
The VLDB Journal
https://doi.org/10.1007/s00778-024-00842-3

REGULAR PAPER

How good are machine learning clouds? Benchmarking two snapshots
over 5 years

Jiawei Jiang1 · Yi Wei1 · Yu Liu2 ·Wentao Wu3 · Chuang Hu1 · Zhigao Zheng1 · Ziyi Zhang1 · Yingxia Shao4 ·
Ce Zhang2

Received: 14 January 2023 / Revised: 1 October 2023 / Accepted: 19 December 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
We conduct an empirical study of machine learning functionalities provided by major cloud service providers, which we call
machine learning clouds. Machine learning clouds hold the promise of hiding all the sophistication of running large-scale
machine learning: Instead of specifying how to run a machine learning task, users only specify what machine learning task
to run and the cloud figures out the rest. Raising the level of abstraction, however, rarely comes free—a performance penalty
is possible. How good, then, are current machine learning clouds on real-world machine learning workloads?We study this
question by conducting benchmark on the mainstream machine learning clouds. Since these platforms continue to innovate,
our benchmark tries to reflect their evolvement. Concretely, this paper consists of two sub-benchmarks—mlbench and
automlbench. When we first started this work in 2016, only two cloud platforms provide machine learning services and
limited themselves to model training and simple hyper-parameter tuning. We then focus on binary classification problems and
present mlbench, a novel benchmark constructed by harvesting datasets from Kaggle competitions. We then compare the
performance of the top winning code available from Kaggle with that of running machine learning clouds from both Azure
and Amazon on mlbench. In the recent few years, more cloud providers support machine learning and include automatic
machine learning (AutoML) techniques in their machine learning clouds. Their AutoML services can ease manual tuning
on the whole machine learning pipeline, including but not limited to data preprocessing, feature selection, model selection,
hyper-parameter, and model ensemble. To reflect these advancements, we design automlbench to assess the AutoML
performance of four machine learning clouds using different kinds of workloads. Our comparative study reveals the strength
and weakness of existing machine learning clouds and points out potential future directions for improvement.

Keywords Machine learning cloud · Automatic machine learning · Benchmark

B Jiawei Jiang
jiawei.jiang@whu.edu.cn

Yi Wei
weiyi96@whu.edu.cn

Yu Liu
yu.liu@inf.ethz.ch

Wentao Wu
wentao.wu@microsoft.com

Chuang Hu
handc@whu.edu.cn

Zhigao Zheng
zhengzhigao@whu.edu.cn

Ziyi Zhang
ziyi_zhang@whu.edu.cn

Yingxia Shao
shaoyx@bupt.edu.cn

1 Introduction

In spite of the recent advancement of machine learning
research, modern machine learning systems are still far from
easy to use, at least from the perspective of business users

Ce Zhang
ce.zhang@inf.ethz.ch

1 School of Computer Science, Wuhan University, Wuhan,
China

2 Department of Computer Science, ETH Zürich, Zurich,
Switzerland

3 Redmond, Microsoft Research, Washington, USA

4 Beijing University of Posts and Telecommunications, Beijing,
China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-024-00842-3&domain=pdf
http://orcid.org/0000-0003-0051-0046

J. Jiang et al.

or even scientists without a computer science background
[50]. Recently, there is a trend toward pushing machine
learning onto the cloud as a “service,” a.k.a. machine learn-
ing clouds. By putting a set of machine learning primitives
on the cloud, these services significantly raise the level of
abstraction for machine learning. For example, with Ama-
zon Machine Learning, users only need to upload the dataset
and specify the type of task (classification or regression). The
cloud will then automatically train machine learning models
without any user intervention.

From a data management perspective, the emergence of
machine learning clouds represents an attempt towarddeclar-
ative machine learning. Instead of relying on users to specify
how amachine learning task should be configured, tuned, and
executed, machine learning clouds manage all these physical
decisions and allow users to focus on the logical side: what
tasks they want to perform with machine learning.

Raising the level of abstractions and building a system to
automatically manage all physical decisions, however, rarely
comes free. In the context of a data management system,
a sophisticated query optimizer is responsible for gener-
ating good physical execution plans. Despite the intensive
and extensive research and engineering effort that has been
put into building capable query optimizers in the past four
decades, query optimizers still often make mistakes that lead
to disastrous performance.

In the context of declarative machine learning, things
become even more subtle. A bad choice of “physical plan”
may result in not only suboptimal performance but also
suboptimal quality (e.g., accuracy). In this paper, we investi-
gate the usability of state-of-the-art machine learning clouds.
Specifically, we ask the following question:

To what extent can existing declarative machine learning
clouds support real-world machine learning tasks?

To answer this question, we conduct an empirical study
with mlbench and automlbench, two novel benchmarks
consisting of real-world datasets and best-effort solutions
harvested from humans.

One characteristic of commercialmachine learning clouds
is their ever-lasting evolvement over time. When we started
this study at 2016, there were only two popular machine
learning clouds—AzureMachine Learning Studio and Ama-
zon Machine Learning, and they only provided training
service of a chosenmodel and simple hyper-parameter tuning
via grid search. After our first phase of benchmarking [34],1

more machine learning clouds emerged, accommodating
AutoML services for pipeline execution, e.g., data cleaning,
feature selection, feature transformation, model selection,
hyper-parameter tuning, and model ensemble. These new

1 Refer to https://dl.acm.org/doi/pdf/10.14778/3231751.3231770.

arising features motivate our second phase of benchmarking
that focuses on the effectiveness of AutoML functional-
ities. In summary, this work consists of the above two
sub-benchmarks—(1)mlbench: benchmark ofmodel train-
ing services in pioneering machine learning clouds, and (2)
automlbench: benchmark of AutoML services in recent
machine learning clouds.

1.1 Benchmark of model training services

In the evaluation of model training services, we study what
would users lose by resorting to declarative machine learn-
ing clouds instead of using a best-effort, non-declarative
machine learning system? To answer this question, we run
collected real-world datasets over two machine learning
clouds and compare themwith best-effort solutions harvested
from Kaggle competitions. We use a novel methodology
that allows us to separate measuring the performance of
the machine learning clouds themselves from other exter-
nal factors that may have significant impact on quality, such
as feature selection and hyper-parameter tuning. Moreover,
we use a novel performancemetric thatmeasures the strength
and weakness of current machine learning clouds by com-
paring their relative performance with top-ranked solutions
in Kaggle competitions.

Technical Contributions in this Benchmark.

– C1Wepresent themlbench benchmark. One prominent
feature of mlbench is that each of its datasets comes
with a best-effort baseline of both feature engineering
and selection of machine learning models.

– C2We propose a novel performance metric based on the
notion of “quality tolerance” that measures the perfor-
mance gap between a given machine learning cloud and
top-ranked Kaggle competition performers.

– C3 We evaluate two popular machine learning clouds,
Azure Machine Learning Studio and Amazon Machine
Learning, using mlbench. Our experimental result
reveals interesting strengths and limitations of both
clouds. Detailed analysis of the results further points
out promising future directions to improve both machine
learning clouds.

1.2 Benchmark of AutoML services

To catch up with the development of AutoML techniques,
the existing machine learning clouds mostly, if not all, resort
to including AutoML services. In this way, they extend
their capabilities from mere model training in their original
version to pipelined machine learning workloads. In addi-
tion to simple hyper-parameter tuning, the current machine
learning clouds provision AutoML assists in almost every
aspect of machine learning, e.g., data preprocessing, data

123

https://dl.acm.org/doi/pdf/10.14778/3231751.3231770

How good are machine learning clouds? Benchmarking two snapshots over 5 years

cleaning, feature engineering, model training, and model
ensemble. The abundance of AutoML services can signif-
icantly enhance the usability of machine learning clouds and
save tremendous human efforts on tuning proper knobs. Fol-
lowing this trend in the machine learning clouds, our second
sub-benchmark in this work evaluates both effectiveness and
efficiency ofAutoML services in the recentmachine learning
clouds.

Technical Contributions in this Benchmark

– C1We present the automlbench benchmark. To fully
assess the capabilities of AutoML services,
automlbench considers a broad scope of datasets and
workloads.

– C2 By comparing four mainstream machine learning
clouds that offer different scopes of AutoML, we are able
to study the importance of each AutoML component and
draw insights to understand the landscape of AutoML
services in the cloud.

– C3 We compare the models trained by cloud platforms
with those submitted by top-ranked Kaggle solutions.
The empirical results show the limitation of AutoML
offerings on the current machine learning clouds.

2 The mlbench benchmark

2.1 Methodology

Benchmarking systems fairly is not an easy task. Three
key aspects came to mind when designing a benchmark for
machine learning clouds:
(1)We need to measure not only the performance (speed) but
also the quality (precision). The two are coupled, and their
relative importance changes with respect to the user’s budget
and tolerance for suboptimal quality.
(2) The quality of an application depends on both feature
engineering and the machine learning model. If these two
factors are not decoupled, our result will be unfair to most
machine learning clouds, as they usually do not provide an
efficient mechanism for automatic feature engineering.
(3) To compare declarative machine learning clouds with the
best effort of using non-declarative machine learning sys-
tems, we need to construct a strong baseline for the latter. If
this baseline is not strong enough, our result may be overly
optimistic regarding machine learning clouds.

Starting from these principles, we made a few basic deci-
sions that we shall present next.
Scope of StudyWe restrict ourselves to binary classification,
one of the most popular machine learning tasks. As we will
see, even with this constrained scope, there is no simple,
single answer to the main question we aim to answer.

Protocol We collect top winning code for all binary clas-
sification competitions on Kaggle. We then filter them to
select a subset to include in mlbench with the following
protocol. For the code that we are able to install and finish
running within 24h, we further collect features extracted by
the winning code. The features are then used for training and
testing models provided by both the machine learning cloud
and the Kaggle winning solution. We also include datasets
constructed using raw features (see Sect. 2.2.2).
Discussion The intuition behind our methodology is simple:
The top winning code of Kaggle competitions represents the
arguably best effort among existing machine learning solu-
tions. Of course, it is biased by the competitions published
on Kaggle and the solutions provided by the participants.
Nonetheless, given the high impact of Kaggle competitions,
we believe that using the winning code as a performance
baseline significantly raises the bar compared with using
standard libraries and therefore reduces the risk that we
might beoverly optimistic about themachine learning clouds.
Moreover, given the “crowdsourcing” nature of Kaggle, the
baselinewill keep upwith the advancement ofmachine learn-
ing research and practice, perhaps at a much faster pace than
standard libraries can.

2.1.1 Quality metric

Our methodology of adopting Kaggle winning code as a
baseline raises the question of designing a reasonable qual-
ity metric. To measure the quality of a model deployed on
machine learning clouds, we introduce the notion of “quality
tolerance” (of a user).

Definition 1 The quality tolerance of a user is τ if she/he
can be satisfied only by being ranked among the top τ%,
assuming that she/he uses a model M provided by the cloud
to participate in a Kaggle competition.

