,
MPI [74, 75], MapReduce [76–78], Parameter Server [79–
81] and decentralization [82, 83]. Recent work also started
discussing how to integrate deep learning into databases [84,
85]. Our CorgiPile is a general data shuffling strategy for
SGD and has been integrated into PostgreSQL and PyTorch.
We believe that CorgiPile can be potentially integrated
into more above distributed data systems.

9 Conclusion

We have presented CorgiPile, a novel data shuffling
strategy for efficient SGD computation on top of block-
addressable secondary storage systems. It adopts a two-level
hierarchical shuffle mechanism that avoids the computation
and storage overhead of full data shuffling while retaining
similar convergence rate of SGD as if a full data shuffle
were performed. We provide theoretical analysis on the con-
vergence behavior of CorgiPile and further integrate it

123

Stochastic gradient descent without full data shuffle: with applications to in-database…

into both PostgreSQL and PyTorch. Experimental evalua-
tion demonstrates both statistical and hardware efficiency of
CorgiPile when compared to state-of-the-art in-DB ML
and deep learning systems.

Funding Open access funding provided by Swiss Federal Institute of
Technology Zurich.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Buffer Manager of PostgreSQL. https://www.interdb.jp/pg/
pgsql08.html (2022)

2. Abadi, M., Barham, P., Chen, J., et al.: Tensorflow: A system for
large-scale machine learning. In: 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, pp.
265–283. USENIX Association (2016)

3. Paszke, A., Gross, S., Massa, F., et al.: Pytorch: an imperative style,
high-performance deep learning library. In: Advances in Neural
Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, pp. 8024–
8035 (2019)

4. Hellerstein, J.M., Ré, C., Schoppmann, F., Wang, D.Z., Fratkin, E.,
Gorajek, A., Ng, K.S., Welton, C., Feng, X., Li, K., Kumar, A.:
The madlib analytics library or MAD skills, the SQL. Proc. VLDB
Endow. 5(12), 1700–1711 (2012)

5. Feng, X., Kumar, A., Recht, B., Ré, C.: Towards a unified archi-
tecture for in-rdbms analytics. In: Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIG-
MOD ’12, pp. 325–336 (2012)

6. Schleich, M., Olteanu, D., Ciucanu, R.: Learning linear regression
models over factorized joins. In: Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD Conference
2016, pp. 3–18. ACM (2016)

7. Kumar, A., Naughton, J.F., Patel, J.M.: Learning generalized linear
models over normalized data. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pp.
1969–1984. ACM (2015)

8. Olteanu, D., Schleich, M.: F: regression models over factorized
views. Proc. VLDB Endow. 9(13), 1573–1576 (2016)

9. Chen, L., Kumar, A., Naughton, J.F., Patel, J.M.: Towards linear
algebra over normalized data. Proc. VLDB Endow. 10(11), 1214–
1225 (2017)

10. Rendle, S.: Scaling factorization machines to relational data. Proc.
VLDB Endow. 6(5), 337–348 (2013)

11. Khamis, M.A., Ngo, H.Q., Nguyen, X., Olteanu, D., Schleich, M.:
In-database learning with sparse tensors. In: Proceedings of the
37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, pp. 325–340. ACM (2018)

12. Luo, S., Gao, Z.J., Gubanov, M.N., Perez, L.L., Jankov, D., Jer-
maine, C.M.: Scalable linear algebra on a relational database
system. Commun. ACM 63(8), 93–101 (2020)

13. Apache MADlib: big data machine learning in SQL. http://madlib.
apache.org/

14. Zhang, C., Ré, C.: Dimmwitted: a study ofmain-memory statistical
analytics. Proc. VLDB Endow. 7(12) (2014)

15. Kara, K., Eguro, K., Zhang, C., Alonso, G.: Columnml: column-
store machine learning with on-the-fly data transformation. Proc.
VLDB Endow. 12(4), 348–361 (2018)