Of course, the “user” in Definition 1 is just hypothetical.
Essentially, quality tolerance measures the performance gap
between the machine learning cloud and the top-ranked code
of aKaggle competition. A lower quality tolerance suggests a
more stringent user requirement and therefore amore capable
machine learning cloud if it can meet that quality tolerance.

Based on the notion of quality tolerance, we are mainly
interested in two performance metrics of a model M :

– Capacity, the minimum quality tolerance τmin thatM can
meet for a given Kaggle competition T ;

– Universality, the number of Kaggle competitions that M
can achieve a quality tolerance of τ .

Intuitively, capacity measures how high M can be ranked in
a Kaggle competition, whereas universality measures in how
many Kaggle competitions M can be ranked that high.

123

J. Jiang et al.

We use c(M, T) and u(M, τ) to denote the capacity and
τ -universality ofM .Moreover, we useK(M, τ) to denote the
set of Kaggle competitions whose quality tolerance τ have
been reached by u(M, τ):

u(M, τ) = |K(M, τ)|.

Similarly, if a machine learning cloudM provides nmod-
els {M1, . . . , Mn} (n ≥ 1), we can define the capacity ofM
with respect to a Kaggle competition T as

c(M, T) = min
Mi∈M

c(Mi , T), 1 ≤ i ≤ n,

and define the τ -universality of M as

u(M, τ) = |
⋃n

i=1
K(Mi , τ)|.

Clearly, the capacity ofM over T is the capacity of the best
model that M provides for T , whereas the τ -university of
M is the number of Kaggle competitions in which M can
meet quality tolerance τ (with the best model it can provide).

Finally, if there are m Kaggle competitions T =
{T1, . . . , Tm}, we define the capacity of M over T as

c(M, T) = max
Tj∈T

c(M, Tj), 1 ≤ j ≤ m.

It measures the uniformly best quality tolerance that M can
meet for any of the competitions in T .

In the rest of this paper, we will use the notation c(M),
u(M), c(M), and u(M) whenever the corresponding qual-
ity tolerance and Kaggle competition(s) are clear from the
context.

2.1.2 Limitations and discussion

Our motivation of using ranking as performance metric is
to provide a normalized score across all datasets. However,
ranking itself does not tell the full story. One caveat is that
rankingmeasures the relative performance andmay be sensi-
tive to the change in the underlying, absolutemetric, such as
the “area under curve” (AUC) score that is commonly used by

Fig. 1 Histograms of the AUC scores on private leader board for two
example datasets D-PHY and D-SMR-r

Kaggle competitions. To illustrate this, Fig. 1 presents the his-
tograms (i.e., distributions) of the AUC scores in two Kaggle
competitions (see Sect. 2.2.3 for the details of the competi-
tions). The red, green, and blue lines correspond to the teams
ranked at the top 95%, 50%, and 5%. The distance between
the scores of top 50% (green) and top 5% (blue) shows the
sensitivity—for D-PHY, ranking is quite sensitive to small
changes in AUC as most of the teams have similar scores.
Therefore, when benchmarking machine learning clouds, it
is important to look at both ranking and absolute quality. In
this benchmark, our analysis will always base on both.

2.2 Kaggle competitions and datasets

2.2.1 Kaggle competitions

Kaggle hosts various types of competitions for data scien-
tists. There are seven different competition categories, and
we are particularly interested in the category “Featured” that
aims to solve commercial, real-worldmachine learning prob-
lems. For each competition, Kaggle provides a necessary
description of its background, training and testing datasets,
evaluation metric, and so on. These competitions are online
only for a while, and Kaggle allows participants to submit
multiple times during that period. Kaggle evaluates and pro-
vides a score for each submission (shown as a public leader
board). Participants can specify their final submissions before
a competition ends, and a final, private leader board is avail-
able after the competition ends. The winners are determined
based on their rankings on the private leader board. In this
paper, we treat the top ten on the private leader board as
“winning code,” and we look for the one ranked the highest
among the top ten.

2.2.2 Overview

mlbench is curated fromKaggle competitions with or with-
out winning code. We describe the protocol of curating as
follows.
Datasets fromWinningCodeAs shown in Fig. 2,we collected
267 Kaggle competitions in total and found winning code
for 41 of these competitions. We are unable to find winning
code for the remaining 226 competitions. Fortunately, the
41 competitions with available winning code already exhibit
sufficient diversity to evaluate various aspects of machine
learning clouds. Figure3 further summarizes the types of

Fig. 2 Statistics of Kaggle competitions

123

How good are machine learning clouds? Benchmarking two snapshots over 5 years

Fig. 3 Kaggle competitions with winning code

machine learning tasks covered by these 41 competitions
with winning code. Given the scope of study we stated in
Sect. 2.1, the 13 competitions that are binary classification
tasks are the focus of our evaluation.

We then ran the winning code of the 13 competitions on
Microsoft Azure for the purpose of extracting the features
used by the winning code (recall Sect. 2.1). We failed to run
the winning code for “Avito Context Ad Clicks.” For “San-
tander Customer Satisfaction” and “Higgs Boson Machine
LearningChallenge,” the code cannot befinished on anAzure
machinewith a 16-coreCPUand 112GBmemory. Therefore,
there were 10 competitions for which we finished running
the winning code successfully. We further removed datasets
whose outputs are either three-dimensional features that can-
not be supported by the machine learning clouds we studied
or features that cannot be extracted and saved successfully.
Moreover, the winning code of “KDD Cup 2014” generated
two sets of features—it uses the ensemble method with two
models. This results in 7 datasets with features extracted by
the winning code.
Beyond Winning Code We also constructed datasets using
the raw features from Kaggle (details in Sect. 2.2.3), which
results in 11 additional datasets. Specifically, we include all
binary competitions ended by July 2017 that (1) use AUC as
evaluation metric, (2) can be joined by new users, (3) have
datasets available for download, (4) still allow for submission
and scoring, (6) do not contain images, videos, and HTML
files, and (5) whose total size does not exceed Azure’s limi-
tation.

In total, mlbench contains 18 datasets with 7 datasets
having both features produced by winning code and the raw
features provided by the competition. We summarize the
statistics of the datasets in Fig. 4. We can see a reasonable
diversity across the datasets in terms of the size of the train-
ing set, the size of the testing set, and the number of features.
Moreover, the ratio between the sizes of the training set and
testing set varies as well. For example, D-VP has a testing set
10 times larger than the training set, which is quite different
from the vanilla setting, where the training set is much larger.

Fig. 4 Statistics of datasets. The “-r” in the dataset names indicates raw
feature (see Sect. 2.2.3)

2.2.3 Dataset details

We present more details about the datasets listed in Fig. 4 in
supplemental materials.2 For each dataset, we introduce the
background of the corresponding Kaggle competition and
describe the features used by the winning code, as well as
the models and algorithms it adopts. Note that the winning
code may apply feature engineering techniques to transform
“raw features” provided by Kaggle.

2.3 Experimental settings

We evaluate the declarative machine learning services pro-
vided by twomajor cloud vendors:Microsoft AzureMachine
Learning Studio andAmazonMachine Learning.Wewill use
Azure and Amazon as shorthand.

We first introduce the current APIs ofAzure andAmazon
and then all machine learning models they provide.

2.3.1 Existing cloud API

Both Azure and Amazon start by asking users to upload
their data, which can be in the form of CSV files. Users then
specify the machine learning tasks they want to run on the
cloud. However,Azure andAmazon offer different APIs, as
illustrated below.

2 https://drive.google.com/file/d/1lXC47nBjDyfqrNyUIC9xv-
SEIuks44Gg/view.

123

https://drive.google.com/file/d/1lXC47nBjDyfqrNyUIC9xv-SEIuks44Gg/view
https://drive.google.com/file/d/1lXC47nBjDyfqrNyUIC9xv-SEIuks44Gg/view

J. Jiang et al.

– Azure provides an API using which users specify the
types of machine learning models, such as (1) logistic
regression, (2) support vector machine, and (3) decision
tree. For each type of model, Azure provides a set of
default hyper-parameters for users to use in an out-of-
the-box manner. Azure also supports different ways of
automatic hyper-parameter tuning and provides a default
range of values to be searched for.

– Amazon provides an API by which users specify the
types ofmachine learning tasks, namely (1) binary classi-
fication, (2) multiclass classification, and (3) regression.
For each type,Amazon automatically chooses the type of
machine learningmodels.Amazon always runs a logistic
regression for binary classification [3]. Amazon further
provides a set of default hyper-parameters for logistic
regression, but users can also change these default val-
ues.

2.3.2 Machine learning models

We give a brief description of the machine learning models
provided by Azure and Amazon.

– Two-Class Averaged Perceptron (C-AP) It is a linear clas-
sifier and canbe thought of as a simplifiedneural network:
There is only one layer between input and output.

– Two-Class Bayes Point Machine (C-BPM) This is a
Bayesian classification model, which is not prone to
overfitting. The Bayes point is the average classifier
that efficiently approximates the theoretically optimal
Bayesian average of several linear classifiers [25] (in
terms of generalization performance).

– Two-Class Boosted Decision Tree (C-BDT) Boosting is
a well-known ensemble algorithm that combines weak
learners to form a stronger learner (e.g., AdaBoost [19]).
The boosted decision tree is an ensemble method that
constructs a series of decision trees [41]. Except for the
first tree, each of the remaining trees is constructed by
correcting the prediction error of the previous one. The
final model is an ensemble of all constructed trees.

– Two-Class Decision Forests (C-DF) This classifier is
based on random decision forests [26]. Specifically, it
constructs multiple decision trees that vote on the most
popular output class.

– Two-class Decision Jungle (C-DJ) This is an ensemble
of rooted decision directed acyclic graphs (DAGs). In
conventional decision trees, onlyonepath is allowed from
the root to a leaf. In contrast, a DAG in a decision jungle
allows multiple paths from the root to a leaf [43].

– Two-Class Logistic Regression (C-LR) This is a classic
classifier that predicts the probability of an instance by

fitting a logistic function. It is also the only classifier that
Amazon supports.

– Two-Class Neural Network (C-NN) Neural networks are
bio-inspired algorithms that are loosely analogous to the
observed behavior of a biological brain’s axons [23].
Specifically, the input layer (representing input data) and
the output layer (representing answers) are connected by
layers of weighted edges and nodes, which encode the
so-called activation functions.

– Two-Class Support Vector Machine (C-SVM) SVM [12]
is another well-known classifier. It works by separating
the data with the “maximum-margin” hyperplane.

2.3.3 Hyper-parameter tuning

Each machine learning algorithm consists of a set of hyper-
parameters to tune.Themethodologyweuse in this paper is to
rely on the default tuning procedure provided by themachine
learning cloud. Figure5 summarizes the hyper-parameters
provided by the machine learning clouds. For each machine
learning model, we conduct an exhaustive grid search on all
possible parameter combinations.