16. Petersen, T.K.: Inside the lustre file system. SEAGATETechnology
paper (2015)

17. Sliding-Window Shuffle in TensorFlow. https://www.tensorflow.
org/api_docs/python/tf/data/Dataset

18. PostgreSQL. https://www.postgresql.org/
19. Graefe, G.: Volcano—an extensible and parallel query evaluation

system. IEEE Trans. Knowl. Data Eng. 6(1), 120–135 (1994)
20. Xu,L.,Qiu, S.,Yuan,B., Jiang, J., Renggli, C.,Gan, S.,Kara,K., Li,

G., Liu, J., Wu,W., Ye, J., Zhang, C.: In-database machine learning
with corgipile: stochastic gradient descent without full data shuffle.
In: SIGMOD ’22: International Conference on Management of
Data, Philadelphia, PA, USA, June 12–17, 2022, pp. 1286–1300.
ACM (2022)

21. ImageNet Dataset. https://www.image-net.org/
22. Bottou, L.: Stochastic gradient descent tricks. In: Neural Networks:

Tricks of the Trade, pp. 421–436. Springer (2012)
23. De Sa, C.M.: Random reshuffling is not always better. Adv. Neural

Inf. Process. Syst. 33, 5957–5967 (2020)
24. Yun, C., Sra, S., Jadbabaie, A.: Open problem: Can single-shuffle

SGD be better than reshuffling SGD and gd? In: Conference on
Learning Theory, COLT 2021, Proceedings of Machine Learning
Research, vol. 134, pp. 4653–4658. PMLR (2021)

25. Jankov, D., Yuan, B., Luo, S., Jermaine, C.: Distributed numeri-
cal and machine learning computations via two-phase execution
of aggregated join trees. Proc. VLDB Endow. 14(7), 1228–1240
(2021)

26. Luo, S., Jankov, D., Yuan, B., Jermaine, C.: Automatic optimiza-
tion of matrix implementations for distributed machine learning
and linear algebra. In: Proceedings of the 2021 International Con-
ference on Management of Data, pp. 1222–1234 (2021)

27. Yuan, B., Jankov, D., Zou, J., Tang, Y., Bourgeois, D., Jermaine, C.:
Tensor relational algebra for distributed machine learning system
design. Proc. VLDB Endow. 14(8), 1338–1350 (2021)

28. Jasny,M., Ziegler, T., Kraska, T., Röhm, U., Binnig, C.: DB4ML—
an in-memory database kernel with machine learning support. In:
Proceedings of the 2020 International Conference onManagement
of Data, SIGMOD Conference 2020, pp. 159–173. ACM (2020)

29. Ruder, S.: An overview of gradient descent optimization algo-
rithms. CoRR abs/1609.04747 (2016)

30. The optimization algorithms in PyTorch. https://pytorch.org/docs/
stable/optim.html

31. The optimization algorithms in TensorFlow. https://www.
tensorflow.org/api_docs/python/tf/keras/optimizers

32. Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. In: 3rd International Conference
on Learning Representations, ICLR 2015 (2015)

33. He,K., Zhang,X., Ren, S., Sun, J.:Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, pp. 770–778 (2016)

34. LIBSVM Data. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/

35. CIFAR-10 Dataset. http://www.cs.toronto.edu/~kriz/cifar.html
36. Arpaci-Dusseau, R.H., Arpaci-Dusseau, A.C.: Operating Systems:

Three Easy Pieces, 1.00 edn. Arpaci-Dusseau Books (2018)
37. PyTorch’s shuffling strategy. https://pytorch.org/data/main/

generated/torchdata.datapipes.iter.Shuffler.html (2024)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.interdb.jp/pg/pgsql08.html
https://www.interdb.jp/pg/pgsql08.html
http://madlib.apache.org/
http://madlib.apache.org/
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.postgresql.org/
https://www.image-net.org/
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.cs.toronto.edu/~kriz/cifar.html
https://pytorch.org/data/main/generated/torchdata.datapipes.iter.Shuffler.html
https://pytorch.org/data/main/generated/torchdata.datapipes.iter.Shuffler.html

L. Xu et al.

38. Bottou, L.: Curiously fast convergence of some stochastic gradient
descent algorithms. In: Proceedings of the SymposiumonLearning
and Data Science, Paris, vol. 8, pp. 2624–2633 (2009)

39. Gürbüzbalaban, M., Ozdaglar, A., Parrilo, P.A.: Why random
reshuffling beats stochastic gradient descent. Math. Program. pp.
1–36 (2019)

40. HaoChen, J.Z., Sra, S.: Random shuffling beats SGD after finite
epochs. In: Proceedings of the 36th International Conference on
MachineLearning, ICML2019. In: Proceedings ofMachineLearn-
ing Research, vol. 97, pp. 2624–2633. PMLR (2019)

41. Shamir, O.: Without-replacement sampling for stochastic gradient
methods. In: Advances in Neural Information Processing Systems,
pp. 46–54 (2016)

42. Gürbüzbalaban, M., Ozdaglar, A.E., Parrilo, P.A.: Why random
reshuffling beats stochastic gradient descent. Math. Program.
186(1), 49–84 (2021)

43. Ying, B., Yuan, K., Vlaski, S., Sayed, A.H.: Stochastic learning
under random reshuffling with constant step-sizes. IEEE Trans.
Signal Process. 67(2), 474–489 (2019)

44. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for
large-scale machine learning. SIAM Rev. 60(2), 223–311 (2018)

45. Liu, J., Zhang, C.: Distributed learning systems with first-order
methods. Found. Trends Databases 9(1), 1–100 (2020)

46. Xu, L., Qiu, S., Yuan, B., Jiang, J., Renggli, C., Gan, S., Kara,
K., Li, G., Liu, J., Wu, W., Ye, J., Zhang, C.: Stochastic gradient
descent without full data shuffle. CoRR abs/2206.05830 (2022).
https://doi.org/10.48550/arXiv.2206.05830

47. Getting StartedWith Distributed Data Parallel. https://pytorch.org/
tutorials/intermediate/ddp_tutorial.html

48. Hadoop HDFS Architecture. https://hadoop.apache.org/docs/
current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

49. Amazon Elastic Block Store (EBS). https://aws.amazon.com/ebs
50. The Lustre file system. https://www.lustre.org/
51. ETH Euler Cluster. https://scicomp.ethz.ch/wiki/Euler
52. Lustre reads/writes data in blocks. https://scicomp.ethz.ch/wiki/

Conda
53. The TFRecord format for storing a sequence of binary records.

https://www.tensorflow.org/tutorials/load_data/tfrecord
54. TFRecord format for PyTorch. https://github.com/vahidk/tfrecord
55. MADlib-Deep Learning. https://madlib.apache.org/docs/latest/

group__grp__keras.html (2024)
56. Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K.,

Poland, D., Borth, D., Li, L.: YFCC100M: the new data in multi-
media research. Commun. ACM 59(2), 64–73 (2016)

57. ImageNet training in PyTorch. https://github.com/pytorch/
examples/tree/main/imagenet

58. PostgreSQL TOAST. https://www.postgresql.org/docs/9.5/
storage-toast.html

59. Epsilon Dataset. https://www.k4all.org/project/large-scale-
learning-challenge/

60. Bandwidth Bench. https://github.com/JerryLead/bandwidth-
bench (2024)

61. Best practices on Lustre parallel file systems. https://scicomp.ethz.
ch/wiki/Best_practices_on_Lustre_parallel_file_systems

62. Bottou, L.: Large-scale machine learning with stochastic gradi-
ent descent. In: 19th International Conference on Computational
Statistics, COMPSTAT 2010, pp. 177–186 (2010)

63. Moulines, E., Bach, F.R.: Non-asymptotic analysis of stochastic
approximation algorithms for machine learning. In: Advances in
Neural Information Processing Systems, pp. 451–459 (2011)

64. Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for
nonconvex stochastic programming. SIAM J. Optim. 23(4), 2341–
2368 (2013)