Because Amazon only has the option of logistic regres-
sion and automatically tunes the learning rate, we tuned
hyper-parameters for models provided by Azure. We per-
formed hyper-parameter tuning in an exhaustive manner: For
each combination of hyper-parameter values in the whole
search space, we ran the model based on that setting. The
best hyper-parameter is then selected based on theAUC score

Fig. 5 Hyper-parameters tuned for each model. The default parameters
are in bold font

123

How good are machine learning clouds? Benchmarking two snapshots over 5 years

Fig. 6 Total training time (s) on Azure with hyper-parameter tuning
(HPT)

obtained with fivefold cross-validation. AUC is the evalua-
tion metric used by all Kaggle competitions we included in
mlbench. The third column in Fig. 5 presents the number of
hyper-parameter combinations in the search space for each
model. For example, C-AP employs two hyper-parameter
knobs, “learning rate” and “maximum number of iterations,”
with three and two alternative values. As a result, there are
six combinations in total. For completeness, we report the
time spent on tuning hyper-parameters for Azure models in
Fig. 6.

2.4 Results on winning features

We first evaluated the performance of Azure and Amazon
assuming users have already conducted feature engineering
and only use the machine learning cloud as a declarative
execution engine of machine learning models. Our analysis
in this section will mainly focus on the seven datasets where
winning code is available (i.e., the datasets in Fig. 4 without
the “-r” suffix). We will discuss the cases when raw features
are used in Sect. 2.5. For each dataset and model, we run
Azure and Amazon for at most 24h.

2.4.1 Capability and universality

We first report the performance of Azure and Amazon,
based on the capacity and universality metrics defined in
Sect. 2.1.1. Figure7 presents the result.

In Fig. 7a, the x-axis represents the quality tolerance,
whereas the y-axis represents the number of models required
if a machine learning cloud can achieve a certain tolerance
level τ for all seven datasets (i.e., a τ -university of seven).
The minimum τ shown in Fig. 7a then implies the capacity
of a machine learning cloud. We observe that the capacity of

Azure is around 31 (i.e., c(Azure) = 31), whereas the capac-
ity of Amazon is around 83 (i.e., c(Amazon) = 83). Under
this measurement, state-of-the-art machine learning clouds
are far from competitive than deliberate machine learning
models designed manually: With the goal of meeting a τ -
university of seven, τ can only be as small as 31 for Azure
(and 83 for Amazon). In other words, in at least one Kaggle
competition (among the seven), Azure is ranked outside the
top 30%, whereasAmazon is ranked outside the top 80% on
the leader board.

However, we note that this might be a distorted picture
given the existence of “outliers.” In Fig. 7b, c, we further
present results by excluding the datasets D-VP andD-KDD2.
Although the capacity of Amazon remains the same, the
capacity of Azure improves dramatically: c(Azure) drops to
7 by excluding D-VP and further drops to 5 by excluding
D-KDD2, which suggests that Azure can be ranked within
the top 10% or even the top 5% in most of the Kaggle com-
petitions considered.

2.4.2 Breakdown and analysis

We next take a closer look at how the machine learning
clouds perform in individual competitions. Figure8 reports
the details of the AUC of different models on different
datasets. The number in parentheses next to the AUC is the
rank (of thisAUC) on the leader board.We note that not every
winning code we found is top-ranked. Often, the top-ranked
code is not available, and in this case, we seek the next avail-
able winning code (among the top 10) on the leader board.
We have several interesting observations.
Diversity of models is beneficial An obvious difference
between Azure and Amazon is that Azure provides more
alternative models thanAmazon. While the reason forAma-
zon to provide only logistic regression is unclear, the results
presented in Fig. 8 suggest that the additional models pro-
vided by Azure do help. In more detail, Fig. 9 compares the
capacity of Azure and Amazon on different datasets. We
observe that Azure wins over Amazon in terms of capacity,
often by a large margin. The capacity of Azure over all the
datasets is 31.24 (6.99 if excluding D-VP and 2.54 if further
excluding D-KDD2) versus 84.34 of Amazon, as shown in
Fig. 7.
Model selection is necessaryFor a given dataset, the variation
in terms of prediction quality is quite large across different
models. For example, by using themodels provided byAzure
on the dataset “D-SCH,” the rank varies from 3 (as good as
the winning code) to 281 (ranked at the bottom 10% of 313
Kaggle competition participants). This makes model selec-
tion a difficult job for Azure users. (Amazon users do not
have this problem, as logistic regression is their only option.)
Hyper-parameter tuning makes a difference for a single
model Both Azure and Amazon provide logistic regres-

123

J. Jiang et al.

Fig. 7 Capacity and universality of machine learning clouds as quality tolerance varies

Fig. 8 Area under curve (AUC) and rankings on the private leader board of Kaggle for various datasets and models. The results for public leader
board are similar. The winning code of KDD is an ensemble of the classifiers trained from both D-KDD1 and D-KDD2

Fig. 9 Capacity ofAzure andAmazon on different datasets (i.e., Kag-
gle competitions)

Fig. 10 Capacity of the logistic regression model (C-LR) from Azure
and Amazon on different datasets

sion. The difference is that Azure provides more knobs for
hyper-parameter tuning (recall Fig. 5). Figure10 compares
the capacity of the logistic regression model (“C-LR”) pro-

vided by Azure and Amazon. Azure wins on most of the
datasets, perhaps due to more systematic hyper-parameter
tuning. However, there is no free lunch: Hyper-parameter
tuning is time-consuming (recall Fig. 6).

2.4.3 Model selection

The previous section gives an overview of the performance
of Azure and Amazon in terms of their capacity and uni-
versality. However, although we observe that the additional
models provided by Azure significantly improve perfor-
mance, model selection and hyper-parameter tuning become
new challenges.

From the user’s perspective, there is then a natural ques-
tion: Given a machine learning task, which model should a
user choose (for good performance)? The answer depends
on (1) the capacity of the models, (2) the time the user is
willing to spend on parameter tuning and training, and (3)
the user’s quality tolerance level.

In the following, we study the trade-off between these
factors. Our goal is not to give a definitive conclusion, which
is in general impossible given the variety ofmachine learning

123

How good are machine learning clouds? Benchmarking two snapshots over 5 years

Fig. 11 Quality of different models

Fig. 12 BDT versus linear classifiers

tasks and models. Rather, by presenting the results observed
in our study, we hope we can give some insights into what
is going on in reality to help users come up with their own
recipes.

2.4.4 Linear versus nonlinear models

In Fig. 7, we have incrementally noted the models we need to
include to improve the capacity of Azure (with respect to a
given universality). Clearly, we find that nonlinear classifiers
(e.g., C-BDT, C-NN, etc.) are the driving force that propels
the improvement. It is then an interesting question to investi-
gate where the improvement indeed comes from. We further
compare the AUC of the models over different datasets in
Fig. 11, based on the raw data in Fig. 8.

We observe that nonlinearmodels (e.g., C-BDT) dominate
linear models (e.g., C-SVM) as the dataset size increases.
This is intuitive: Nonlinear models are more complicated
than linear models in terms of the size of hypothesis space.
However, nonlinear models are more likely to suffer from
overfitting on small datasets (e.g., the smallest dataset D-
SCH in Fig. 11).

Figure 12 further presents a zoomed-in comparison
between C-BDT, the dominant nonlinear classifier, and the
linear models C-AP, C-BPM, C-SVM, and C-LR. The y-
axis represents the difference in terms of AUC between a
model and the best linear model. For example, the best lin-
ear model on the dataset D-SCH is C-BPM with an AUC

of 0.92, whereas the best linear model on the dataset D-EG
is C-SVM with an AUC of 0.89 (see Fig. 8). Linear models
often perform similarly regardless of dataset size: There is
apparently a hit-or-miss pattern for linear models; namely,
either the actual hypothesis falls into the linear space or it
does not. As a result, there is often no big difference in terms
of prediction quality between linear models: If users believe
that linear models are sufficient for a learning task, they can
focus on reducing the training time rather than picking which
model to use.

Observation 1 To maximize quality on Kaggle, use a nonlin-
ear model whenever it can scale and the dataset is not too
small.

2.4.5 Training time versus prediction quality

Aswe havementioned, there is an apparent trade-off between
the prediction quality of a model and the training time
required for that model. More sophisticated models usually
have more knobs to tune and therefore need more time for
training. Given that nonlinear models in general outperform
linear models on large datasets, it is worth further investigat-
ing the trade-off between their training time and prediction
quality.

We summarize the comparison result in Fig. 13. Figure13
presents the trade-off between the prediction quality and the
total training time on hyper-parameter tuning. For ease of
exposition, we order the models by their training time along
the x-axis. We also include linear models in our comparison
for completeness.

In each plot of Fig. 13, the blue horizontal line represents
the AUC of the winning code and the red horizontal line rep-
resents the AUC of (the logistic regression model provided
by) Amazon, whereas the scattered points present the AUC
of Azure models. We have noted that the choice of linear
versus nonlinear models can make a difference. However,
one interesting phenomenon we observe is that the choice
within each category seems not so important, i.e., the predic-
tion quality of different nonlinearmodels is similar.Although
this is understandable for linear models, it is a bit surprising
for nonlinear models. One reason for this is that most of the
nonlinear models provided by Azure are based on decision
trees (C-BDT, C-DJ, and C-DF). Moreover, more training
time does not always lead to better prediction quality.

Based on these observations, our second empirical rule for
model selection on machine learning clouds is:

Observation 2 To maximize efficiency, within each category
(linear or nonlinear), pick the one with the shortest training
time.

123

J. Jiang et al.

Fig. 13 Trade-off between prediction quality (AUC) and total training time. The blue line represents the AUC of the winning code, and the red
line represents the AUC of logistic regression (C-LR) on Amazon (color figure online)

2.4.6 Quality tolerance regime

We emphasize that the rules we presented in Observations 1
and 2 are purely empirical. So far, we have looked at the
model selection problem from only two of the three respects,
i.e., the capacity of the models and the training time they
require. We now investigate the third respect: the user’s qual-
ity tolerance. This is a more fundamental and subtle point:
A certain quality tolerance may not even be achievable for a
machine learning task given the current capacity of machine
learning clouds. (For example, we have seen that neither
Azure nor Amazon can achieve even a quality tolerance of
30 on D-VP.)

To avoid oversimplifying the problem, we define the con-
cept of quality tolerance regime based on the capacity of the
machine learning clouds we currently observe:

– Low tolerance regime. Corresponds to the case when the
quality tolerance is below 1.3

– Middle tolerance regime. Corresponds to the case when
the quality tolerance is between 1 and 5.

– High tolerance regime. Corresponds to the case when the
quality tolerance is between 5 and 10.