65. Polyak, B.T.: Gradient methods for minimizing functionals. Zhur-
nal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 3(4),
643–653 (1963)

66. Haas, P.J., Koenig, C.: A bi-level Bernoulli scheme for database
sampling. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2004, pp. 275–286. ACM
(2004)

67. Cheng, Y., Zhao, W., Rusu, F.: Bi-level online aggregation on raw
data. In: Proceedings of the 29th International Conference on Sci-
entific and Statistical Database Management, Chicago, IL, USA,
June 27–29, 2017, pp. 10:1–10:12. ACM (2017)

68. MacGregor, J.: Predictive Analysis with SAP. Galileo Press, Bonn
(2013)

69. OracleREnterpriseVersions ofRModels. https://docs.oracle.com/
cd/E11882_01/doc.112/e36761/orelm.htm

70. The Greenplum MADlib extension. https://greenplum.docs.
pivotal.io/6-19/analytics/madlib.html

71. Fard, A., Le, A., Larionov, G., Dhillon, W., Bear, C.: Vertica-ml:
distributedmachine learning in vertica database. In: Proceedings of
the 2020 International Conference on Management of Data, SIG-
MOD Conference 2020, pp. 755–768. ACM (2020)

72. Google BigQuery ML. https://cloud.google.com/bigquery-ml/
docs/introduction

73. Microsoft SQL Server Machine Learning Services. https://docs.
microsoft.com/en-us/sql/machine-learning/sql-server-machine-
learning-services?view=sql-server-ver15

74. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H.,
et al.: Xgboost: extreme gradient boosting. R Package Version 0.4–
2 1(4), 1–4 (2015)

75. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q.,
Liu, T.Y.: Lightgbm: a highly efficient gradient boosting decision
tree. Adv. Neural Inf. Process. Syst. 30, 3146–3154 (2017)

76. Meng, X., Bradley, J.K., Yavuz, B., et al.: Mllib: machine learning
in apache spark. J. Mach. Learn. Res. 17, 34:1-34:7 (2016)

77. Zhang, Z., Jiang, J.,Wu,W., Zhang, C., Yu, L., Cui, B.:Mllib*: fast
training of glms using sparkmllib. In: 35th IEEE International Con-
ference on Data Engineering, ICDE 2019, pp. 1778–1789. IEEE
(2019)

78. Cai, Z., Vagena, Z., Perez, L.L., Arumugam, S., Haas, P.J., Jer-
maine, C.M.: Simulation of database-valued Markov chains using
simsql. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2013, pp. 637–648.
ACM (2013)

79. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao,
M., Ranzato, M., Senior, A., Tucker, P., Yang, K., et al.: Large
scale distributed deep networks. Adv. Neural Inf. Process. Syst.
25, 1223–1231 (2012)

80. Xing, E.P., Ho, Q., Dai, W., Kim, J.K., Wei, J., Lee, S., Zheng, X.,
Xie, P., Kumar, A., Yu, Y.: Petuum: a new platform for distributed
machine learning on big data. IEEE Trans. Big Data 1(2), 49–67
(2015)

81. Jiang, J., Cui, B., Zhang, C., Yu, L.: Heterogeneity-aware dis-
tributed parameter servers. In: Proceedings of the 2017 ACM
International Conference on Management of Data, pp. 463–478
(2017)

82. Lian, X., Zhang, C., Zhang, H., Hsieh, C.J., Zhang, W., Liu, J.:
Can decentralized algorithms outperform centralized algorithms?
A case study for decentralized parallel stochastic gradient descent.
In: Proceedings of the 31st International Conference on Neural
Information Processing Systems, pp. 5336–5346 (2017)

83. Tang, H., Lian, X., Yan, M., Zhang, C., Liu, J.: D2: Decentral-
ized training over decentralized data. In: Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Pro-
ceedings of Machine Learning Research, vol. 80, pp. 4855–4863.
PMLR (2018)