To give some sense of how well a model must perform to
meet the tolerance regimes, in Fig. 14, we present the AUC
that amodel has to achieve tomeet the high tolerance regime,

3 That is, when users can only be satisfied by winning the Kaggle competition or being
ranked among the top 1%.

Dataset Winning AUC 10% AUC
D-SCH 0.91 0.88
D-EG 0.89 0.88
D-VP 0.86 0.79
D-AEA 0.92 0.90
D-KDD2

0.67 0.62
D-KDD1

Fig. 14 AUC corresponding to the high tolerance regime of different
Kaggle competitions

the loosest criterion in our definition, in different Kaggle
competitions. This is a way to measure the intensity of a
competition: The smaller the gap is between the winning
AUCand the top 10%AUC, themore intense the competition
is. Some competitions are highly competitive: The gap is
merely 0.01 on D-EG.

Of course, one can change the thresholds in the above def-
inition and therefore shift the regimes to different regions of
the tolerance range (0, 100]. Based on our definition and
Fig. 9, Azure can meet the low tolerance regime for the
datasets D-SCH and D-EG, the middle tolerance regime for
the datasets D-AEA and D-KDD1, and the high tolerance
regime for the dataset D-KDD2. In contrast, Amazon only
meets the high tolerance regime on the dataset D-KDD1.

To better understand the performance of Azure with
respect to different quality tolerance regimes, we further
present in Fig. 15 a “heat map” that indicates the quality tol-
erance levels met by different Azure models on different
datasets (or, in terms of the capacity of models, the heat map

123

How good are machine learning clouds? Benchmarking two snapshots over 5 years

Fig. 15 A heat map that represents the capacity of different models
on different datasets. Dark green represents low tolerance, light green
represents middle tolerance, yellow represents high tolerance, and red
regions are out of the tolerance regimes we defined (color figure online)

represents model capacity across different Kaggle competi-
tions).

The dark green regions correspond to the low tolerance
regime, the light green regions correspond to the middle tol-
erance regime, and the yellow regions correspond to the high
tolerance regime. The other regions are outside the tolerance
regimes we defined. We find that Azure actually only meets
the low tolerance regime on small datasets,where linearmod-
els work well.Azure can meet the middle and high tolerance
regimes on large datasets, thanks to the inclusion of nonlinear
models.

2.4.7 Summary and discussion

Given the previous analysis, there is an obvious trade-off
between the efficiency and effectiveness of machine learning
clouds fromauser’s perspective.Themore alternativemodels
a machine learning cloud provides, the more likely it is that a
better model can be found for a particular machine learning
task. However, model selection becomes more challenging
and users may spend more time (and money) on finding the
most effective model.

Meanwhile, we also find that there is a gap between the
best availablemodel onmachine learning clouds and thewin-
ning code available on Kaggle for certain machine learning
tasks. It is then natural to ask the question of how to nar-
row the gap to further improve machine learning clouds. Of
course, there is no reason to disbelieve that there is a possi-
bility. For example, one can simply provide more models to
increase the chance of finding a bettermodel, though thismay
makemodel selection even harder. It is also not so clearwhich
models should be included, given the trade-off between the
capacity of a model and the training time required to tune the
model.

Dataset Best Azure Winning Quality Gap Ranking Gap (%)
D-EG C-AP LR -0.01 -0.3 (No. 4 → 2)
D-SCH C-BPM DWD -0.01 0

D-KDD1 C-LR Ensemble 0.02 2.12
D-AEA C-BDT Ensemble 0.01 1.6
D-KDD2 C-BDT Ensemble 0.05 6.57
D-VP C-BDT NA 0.11 31.16

Fig. 16 Gaps between Azure and Kaggle winning code on different
datasets (DWD is shorthand for “distance weighted discrimination”)

We investigated this question from a different viewpoint
by looking into the gap itself. Instead of asking how to make
the gap narrower, we ask why there is a gap. Figure16 com-
pares the best performing Azure model with the winning
code from Kaggle. Again, we separate small datasets (D-
EG and D-SCH), where linear models outperform nonlinear
models, from large datasets, where nonlinear models are bet-
ter. The “Quality Gap” column presents the difference in
AUC between the winning code and the Azure model, and
the “Ranking Gap” column shows the corresponding move-
ment in rankings on the Kaggle leader board. For example,
on D-EG, the winning code is actually slightly worse than
C-AP from Azure, with a quality gap of −0.01 and a rank-
ing gap of −0.32%: The winning code is ranked fourth (i.e.,
top 0.64%), whereas C-AP could be ranked second (i.e., top
0.32%). The larger the quality gap and ranking gap are, the
more potential improvement there is. One prominent obser-
vation from Fig. 16 is that the winning code on the large
datasets leverages ensemble methods (details in Sect. 2.2.3),
whereas the best nonlinear models from Azure (C-BDT, C-
DJ, C-DF) more or less leverage ensemble methods as well.
Therefore, it seems that Azure is moving in the right direc-
tion by supporting more ensemble methods, though it needs
to further improve their performance. Amazon may need to
incorporate ensemblemethods (as well as nonlinear models).

2.5 Results on all datasets

So far, our study has been focused on Kaggle competitions
whosewinning code is available.We nowdiscuss the insights
we got by analyzing all 18 datasets.
The Importance of Feature Engineering

As most of the winning code spends significant effort
on feature engineering, there is a clear gap from the typi-
cal way that people use machine learning clouds in practice,
where feature engineering may not be at the level achieved
by the winning code. Consequently, our previous results for
the machine learning clouds may be over-optimistic. In prac-
tice, neither Azure or Amazon provides feature engineering
functionality.Weassess the impact of feature engineering and
make the case for a potentially promising research direction
of “declarative feature engineering on the cloud.”

123

J. Jiang et al.

Dataset C-AP C-BPM C-BDT C-DF C-DJ C-LR C-NN C-SVM
D-SCH 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%)
D-EG 0.03 (3.81%) 0.03 (3.36%) 0.02 (2.04%) 0.02 (2.33%) 0.02 (2.63%) 0.03 (3.82%) 0.03 (3.83%) 0.04 (4.48%)
D-VP 0.02 (3.89%) 0.06 (9.75%) 0.07 (10.71%) 0.11 (17.64%) 0.12 (20.66%) 0.04 (5.41%) 0.08 (12.25%) 0.15 (27.24%)
D-AEA 0.04 (5.14%) 0.07 (8.42%) 0.05 (5.73%) 0.04 (5.26%) 0.12 (15.31%) 0.03 (3.88%) 0.04 (4.46%) 0.04 (4.74%)
D-KDD2 -0.01 (-1.31%) -0.04 (-8.08%) NA (NA) 0.05 (9.07%) 0.06 (11.80%) -0.02 (-3.06%) NA (NA) 0.03 (4.76%)
D-KDD1 0.06 (10.60%) 0.09 (15.35%) NA (NA) 0.06 (10.86%) 0.10 (19.25%) 0.05 (8.64%) NA (NA) 0.10 (17.63%)

Fig. 17 Improvement on private AUC score attributed to feature engineering. Green indicates quality increase after feature engineering; red
otherwise. All numbers are with hyper-parameter tuning (color figure online)

Dataset C-AP C-BPM C-BDT C-DF C-DJ C-LR C-NN C-SVM
D-SCH 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
D-EG 386 (61.76%) 378 (60.48%) 320 (51.20%) 104 (16.64%) 97 (15.52%) 386 (61.76%) 384 (61.44%) 398 (63.68%)
D-VP 59 (4.52%) 349 (26.72%) 432 (33.08%) 627 (48.01%) 569 (43.57%) 280 (21.44%) 527 (40.35%) 544 (41.65%)
D-AEA 759 (44.99%) 838 (49.67%) 773 (45.82%) 742 (43.98%) 986 (58.45%) 665 (39.42%) 726 (43.03%) 468 (27.74%)
D-KDD2 -62 (-13.14%) -85 (-18.01%) NA (NA) 244 (51.69%) 301 (63.77%) -121 (-25.64%) NA (NA) 157 (33.26%)
D-KDD1 118 (25.00%) 289 (61.23%) NA (NA) 257 (54.45%) 348 (73.73%) 65 (13.77%) NA (NA) 343 (72.67%)

Fig. 18 Improvement on private ranking attributed to feature engineering. Green indicates quality increase after feature engineering; red otherwise.
All numbers are with hyper-parameter tuning (color figure online)

We consider an extreme casewherewe do not perform fea-
ture engineering, and ask the question: If we use raw features
instead of features constructed by the winning code, how
will it impact the performance of machine learning clouds?
In Figs. 17 and 18, we present the improvement in terms of
the AUC score and the ranking on the private leader board
by using the features from the winning code versus using the
raw features (without feature engineering). Hyper-parameter
tuningwas turned on for each run. A negative value here indi-
cates a drop in performance. Not surprisingly, in most cases
using well engineered features helps boost performance sig-
nificantly, though it is not always the case. For instance, for
C-LR on D-KDD2, using features from the winning code
decreases the AUC score by 0.03, and the corresponding
ranking on the private leader board drops by 129. The last
columns in Figs. 17 and 18 further show the improvement by
the best model using engineered features versus that using
raw features. Even under this best-versus-best comparison,
the benefit of feature engineering is significant.

We also should not be overly pessimistic by the results,
though. After all, in practice it is rare for people to com-
pletely give up feature engineering, given the intensive and
extensive research on feature selection in the literature. Con-
sequently, our comparison on using only raw features should
be understood as a worst-case study for the performance of
machine learning clouds. Meanwhile, it is interesting to fur-
ther explore the “gray areas” between the two extremes that
we have studied in terms of feature engineering: Instead of
using either fine-tuned features or just raw features, how will
machine learning clouds perform when combined with an
automatic feature learning procedure? There is apparently a
broad spectrum regarding the abundance of feature learning
algorithms. After we finished mlbench, manymajor clouds
providers include feature engineering in their services. This

phenomenon motivates our second benchmark in Sect. 3 that
study the effectiveness of feature learning offerings on the
cloud.
The Importance of Hyper-parameter Tuning

We assess the importance of hyper-parameter tuning in
a similar way and the result for all 18 dataset is in Fig. 19.
We see that hyper-parameter tuning has significant impact
on each individual algorithm, and most of the time, it
improves the quality. One interesting observation is that,
under the best-versus-best comparison (last column), the
impact of hyper-parameter tuning drops significantly. This
shows an interesting trade-off between model selection and
hyper-parameter tuning—disabling model selection hurts
the qualitymore significantly than disabling hyper-parameter
tuning. This opens another interesting future research ques-
tion: Given limited computation budget, how should one
balance between model selection and hyper-parameter tun-
ing to maximize the final quality? Similar to the previous
challenge on feature engineering, there are lots of trade-offs.
A naive approach is to performhyper-parameter tuning for all
models and then pick the model with the best performance,
exactly as what we have done in our experimental evaluation.
This brute-force approach is perhaps unacceptable in a sit-
uation with restrictive resource access. As another extreme
approach, one can first find a model using model selection
without any hyper-parameter tuning and then focus on hyper-
parameter tuning for this particular model. However, there
might be little guarantee on the performance of the model
selected. Clearly, there are numerous hybrid strategies in
between, where one can first decide on a set of candidate
models and then perform hyper-parameter tuning for each
candidate. A declarative machine learning service should
hide these details from the user.

123

How good are machine learning clouds? Benchmarking two snapshots over 5 years

Dataset C-AP C-BPM C-BDT C-DF C-DJ C-LR C-NN C-SVM
D-SCH-r -0.03 (-3.60%) NA (NA) 0.04 (6.79%) 0.02 (2.39%) 0.11 (15.87%) 0.03 (3.92%) -0.01 (-0.81%) 0.04 (4.47%)
D-PIS-r 0.00 (0.00%) NA (NA) 0.01 (1.53%) 0.03 (3.93%) 0.01 (0.89%) 0.05 (6.49%) 0.01 (0.77%) 0.06 (8.17%)
D-EG-r 0.00 (0.16%) NA (NA) 0.01 (1.12%) 0.01 (0.81%) 0.03 (3.25%) -0.00 (-0.04%) 0.00 (0.16%) 0.02 (2.65%)
D-VP-r 0.00 (0.00%) NA (NA) 0.02 (3.66%) 0.02 (2.84%) -0.00 (-0.32%) -0.02 (-3.40%) 0.02 (3.07%) -0.02 (-2.94%)
D-AEA-r -0.00 (-0.08%) NA (NA) 0.04 (4.20%) 0.10 (13.74%) 0.06 (8.68%) 0.03 (3.22%) 0.01 (1.34%) 0.06 (8.09%)
D-SCS-r 0.00 (0.18%) NA (NA) 0.01 (1.00%) 0.08 (10.65%) 0.01 (1.57%) 0.01 (0.80%) 0.01 (1.45%) -0.01 (-1.56%)
D-SMR-r 0.00 (0.66%) NA (NA) NA (NA) 0.05 (7.99%) 0.07 (10.89%) NA (NA) NA (NA) NA (NA)
D-GMC-r 0.04 (5.77%) NA (NA) 0.00 (0.15%) 0.09 (11.39%) 0.00 (0.30%) 0.02 (2.56%) 0.00 (0.08%) -0.00 (-0.09%)
D-HQC-r 0.00 (0.00%) NA (NA) 0.00 (0.18%) 0.03 (3.37%) NA (NA) 0.00 (0.00%) 0.01 (1.05%) 0.01 (0.61%)
D-KDD-r 0.00 (0.43%) NA (NA) NA (NA) 0.05 (10.68%) 0.03 (6.83%) 0.01 (1.26%) NA (NA) -0.01 (-0.95%)
D-PBV-r 0.00 (0.00%) NA (NA) NA (NA) NA (NA) NA (NA) 0.00 (0.13%) NA (NA) NA (NA)
D-SCH -0.03 (-3.60%) NA (NA) 0.04 (6.79%) 0.02 (2.39%) 0.11 (15.87%) 0.03 (3.92%) -0.01 (-0.81%) 0.04 (4.47%)
D-EG 0.00 (0.42%) NA (NA) 0.01 (0.82%) 0.03 (3.37%) 0.00 (0.53%) 0.00 (0.22%) 0.01 (0.88%) 0.00 (0.41%)
D-VP -0.05 (-6.70%) NA (NA) 0.04 (6.18%) 0.09 (14.48%) 0.05 (7.88%) 0.00 (0.63%) 0.05 (7.56%) 0.01 (2.10%)
D-AEA 0.00 (0.03%) NA (NA) 0.01 (1.06%) 0.07 (8.76%) 0.01 (1.28%) -0.00 (-0.15%) 0.04 (4.43%) 0.00 (0.40%)
D-PHY NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
D-KDD2 0.00 (0.66%) NA (NA) 0.00 (0.15%) 0.07 (13.96%) 0.09 (17.19%) -0.00 (-0.26%) NA (NA) -0.00 (-0.75%)
D-KDD1 0.03 (5.44%) NA (NA) -0.02 (-3.07%) 0.04 (6.27%) 0.06 (10.96%) 0.02 (3.87%) 0.00 (0.34%) 0.03 (4.84%)

Fig. 19 Improvement on private AUC score attributed to hyper-parameter tuning. Green indicates quality increase after feature engineering; red
otherwise (color figure online)

Fig. 20 AUC improvement attributed to (left) hyper-parameter tuning
and (right) feature engineering

We can also compare the impact of hyper-parameter tun-
ing and feature engineering by plotting the histograms for the
performance improvement for all individual algorithms. In
Fig. 20, the red, green, and blue vertical dashed lines in each
figure indicate the 5th, 50th, and 90th percentiles, respec-
tively. We see that the majority of the improvements falls
between 0 and 10% in terms of AUC score. Comparing all
these three lines “shifted to the right direction” for the fea-
ture engineering plot (i.e., the right histogram), indicating
a more significant impact attributed to feature engineering
than hyper-parameter tuning.

3 The automlbench benchmark

In recent years, machine learning cloud has been under
rapid development with functionalities going beyond model
training and hyper-parameter tuning. Major cloud platforms
offer (optional) AutoML components in the training, e.g.,
feature preprocess, feature selection, model selection, hyper-
parameter tuning, and model ensemble. These AutoML
techniques could potentially free users from manual tun-
ing of both algorithm and system knobs, which entails a

high barrier for non-experts and causes expensive costs
even for experienced practitioners. How do machine
learning clouds perform today, five years
after mlbench? Specifically:

How far away today’s AutoML systems are from experi-
enced data scientists (e.g., top-ranked Kaggle solutions)?
What is the main shortcoming of the current AutoML
offerings?

To answer this question, as a follow up to mlbench, we
conduct, in 2021, the automlbench benchmark to com-
pare the AutoML capabilities of several popular machine
learning clouds.

Baselines We use four commercial machine learning
clouds in this benchmark—Google Cloud, Amazon AWS,
Microsoft Azure, and Oracle DataScience.

WorkloadsThe evaluated datasets are presented in Fig. 21.

– Classification datasetThe details of the evaluatedKaggle
datasets have been described in Sect. 2.2.3. We use their
raw features to train classification models.

– Noisy dataset To assess how the baselines handle noisy
input, we choose two noisy datasets, KDD and EEG.
These two datasets are fromour previous benchmark, i.e.,
CleanML [32]. This contains a raw version and a clean
version for each dataset. In KDD-missing,4 75.9% of the
rows havemissing values.KDD-clean removes rowswith
missing values from KDD-missing. EEG-outlier is an

4 https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-
at-donors-choose.

123

https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose
https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose

J. Jiang et al.

Datasets # instance # features # class
D-PIS-r 5,500 22 2
D-VP-r 10,506 11 2
D-AEA-r 32,769 9 2
D-SCS-r 76,020 369 2
D-PBV-r 2,197,291 12 2
D-KDD-r 619,326 139 2
D-GMC-r 150,000 10 2
D-EG-r 7,395 124 2
D-HQC-r 260,753 297 2
D-SMR-r 145,231 1,933 2

KDD-missing 131,329 100 2
KDD-clean 31,709 100 2
EEG-outlier 14,980 14 2
EEG-clean 14,980 14 2
MNIST 70,000 784 10
HIGGS 11 million 28 2
RCV 82,853 47,236 2

BikeSharing 17,379 16 NA
BlogFeadback 59,961 280 NA

MSD 381,746 90 NA
CT 53,500 385 NA

SuperConductivity 15,767 81 NA
UJIndoorLoc 19,937 524 NA

Fig. 21 Datasets used in automlbench

electroencephalography dataset that contains outliers,5

and EEG-clean replaces the outliers via SD criterion and
mean imputation according to [32].

– ImagedatasetMNIST is chosen as an example to evaluate
the baselines over image dataset.

– Large-scale dataset We use two large-scale datasets,
Higgs and RCV, from UCI Machine Learning Reposi-
tory [1] to test the scalability of the baseline.

– Regression dataset Except for classification tasks, we
also run regression tasks over six regression datasets
collected from UCI Machine Learning Repository—
BikeSharing, BlogFeadback, MSD, CT, SuperConduc-
tivity, and UJIndoorLoc.

PrinciplesThroughout this benchmark, we follow the best
vs. bestprinciple. For each baseline,we select all the provided
AutoML components, as shown in Fig. 22. The chosen plat-
formsprovide various scopes ofAutoMLcomponents, giving
us possibility to assess the importance of each AutoML
component. Some of the baseline allow user to set the task
parallelism (usually has a maximal limitation), while some
others do not. To be fair, we use the maximal allowed paral-
lelism for each platform.

Protocols If the evaluated dataset does not originally pro-
vide a train subset and a test subset, we split the dataset by
0.9/0.1, inwhich 90% is used for training and 10% for testing.
For each task, we run fivefold cross-validation over the train
subset to assure the generality of the results. The platforms

5 https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State.

Fig. 22 AutoML components in machine learning clouds

offer two stopping conditions—(1) the trained model is con-
sidered as converged (e.g., loss does not significantly change
within a few iterations), and (2) reaching the time budget. To
assure a fair comparison, we set a maximal time budget for
all the platforms, as we will specify in each experiment.

Metrics We report both efficiency metric (run time) and
statistical metric (validation/test accuracy or AUC). Consid-
ering that the baselines have different pricing models, we
also report the cost (in dollar) for each task. Note that the
cost may not be a scientific metric since the cloud provider
may decide their pricing policies according to commercial
purposes.

3.1 Results on classification datasets

We run the classification datasets on four platforms. We vary
the maximal time budget from 30min to 3h, and present the
AUC results in Figs. 23, 24, and25. Our results are organized
into two orthogonal dimensions:

– Smaller datasets and larger datasets Among these
datasets, D-PVB-r and D-KDD-r have relatively more
data examples, whereas other datasets are relatively
smaller.

– Holdout testset and Kaggle testset In Figs. 23, 24 and 25,
the testsets are generated as a holdout set of the original
training set, whereas in Figs. 45 and46 we use the private
testsets on Kaggle.

We obtain different observations for different regimes
along these two dimensions. Figure30 illustrates the output
pipelines of different platforms.