84. Zhang, Y., Mcquillan, F., Jayaram, N., Kak, N., Khanna, E., Kislal,
O., Valdano, D., Kumar, A.: Distributed deep learning on data sys-
tems: a comparative analysis of approaches. Proc. VLDB Endow.
14(10), 1769–1782 (2021)

123

https://doi.org/10.48550/arXiv.2206.05830
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://aws.amazon.com/ebs
https://www.lustre.org/
https://scicomp.ethz.ch/wiki/Euler
https://scicomp.ethz.ch/wiki/Conda
https://scicomp.ethz.ch/wiki/Conda
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://github.com/vahidk/tfrecord
https://madlib.apache.org/docs/latest/group__grp__keras.html
https://madlib.apache.org/docs/latest/group__grp__keras.html
https://github.com/pytorch/examples/tree/main/imagenet
https://github.com/pytorch/examples/tree/main/imagenet
https://www.postgresql.org/docs/9.5/storage-toast.html
https://www.postgresql.org/docs/9.5/storage-toast.html
https://www.k4all.org/project/large-scale-learning-challenge/
https://www.k4all.org/project/large-scale-learning-challenge/
https://github.com/JerryLead/bandwidth-bench
https://github.com/JerryLead/bandwidth-bench
https://scicomp.ethz.ch/wiki/Best_practices_on_Lustre_parallel_file_systems
https://scicomp.ethz.ch/wiki/Best_practices_on_Lustre_parallel_file_systems
https://docs.oracle.com/cd/E11882_01/doc.112/e36761/orelm.htm
https://docs.oracle.com/cd/E11882_01/doc.112/e36761/orelm.htm
https://greenplum.docs.pivotal.io/6-19/analytics/madlib.html
https://greenplum.docs.pivotal.io/6-19/analytics/madlib.html
https://cloud.google.com/bigquery-ml/docs/introduction
https://cloud.google.com/bigquery-ml/docs/introduction
https://docs.microsoft.com/en-us/sql/machine-learning/sql-server-machine-learning-services?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/machine-learning/sql-server-machine-learning-services?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/machine-learning/sql-server-machine-learning-services?view=sql-server-ver15

Stochastic gradient descent without full data shuffle: with applications to in-database…

85. Nakandala, S., Zhang, Y., Kumar, A.: Cerebro: a data system for
optimized deep learning model selection. Proc. VLDB Endow.
13(11), 2159–2173 (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Stochastic gradient descent without full data shuffle: with applications to in-database machine learning and deep learning systems
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Stochastic gradient descent (SGD)
	2.2 In-database machine learning systems
	2.3 Deep learning systems

	3 Study of data shuffling strategies for SGD
	3.1 ``Shuffle once'' and ``Epoch shuffle''
	3.2 ``No Shuffle''
	3.3 ``Sliding-Window Shuffle''
	3.4 ``Multiplexed reservoir sampling shuffle''
	3.5 Analysis and summary

	4 CorgiPile
	4.1 The CorgiPile algorithm
	4.2 Convergence analysis

	5 Implementation in the database
	5.1 Design considerations
	5.2 Physical operators
	5.3 Optimizations

	6 Multi-process CorgiPile in PyTorch
	6.1 A multi-process mode of CorgiPile
	6.2 Implementation details
	6.3 Single-process vs. multi-process CorgiPile

	7 Evaluation
	7.1 Experimental setup
	7.1.1 Runtime
	7.1.2 Datasets
	7.1.3 Models and parameters
	7.1.4 Settings of CorgiPile
	7.1.5 Settings of PostgreSQL

	7.2 Evaluation on SGD with in-DB ML systems
	7.2.1 End-to-end execution time
	7.2.2 Convergence rate comparison
	7.2.3 Per-epoch overhead
	7.2.4 Sensitivity analysis
	7.2.5 Mini-batch LR and SVM models
	7.2.6 Linear regression and softmax regression models

	7.3 Evaluation with deep learning system
	7.3.1 Performance comparison
	7.3.2 Convergence rate comparison

	8 Related work
	9 Conclusion
	References