For smaller datasets and holdout testset, Oracle
DataScience performs relativelywell—not only it achieves
the best or second-best test scores on six out of ten datasets
(Fig. 25), the fact that it applies data sampling and feature
selections (see output pipelines in Fig. 26) also means that
it is the fastest (cheapest) (see Figs. 27, 29, 30) among all
four platforms. On the other hand,Google Cloud achieves
the highest validation AUC over eight datasets, however,
does seem to overfit when it comes to the testset. Particu-
larly, it encounters prediction error given a time budget of
3h, as Google Cloud outputs a complex model that can-
not handle unseen features in the holdout testsets. Google
Cloud generates an ensemble model for each workload,

123

https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State

How good are machine learning clouds? Benchmarking two snapshots over 5 years

Fig. 23 Validation and test AUC of classification datasets in
automlbench (time budget = 30min). Green numbers indicate the
best validation AUC for each dataset, blue numbers indicate the best

test AUC, and “–” means time out. The numbers in brackets indicate
the difference compared with the best results (color figure online)

Fig. 24 Validation and test AUC of classification datasets in
automlbench (time budget = 1h). Green numbers indicate the best
validation AUC for each dataset, blue numbers indicate the best test

AUC, and “–” means time out. The numbers in brackets indicate the
difference compared with the best results (color figure online)

Fig. 25 Validation and test AUC of classification datasets in
automlbench (time budget = 3h). Green numbers indicate the best
validation AUC for each dataset, blue numbers indicate the best test

AUC, “–” means time out, and “NA” means prediction error on the test-
set. The numbers in brackets indicate the difference compared with the
best results (color figure online)

123

J. Jiang et al.

Fig. 26 Output ML pipeline of classification datasets in automlbench

Fig. 27 Runtime and cost of classification datasets in automlbench.
Note that some executions are longer than the time budget (3h) because
the platforms need to finish the existing trials. Green numbers indicate

the shortest runtime for each dataset, blue numbers indicate the lowest
cost, and “–” means time out (color figure online)

which prefers DNNs, over the original features. We hypothe-
size that this preference of DNNmodel makes the overfitting
problemmore serious on smaller datasets—in fact, as wewill
see, when the dataset gets larger, the relative performance
of Google Cloud and Oracle DataScience will also
change.

For larger datasets and holdout testset (D-PBV-r and
D-KDD-r), however, we obtain quite different observations.
In this case, Google Cloud outperforms all other plat-
forms. Later,wewill see similar behavior on other large-scale
datasets (see Higgs in Fig. 39, 1.2 AUC points compared
with the second-best platform).We hypothesize that, on these
large-scale datasets, the benefit of DNNs starts to show up.

In the previous experiments, we set a time budget and
the platforms encounter time out on some datasets. To show
the model quality when the model is converged, we use
more time budget for these datasets and run these workloads
until convergence. As shown in Fig. 28, Google Cloud

achieves slight improvements given a larger time budget.
Overall, Google Cloud outperforms other platforms on
larger datasets but still suffers from the overfitting prob-
lem. Amazon AWS, Microsoft Azure, and Oracle
DataScience have higher model qualities, at the expense
of significantly more time. However, it is the user’s choice
whether it is beneficial to obtain a better model with more
time consumption and monetary cost.

When the testset is fromKaggle leaderboard (see Fig. 45
shows all the results), however, the observations are also
different. Amazon AWS outperform significantly over
Google Cloud on smaller datasets, by a margin of up to
3 AUC points, while the observation is opposite on larger
datasets. Amazon AWS and Microsoft Azure outper-
formOracle DataScience significantly, by amargin of up
to 13 AUC points. We hypothesize that the unknown private
testsets on Kaggle might be from more different data dis-
tributions than the holdout testsets. Therefore, the strategies

123

How good are machine learning clouds? Benchmarking two snapshots over 5 years

Fig. 28 Validation AUC, test AUC, and runtime until convergence.
These workloads encounter time out given a time budget of 3h. The
numbers in brackets indicate the difference compared with the best
results

that take into consideration all data examples and features,
without sampling, might be able to construct a more robust
estimator.

Observation 3 (Classification Dataset) Platforms with dif-
ferent design principles performwell in different scenarios.
Overall, appropriate data subsampling and feature selec-
tion (Oracle DataScience) are great ways to making
training significantly faster; deep learning-based methods
(Google Cloud) are great for complex, large-scale tasks
when overfitting is less of a concern; and Amazon AWS
and Microsoft Azure, which do not rely on data subsam-
pling and feature selection, seem to be more robust in the
presence of data drifting during test time.

(Comparison with Kaggle Winner) As the continuous
development of AutoML techniques, one question is fre-
quently raised:

Can a pure AutoML solution achieve compare accu-
racy as models delicately tuned by experienced data
scientists?

We choose three datasets and use the models generated
by these platforms to predict the stand-alone test datasets on
Kaggle. We then upload the predictions to Kaggle and report
the results returned by Kaggle in Fig. 31. Unfortunately, the
AutoML platforms significantly lag behind the Kaggle win-
ners. TheAutoMLplatforms often rank between 50 and 80%.
In the solutions submitted by the high-ranked users, most of
them did a lot of work on feature engineering and knowledge
integration. In addition to traditional feature transformations,
they also created new features by combining raw features,
which is not considered in the existing AutoML platforms.
This kind of high-level feature engineering operator requires
an in-depth understanding of raw features, both contextually

Fig. 29 Test AUC versus time budget on classification datasets. We set
three time budgets (30min, 1h, 3h) for all platforms

Fig. 30 Runtime (cost) versus test AUC of AutoML platforms on clas-
sification datasets

and physically, which is yet difficult for current AutoML
techniques. Nevertheless, this does not mean AutoML tech-
niques are not useful—as we have shown in the results of
mlbench, given high-quality features, AutoML techniques
can tune a model comparable with top-ranked Kaggle solu-
tions and save considerable human efforts.

123

J. Jiang et al.

Fig. 31 Comparison with Kaggle winners on three representative clas-
sification datasets. The x-axis refers to runtime or cost of the platforms,
and the y-axis refers to the ranking in the Kaggle leaderboard

Observation 4 (Classification Dataset) Machine learning
problems are often data problems and knowledge problems.
It is important for future ML platforms to better support the
human-in-the-loop development process to facilitate knowl-
edge integration and data wrangling and transformations.

3.2 Results on noisy dataset

The two noisy datasets represent different scenarios—KDD
contains missing values, and EEG has outliers. We treat and
discuss them separately.

– Missing valuesWe train KDD-missing with the AutoML
platforms and calculate the AUC over the validation
dataset and the test dataset. The maximal time budget is
set as 3h.Then,wedo the same for theKDD-cleandataset
in which the rows with missing values are removed. The
results are shown in Figs. 32, 33 and 34. Figure32 shows
the validation and test AUC on the noisy datasets. If we
compare the results of KDD-missing and KDD-clean,
the model accuracy is significantly higher on KDD-clean
dataset in which we remove training data with missing
values. For instance, Microsoft Azure’s test AUC on
KDD-clean is 0.7239, while that onKDD-missing is only
0.7030. This proves that missing values pose negative
impact on the trained model and the existing platforms
cannot effectively handle missing values. On each of
KDD-missing and KDD-clean, the models trained by
different platforms perform similarly. Platforms with

Fig. 32 Validation and test AUC of noisy datasets in automlbench.
The numbers in brackets indicate the difference compared with the best
results

Fig. 33 Runtime and cost of noisy datasets in automlbench. Green
numbers indicate the shortest runtime for eachdataset, andblue numbers
indicate the lowest cost. The pricing is $19.32/h for Google Cloud,
$1.075/h for Amazon AWS, $1.388/h for Microsoft Azure, and
$0.501 for Oracle DataScience. We use a better instance for Ora-
cle DataScience according to the platform’s recommendation (color
figure online)

overfitting problems can suffer in this scenario. On the
other hand, platforms that include imputer and feature
processing in the pipeline perform better. It shows that
that fixing missing values, even automatically, can help
improvemodel accuracy. Figure35 summarizes the com-
bination of statistical metric (test AUC) and efficiency
metrics (runtime and cost).

– Outliers On the raw dataset EEG-outlier, platforms that
support model ensemble output better models, as shown
in Fig. 32, by training ensemble models. EEG-clean is
provided by CleanML [32] which manually modifies
EEG-outlier by detecting outliers with SD criterion and
imputing them with mean imputation. On this modified
version, the validation AUC and test AUC of the evalu-
ated platforms barely change. If we look at the output
pipelines in Fig. 34, some platforms output ensemble
models, while other platforms prefer tree models. The
consistency of model qualities shows that these models
are robust to outliers.

123

How good are machine learning clouds? Benchmarking two snapshots over 5 years

Fig. 34 Output ML pipeline of noisy datasets in automlbench

Similar to our previous discussions, we observe the over-
fitting behavior on Google Cloud; however, all platforms
have similar test AUC on these four datasets. In terms of
speed,Oracle DataScience is the fastest (cheapest) in this
experiment because of data subsampling and feature selec-
tion. This is consistent with our previous observation (similar
to the “smaller dataset, holdout test” case)

3.3 Results on small image dataset

Figures 36, 37 and 38 illustrate the results on MNIST dataset
giving 3h of maximal time. Platforms that trains a tree model
achieve the best test accuracy, but the accuracy gap is not
significant. Here, platforms that conduct aggressive feature
selection performs sub-optimally because this causes the loss
of relations between neighboring pixels. Google Cloud
chooses DNNmodels in the ensemble model, while the other
three platforms choose tree models. We set the maximal exe-
cution time as 3h, and all the platforms use up the time
budget. This indicates that training an image dataset is often
more time-consuming than normal classification datasets due
to higher dimensionality and larger model size.

(Comparing Platforms) Although four platforms per-
form similarly (w.r.t. accuracy) on small image dataset, we
still have several interesting observations. Google Cloud
obtains the best accuracy over the training set but still suffers
from overfitting.Amazon AWS achieves the best test accu-
racy, followed byMicrosoft Azure. We observe that both
Amazon AWS and Microsoft Azure choose a scaler
operator, a standard data preprocessing in image processing.
Oracle DataScience outputs a comparable, but slightly
less accurate, model than others. Apart from the lack of a
scaler operator, we hypothesize that data sampling and fea-
ture selection in Oracle DataScience might hurt slightly
for image data.

Fig. 35 Runtime (cost) versus test AUC of AutoML platforms on noisy
datasets

Fig. 36 Validation accuracy, test accuracy, runtime and cost of MNIST
dataset in automlbench. The numbers in brackets indicate the dif-
ference compared with the best results

Fig. 37 Output ML pipeline of MNIST dataset in automlbench

123

J. Jiang et al.

Fig. 38 Runtime (cost) versus accuracy of AutoML platforms on
MNIST

Fig. 39 Validation AUC, test AUC, runtime and cost of large-scale
datasets in automlbench. The numbers in brackets indicate the dif-
ference compared with the best results. “–” means time out, and NA
means the system cannot run the dataset

Fig. 40 OutputML pipeline of large-scale datasets in automlbench.
NA means the system cannot run the dataset

3.4 Results on large-scale dataset

We choose two large-scale datasets in this experiment. Higgs
contains 11 million instances, and RCV contains more than
47,000 features. The maximal time budget for all the plat-
forms is set to be 3h. As the results in Figs. 39, 40 and41

Fig. 41 Runtime (cost) versus test AUC ofAutoML platforms on large-
scale datasets

illustrate, all the baselines cannot handle RCV dataset since
they restrict the dimension of input dataset.

On Higgs, Google Cloud generates the most accurate
model on both validation set and testset, implying that DNN
model can outperform traditional models given enough input
data. Due to data subsampling and feature selection, Ora-
cle DataScience is significantly faster, while 1.2 AUC
points lower than Google Cloud. The relative impor-
tance between this quality difference and the additional
runtime/cost depends on applications.

Observation 5 (Large-scale Dataset) The support of high-
dimensional large-scale datasets could be significantly
improved in today’s AutoML services.

3.5 Results on regression dataset

We next run six regression datasets using the baseline plat-
forms. We calculate the mean-squared error (MSE) over the
validation dataset and test dataset as the statistical loss (the
lower the better). The maximal time budget is 3h for all the
platforms. Figures42 and43 give the loss, runtime, cost and
output pipeline. Overall, four platforms obtain comparable
loss across different datasets. In terms of model general-
ization, all the platforms generalize relatively well on the
first five datasets. However, on the last dataset UJIndoor-
Loc, onlyGoogle Cloud performs well on the test dataset.
We find that the other three platforms put more weights on
some categorical indicator features (e.g., building id) which
are closely related to the target (longitude). Their trained
tree models are not suitable for these categorical features
and thereby encounter overfitting. Consequently, the trained
models cannot generalize well to unseen indicators.Google
Cloud, however, prefers DNNmodels and does not have this
problem. Figure44 summarizes the combinations of loss and
efficiency metrics (runtime and cost).

(Comparing Platforms)Overall, the evaluated platforms
obtain comparable statistical loss on the chosen regression
datasets, except for one dataset on which Google Cloud is
significantly better than the other platforms. The execution
strategies are similar as those on other types of datasets—
Google Cloud trains an ensemble DNN model, Amazon

123

How good are machine learning clouds? Benchmarking two snapshots over 5 years

Fig. 42 Validation loss, test loss, runtime and cost on regression datasets in automlbench

Fig. 43 Output ML pipeline of regression datasets in automlbench

AWS performs complex feature preprocessing and trains
a single model (often tree model), Microsoft Azure
runs simple feature scaling and trains an ensemble model,
and Oracle DataScience selects important features and
prefers tree models.

3.6 Comparing automlbench, mlbench and
Kaggle winners

automlbench and mlbench run on two snapshots of ML
clouds, five years apart. How do these two snapshots com-
pare?

We submit the output models of mlbench and
automlbench to Kaggle competitions and compare them
with top-ranking solutions. We do not include D-VP-r and
D-PHY because their unlabeled testsets onKaggle lack some
features in the provided labeled dataset. To keep consistent
with the protocol of mlbench, we use all labeled dataset for
training and submit output model to predict unlabeled testset
on Kaggle.

(Comparingmlbenchandautomlbench)Weobserve
some interesting points by comparing mlbench and
automlbench. Back in 2017, for Azure in mlbench,
we run every combination of hyper-parameter for each
model to tune the optimal configuration. And for Amazon
in mlbench, we run logistic regression using its default
hyper-parameter tuningmechanism. Today, all AutoMLplat-
forms in automlbench have a much larger search space
because there are more operators (e.g., preprocessing, fea-
ture transformation, model selection, etc.) and each operator
has several hyper-parameters to tune.

Looking at the accuracy in Fig. 45 and runtime in Fig. 46,
we see that

1. A single logistic regression model and automatic hyper-
parameter tuning (Amazon in mlbench) is a strong
baseline—in fact, it is competitive to many AutoML sys-
tems being offered today, at least on these three datasets.

2. A systematic search over a larger search space of alter-
native models (Azure in mlbench) does pay off sig-
nificantly. In comparison, today’s AutoML systems are

123

J. Jiang et al.

Fig. 44 Runtime (cost) versus loss of AutoML platforms on regression
datasets

faster, but often cannot reach the quality of such a sys-
tematic search.

(Comparing with Kaggle Winner) When placed in the
Kaggle leaderboard, we observe that all platforms cannot
beat data science experts. This is unsurprising since the Kag-
gle winners designed specific-purpose feature engineering
techniques for each individual dataset, which is beyond the
scope and capability of these platforms. Nevertheless, for
users who are non-experts on ML, these platforms can save
tremendous time with their easy-to-use interfaces and rich
libraries and produce moderately good models.

3.7 Comparing different platforms

We observe that different platforms make different design
decisions, and none of them dominates other platforms.
Instead, they outperform others in different regimes. Specif-
ically, we observed five representative regimes:

1. Regime 1 (7 Datasets, D-PIS-r, D-AEA-r, D-SCS-r,
D-GMC-r, D-EG-r, D-HQC-r, D-SMR-r), in which
datasets are more “under-determined” (smaller in terms
of # rows) and testset is of the same distribution as the
training set (generated via random holdout).

2. Regime 2 (3 Datasets, D-PBV-r, D-KDD-r, Higgs), in
which datasets are more “over-determined” (larger in
terms of # rows) and testset is of the same distribution as
the training set (generated via random holdout).

3. Regime 3 (All Datasets), in which the testset is from
Kaggle’s private leaderboard. This private testset might
come from a different distribution as the training set.

4. Regime 4 (Multimedia Dataset), in which datasets are
collected from multimedia sources (e.g., images).

5. Regime 5 (Sparse Dataset), in which datasets are high-
dimensional but sparse (i.e., with a small fraction of
nonzero features).

Considering the data statistics andmachine learning tasks,
our observations are as follows:

1. Feature selection and data sampling (Oracle Data-
Science) are powerful techniques to improve the resource
efficiency, whereas in Regime 1 they can achieve compa-
rable and sometimes better quality as other platforms.

2. Deep learning-basedmodels (Google Cloud) are pow-
erful in dealing with complex datasets and multimedia
datasets and can outperform other systems significantly,
in terms of quality, in Regime 2 and Regime 4. Of course,
these techniques can be slower and have the risk of over-
fitting to smaller datasets.

3. Platforms without aggressive feature selection and data
sampling (Amazon AWS andMicrosoft Azure) can
be more robust when given a new testset and thus outper-
form other platforms in Regime 3.

4. The existing platforms cannot work on high-dimensional
and sparse datasets in Regime 5, which incur both expen-
sive computation and overwhelming storage cost.

3.8 Future directions

According to the previous results and discussions, the exist-
ing machine learning clouds all reveal shortcomings and
limitations. To tackle these challenges, there are several
possible solutions—(1) choose different categories of ML
models considering the data characteristics (e.g., data type,
data size, sparsity); (2) consolidate the advantages (e.g.,
feature selection, sampling, model ensemble) mentioned in
the observations into a single system; (3) explicitly eval-
uate the model generalization by a stand-alone validation
dataset fromadifferent data distribution; (4) improve the sup-
port for high-dimensional and sparse datasets via techniques
such as sparsity-aware optimization algorithm; (5) acceler-
ate the hyper-parameter tuning process via techniques such
as search tree construction [33], search space reduction [40],
and successive halving [31]; and (6) provide easy-to-use pro-
gramming interfaces for users to deploy their own AutoML
techniques and extend the ecosystem of machine learning
clouds.

4 Related work

Machine learning benchmarking There has been research
on benchmarking different machine learning algorithms and
comparing their relative quality on various datasets [8, 10,
16, 32, 47, 51]. Most of these efforts focus on benchmarking
machine learning algorithms on “raw datasets”withoutmuch
feature engineering, a key process for high-quality machine
learning applications [14]. Our work is different in the sense
that it consists of best-effort baselines for feature engineering
and model selection. Another difference between our study
and previous work is that, instead of benchmarking all exist-

123

How good are machine learning clouds? Benchmarking two snapshots over 5 years

Fig. 45 Comparing mlbench and automlbench. We use these raw
datasets from Kaggle without any additional modification. NA means
the system cannot run the dataset. The numbers are the scores given by

Kaggle and the rankings on the private leader board after we submit the
predictions. The results for public leader board are similar

Fig. 46 Runtime versus Kaggle score of mlbench and
automlbench

ing machine learning models, we focus on those provided
by existing machine learning clouds and try to understand
whether the current abstraction is enough to support users of
these clouds.

Cloud benchmarking Benchmarking cloud services and
more traditional relational databases have been an active
research topic for decades. Famous benchmarks include the
Wisconsin benchmark [13] and TPC benchmarks.6 There
are also benchmarks targeting clouds for different purposes,
especially for data processing and management [11, 28, 35].
Our work is motivated by the success and impact of these
benchmarks, and we hope to establish the first benchmark
for declarative machine learning on the cloud.

AutoML techniquesAutomaticmachine learning (AutoML)
has a rich history in the previous decade [2, 24, 30, 46]. The
existing works use diverse approaches to solve the optimiza-
tion problems in AutoML, including Bayesian Optimization
[9, 27, 29, 45, 46], recommendation-based methods [20, 36,
44] and genetic evolutionary [38]. A common problem of

6 http://www.tpc.org/information/benchmarks.asp.

these methods is the cold-start problem, that is, how to pre-
dict the performance of a configuration on a new dataset.
Meta-learning techniques are designed to tackle this cold-
start issue [17, 21, 42, 49]. A range of AutoML toolkits
have been developed by researchers [7], e.g., Auto-sklearn
[18], auto_ml [39], Autogluon [15], TPOT [37] and H2O
[30].Unfortunately, the currentmachine learning clouds have
not provided functionalities to deploy user-defined AutoML
techniques in the clouds.

AutoML platforms Different from the above AutoML
toolkits which mostly run on a single machine, several com-
mercial AutoML products offered by major cloud providers
enable users deploy end-to-end AutoML workloads in the
cloud. Typical AutoML platforms include Google Cloud
AutoML [22], Microsoft Azure AutoML [6], Amazon Sage-
Maker Autopilot [4], Oracle AutoML [48] and IBM AutoAI
[5]. Although all of them provision automatic training ser-
vices, they automate different phases in machine learning
pipeline, e.g., data cleaning, data sampling, feature selection,
model selection and hyper-parameter tuning. Note that we do
not choose IBMAutoAI since the processing of IBMAutoAI
is similar to Amazon AWS, including feature preprocessing,
model selection and hyper-parameter tuning. Therefore, we
choose Amazon AWS as the representative platform.

5 Conclusion

In this paper, we presented an empirical study on the per-
formance of state-of-the-art declarative machine learning
clouds.

We first conducted our experiments based on mlbench, a
dataset we constructed by collectingwinning code fromKag-
gle competitions. We compared the performance of machine
learning clouds with the Kaggle winning code we harvested.
Our results show that there is an obvious gap between top-
performing models on the cloud and Kaggle winning code in
terms of low-quality tolerance regimes they canmeet, though

123

http://www.tpc.org/information/benchmarks.asp

J. Jiang et al.

machine learning clouds do perform reasonably well when
increasing the level of quality tolerance regimes. Detailed
investigation further reveals that lack of adopting ensem-
ble methods is perhaps one reason for the performance gap.
A promising direction for improving the performance of
machine learning clouds is therefore to incorporate more
well-tuned models that leverage ensemble methods.

We next conducted another benchmark automlbench
to compare AutoML services of machine learning clouds.
We run different kinds of datasets on both classification
and regression tasks. Through extensive evaluation, we
understand the importance of different AutoML techniques
since these machine learning clouds choose diverse AutoML
scopes. We also identify the limitations of current clouds,
e.g., feature engineering, by comparing Kaggle solutions.

(Limitations of this work) The machine learning clouds
are evolving over time. Therefore, our benchmark is only an
initial attempt to investigate the merits and shortcomings of
machine learning clouds. We will keep updating our bench-
mark with the rise of new platforms and offerings.

Acknowledgements This work was sponsored by National Science
and Technology Major Project (No. 2022ZD0116315) and Key R&D
Program of Hubei Province (No. 2023BAB077). CZ and the DS3Lab
gratefully acknowledge the support from the Swiss National Sci-
ence Foundation (Project Number 200021_184628), Innosuisse/SNF
BRIDGE Discovery (Project Number 40B2-0_187132), European
Union Horizon 2020 Research and Innovation Programme (DAPHNE,
957407), Botnar Research Centre for Child Health, Swiss Data Sci-
ence Center, Alibaba, Cisco, eBay, Google Focused Research Awards,
Microsoft Swiss Joint Research Center, Oracle Labs, Swisscom, Zurich
Insurance, Chinese Scholarship Council and the Department of Com-
puter Science at ETH Zurich.

References

1. https://archive.ics.uci.edu/ml/datasets/
2. Aguilar Melgar, L., et al.: Ease.ml: a lifecycle management system

for machine learning. In: 11th Annual Conference on Innovative
Data Systems Research (CIDR 2021) (virtual). CIDR (2021)

3. Amazon: Amazon cloud. http://docs.aws.amazon.com/machine-
learning/latest/dg/learning-algorithm.html (2021)

4. Amazon: Amazon sagemaker autopilot. https://aws.amazon.com/
sagemaker/autopilot/ (2021)

5. Auto, I.: Ibm autoai. https://www.ibm.com/cloud/watson-studio/
autoai (2021)

6. Azure, M.: Azure automated machine learning. https://aws.
amazon.com/sagemaker/autopilot/ (2021)

7. Balaji, A., Allen, A.: Benchmarking automatic machine learning
frameworks. arXiv:1808.06492 (2018)

8. Bauer, E., Kohavi, R.: An empirical comparison of voting classi-
fication algorithms: bagging, boosting, and variants. Mach Learn
36, 105–139 (1998)

9. Bergstra, J., et al.: Hyperopt: a python library for optimizing the
hyperparameters of machine learning algorithms. In: Proceedings
of the 12th Python in science conference, vol. 13, p. 20. Citeseer
(2013)

10. Caruana, R., et al.: An empirical comparison of supervised learning
algorithms. In: ICML (2006)

11. Cooper, B.F., et al.: Benchmarking cloud serving systems with
YCSB. In: SoCC (2010)

12. Cortes, C., Vapnik, V.: Support-vector networks. Mach Learn 20,
273–297 (1995)

13. DeWitt, D.J.: The Wisconsin benchmark: past, present, and future.
In: The Benchmark Handbook for Database and Transaction Sys-
tems (1993)

14. Domingos, P.: A few useful things to know aboutmachine learning.
In: CACM (2012)

15. Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li,
M., Smola, A.: Autogluon-tabular: robust and accurate automl for
structured data. arXiv:2003.06505 (2020)

16. Fernández-Delgado, M., et al.: Do we need hundreds of classifiers
to solve real world classification problems. In: JMLR (2014)

17. Feurer, M., et al.: Initializing Bayesian hyperparameter optimiza-
tion via meta-learning. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 29 (2015)

18. Feurer, M., et al.: Auto-sklearn: efficient and robust automated
machine learning. In: Automated Machine Learning, pp. 113–134
(2019)

19. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of
on-line learning and an application to boosting. In: JCSS (1997)

20. Fusi, N., et al.: Probabilistic matrix factorization for automated
machine learning. Adv. Neural Inf. Process. Syst. 31, 3348–3357
(2018)

21. Gomes, T.A., et al.: Combining meta-learning and search tech-
niques to select parameters for support vector machines. Neuro-
computing 75(1), 3–13 (2012)

22. Google: Google cloud automl. https://cloud.google.com/automl
(2021)

23. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd
edn. Prentice Hall PTR, Hoboken (1998)

24. He, X., et al.: Automl: a survey of the state-of-the-art. Knowl.-
Based Syst. 212, 106622 (2021)

25. Herbrich, R., et al.: Bayes point machines. In: JMLR (2001)
26. Ho, T.K.: Random decision forests. In: ICDAR (1995)
27. Hutter, F., et al.: Sequential model-based optimization for general

algorithm configuration. In: International Conference on Learning
and Intelligent Optimization, pp. 507–523. Springer (2011)

28. Jiang, J., Gan, S., Liu, Y., Wang, F., Alonso, G., Klimovic, A.,
Singla, A., Wu, W., Zhang, C.: Towards demystifying serverless
machine learning training. In: Proceedings of the 2021 Interna-
tional Conference on Management of Data, pp. 857–871 (2021)

29. Kotthoff, L., et al.: Auto-weka: automatic model selection and
hyperparameter optimization in weka. In: Automated Machine
Learning, pp. 81–95. Springer, Cham (2019)

30. LeDell, E., Poirier, S.: H2o automl: scalable automatic machine
learning. In: Proceedings of the AutoML Workshop at ICML
(2020)

31. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar,
A.: Hyperband: a novel bandit-based approach to hyperparameter
optimization. J. Mach. Learn. Res. 18(1), 6765–6816 (2017)

32. Li, P., et al.: Cleanml: a study for evaluating the impact of data
cleaning on ml classification tasks. In: 36th IEEE International
Conference on Data Engineering (ICDE 2020) (virtual) (2021)

33. Li,Y., Shen,Y., Zhang,W.,Zhang,C.,Cui,B.:Volcanoml: speeding
up end-to-end automl via scalable search space decomposition.
VLDB J. 32(2), 389–413 (2023)

34. Liu, Y., et al.: MLbench: benchmarking machine learning services
against human experts. Proc. VLDB Endow. 11(10), 1220–1232
(2018)

35. Luo, C., et al.: Cloudrank-d: benchmarking and ranking cloud com-
puting systems for data processing applications. Front. Comput.
Sci. 6, 347–362 (2012)

36. Mısır, M., et al.: Alors: an algorithm recommender system. Artif.
Intell. 244, 291–314 (2017)

123

https://archive.ics.uci.edu/ml/datasets/
http://docs.aws.amazon.com/machine-learning/latest/dg/learning-algorithm.html
http://docs.aws.amazon.com/machine-learning/latest/dg/learning-algorithm.html
https://aws.amazon.com/sagemaker/autopilot/
https://aws.amazon.com/sagemaker/autopilot/
https://www.ibm.com/cloud/watson-studio/autoai
https://www.ibm.com/cloud/watson-studio/autoai
https://aws.amazon.com/sagemaker/autopilot/
https://aws.amazon.com/sagemaker/autopilot/
http://arxiv.org/abs/1808.06492
http://arxiv.org/abs/2003.06505
https://cloud.google.com/automl

How good are machine learning clouds? Benchmarking two snapshots over 5 years

37. Olson, R.S., Moore, J.H.: Tpot: a tree-based pipeline optimization
tool for automating machine learning. In: Workshop on Automatic
Machine Learning, pp. 66–74. PMLR (2016)

38. Olson, R.S., et al.: Evaluation of a tree-based pipeline optimization
tool for automating data science. In: Proceedings of theGenetic and
Evolutionary Computation Conference 2016, pp. 485–492 (2016)

39. Parry, P., et al.: auto_ml. https://github.com/ClimbsRocks/auto_ml
(2007)

40. Perrone, V., Shen, H., Seeger, M.W., Archambeau, C., Jenatton, R.:
Learning search spaces for Bayesian optimization: another view of
hyperparameter transfer learning. Adv. Neural Inf. Process. Syst.
32 (2019)

41. Quinlan, J.R.: Induction of decision trees. Mach. Learn. (1986)
42. Reif,M., et al.:Meta-learning for evolutionary parameter optimiza-

tion of classifiers. Mach. Learn. 87(3), 357–380 (2012)
43. Shotton, J., et al.: Decision jungles: compact and rich models for

classification. In: NIPS (2013)
44. Sun-Hosoya, L., et al.: Activmetal: algorithm recommendation

with active meta learning. In: IAL 2018 workshop, ECML PKDD
(2018)

45. Thornton, C., et al.: Auto-weka: combined selection and hyperpa-
rameter optimization of classification algorithms. In: Proceedings
of the 19th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 847–855 (2013)

46. Wong, C., et al.: Transfer learning with neural automl. In: Proceed-
ings of the 32nd International Conference on Neural Information
Processing Systems, pp. 8366–8375 (2018)

47. Wu, Z., Ramsundar, B., Feinberg, E.N., Gomes, J., Geniesse, C.,
Pappu, A.S., Leswing, K., Pande, V.: Moleculenet: a benchmark
for molecular machine learning. Chem. Sci. 9(2), 513–530 (2018)

48. Yakovlev, A., et al.: Oracle automl: a fast and predictive automl
pipeline. Proc. VLDB Endow. 13(12), 3166–3180 (2020)

49. Yogatama, D., Mann, G.: Efficient transfer learning method for
automatic hyperparameter tuning. In: Artificial Intelligence and
Statistics, pp. 1077–1085. PMLR (2014)

50. Zhang, C., et al.: An overreaction to the broken machine learning
abstraction: the ease.ml vision. In: HILDA (2017)

51. Zöller, M.A., Huber, M.F.: Benchmark and survey of automated
machine learning frameworks. J. Artif. Intell. Res. 70, 409–472
(2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://github.com/ClimbsRocks/auto_ml

	How good are machine learning clouds? Benchmarking two snapshots over 5years
	Abstract
	1 Introduction
	1.1 Benchmark of model training services
	1.2 Benchmark of AutoML services

	2 The mlbench benchmark
	2.1 Methodology
	2.1.1 Quality metric
	2.1.2 Limitations and discussion

	2.2 Kaggle competitions and datasets
	2.2.1 Kaggle competitions
	2.2.2 Overview
	2.2.3 Dataset details

	2.3 Experimental settings
	2.3.1 Existing cloud API
	2.3.2 Machine learning models
	2.3.3 Hyper-parameter tuning

	2.4 Results on winning features
	2.4.1 Capability and universality
	2.4.2 Breakdown and analysis
	2.4.3 Model selection
	2.4.4 Linear versus nonlinear models
	2.4.5 Training time versus prediction quality
	2.4.6 Quality tolerance regime
	2.4.7 Summary and discussion

	2.5 Results on all datasets

	3 The automlbench benchmark
	3.1 Results on classification datasets
	3.2 Results on noisy dataset
	3.3 Results on small image dataset
	3.4 Results on large-scale dataset
	3.5 Results on regression dataset
	3.6 Comparing automlbench, mlbench and Kaggle winners
	3.7 Comparing different platforms
	3.8 Future directions

	4 Related work
	5 Conclusion
	Acknowledgements
	References

