The VLDB Journal
https://doi.org/10.1007/s00778-023-00813-0

REGULAR PAPER O‘)

Check for
updates

A systematic evaluation of machine learning on serverless
infrastructure

Jiawei Jiang'2® - Shaoduo Gan* - Bo Du3 - Gustavo Alonso* - Ana Klimovic* - Ankit Singla® - Wentao Wu® .
Sheng Wang3 - Ce Zhang*

Received: 25 May 2022 / Revised: 1 August 2023 / Accepted: 17 August 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

Recently, the serverless paradigm of computing has inspired research on its applicability to data-intensive tasks such as ETL,
database query processing, and machine learning (ML) model training. Recent efforts have proposed multiple systems for
training large-scale ML models in a distributed manner on top of serverless infrastructures (e.g., AWS Lambda). Yet, there is
so far no consensus on the design space for such systems when compared with systems built on top of classical “serverful”
infrastructures. Indeed, a variety of factors could impact the performance of training ML models in a distributed environment,
such as the optimization algorithm used and the synchronization protocol followed by parallel executors, which must be
carefully considered when designing serverless ML systems. To clarify contradictory observations from previous work, in
this paper we present a systematic comparative study of serverless and serverful systems for distributed ML training. We
present a design space that covers design choices made by previous systems on aspects such as optimization algorithms and
synchronization protocols. We then implement a platform, LAMBDAML, that enables a fair comparison between serverless and
serverful systems by navigating the aforementioned design space. We further improve LAMBDAML toward automatic support
by designing a hyper-parameter tuning framework that leverages the ability of serverless infrastructure. We present empirical
evaluation results using LAMBDAML on both single training jobs and multi-tenant workloads. Our results reveal that there is
no “one size fits all” serverless solution given the current state of the art—one must choose different designs for different ML
workloads. We also develop an analytic model based on the empirical observations to capture the cost/performance tradeoffs
that one has to consider when deciding between serverless and serverful designs for distributed ML training.

Keywords Serverless computing - Distributed machine learning

Shaoduo Gan and Jiawei Jiang have contributed equally. Sheng Wang
swangcs @whu.edu.cn
B Bo Du Ce Zhang
dubo@whu.edu.cn ce.zhang @inf.ethz.ch
Jiawei Jiang 1 . .
jiawei.jiang@whu.edu.cn 2(1:1}'1001 of Computer Science, Wuhan University, Wuhan,
ina
Shaoduo Gan 5)
sgan@inf.ethz.ch OceanBase, Ant Group, Hangzhou, China

Gustavo Alonso
alonso@inf.ethz.ch

Ana Klimovic
ana.klimovic @inf.ethz.ch

Ankit Singla
ankit.singla@inf.ethz.ch

Wentao Wu
wentao.wu@microsoft.com

Published online: 20 September 2023

School of Computer Science, National Engineering Research
Center for Multimedia Software, Institute of Artificial
Intelligence, Hubei Key Laboratory of Multimedia and
Network Communication Engineering, Wuhan University,
‘Wuhan, China

Department of Computer Science, ETH Ziirich, Zurich,
Switzerland

Google, Zurich, Switzerland

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00813-0&domain=pdf
http://orcid.org/0000-0003-0051-0046

J. Jiang et al.

1 Introduction

Recently, serverless computing has emerged as a new
paradigm [13, 58] offered by major cloud platforms, such
as AWS Lambda, Azure Functions, and Google Cloud Func-
tions. Serverless computing is favored by many applications
(e.g., event processing, API composition, API aggregation,
data flow control, etc. [5]) as it lifts the burden of provi-
sioning and managing cloud computation resources (e.g.,
with auto-scaling) from application developers. Additionally,
serverless computing offers a novel “pay by usage” pricing
model and can be more cost-effective compared to tradi-
tional “serverful” cloud computing that charges users based
on the amount of computation resources being reserved. With
serverless, the user specifies a function that he or she hopes
to execute and is only charged for the duration of the function
execution. The users can also easily scale up the computation
by specifying the number of such functions that are executed
concurrently. In this paper, we use the term FaaS (function
as a service) to denote the serverless infrastructure and use
the term IaaS (infrastructure as a service) to denote the VM-
based infrastructure.

(Data-intensive Workloads) Although FaaS is initially
developed for web microservices and IoT applications, there
is a trend of exploring FaaS in data-intensive applications,
which stimulates intensive interests in the data management
community [3, 24, 38, 56, 66]. Previous work has shown that
adopting a serverless infrastructure for certain types of work-
loads can significantly lower the cost. Example workloads
range from ETL [20] to infrequent analytical queries over
cold data [49, 53]. These data management workloads benefit
from serverless computing by taking advantage of elastic-
ity, pay per use, lower set-up overhead and faster start-up.
Although the full potential and impact of serverless infras-
tructure on data management systems remain unclear, there
are data management workloads for which such an infras-
tructure seem to be a great fit.

(FaaS-based ML Training) Modern data management
systems are increasingly tightly integrated with advanced
analytics such as data mining and machine learning (ML).
Focusing on performance and scalability, the database com-
munity has been one of the driving forces behind recent
advancement of distributed machine learning [9, 18, 27, 45,
60, 70].

Inspired by the emerging technological trends in cloud
computing and machine learning, in this paper we focus on
their intersections by enabling distributed ML training on
top of serverless computing. While FaaS is a natural choice
for ML inference [28], it is unclear whether FaaS can also
be beneficial for ML training. Our goal in this work is to

6 Redmond, Microsoft Research, Washington, USA

@ Springer

understand the system tradeoff of supporting distributed ML
training with serverless infrastructures. Specifically, we are
interested in the following question:

When can a serverless infrastructure (FaaS) outper-
forma VM-based, “serverful” infrastructure (laaS) for
distributed ML training?

(The Current Landscape) Existing work depicts a com-
plex picture of the relative performance of IaaS and FaaS
for data processing (including ML training). On one hand,
Hellerstein et al. [23] show 21 x to 127 x performance gap,
with FaaS lagging behind IaaS because of the overhead of
dataloading and the limited computation power. On the other
hand, Fonseca et al. [12] in their CIRRUS system, Gupta et al.
[22] in their OVERSKETCHED NEWTON algorithm, and Wang
et al. [64] in their SIREN system, depict a more promising
picture in which FaaS is 2x to 100x faster than IaaS on
a range of workloads. Despite these early explorations, it
remains challenging for a practitioner to reach a firm con-
clusion. In many of these systems, FaaS and [aaS are often
not put onto the same ground for comparison. (1) The TaaS
implementation could have used a better algorithm (i.e., the
collection of training algorithms that TaaS considers should
be a superset of those FaaS considers since it is more flexible
in communication) and could have used a stronger system
implementation (i.e., IaaS should take advantage of the lat-
est advances in distributed learning); (2) The existing FaaS
implementations could also be further optimized regarding
the communication mechanism (e.g., a better communica-
tion pattern and synchronization protocol) and optimization
algorithm (the one that achieves better convergence perfor-
mance). Moreover, similar to the literature comparing [aaS
and FaaS for other non-ML workloads [49, 53, 55], we also
find that, for ML, there is a delicate system tradeoff in which
FaaS only outperforms IaaS in specific regimes. A systematic
depiction of the tradeoff space in FaaS ML training, with an
analytical model, is largely lacking from existing literature
of ML training.

Adding to this picture is the potential to explore more
thoroughly the design decisions of an FaaS-based training
system. For example, in CIRRUS, one design decision that
the authors made is to have a parameter server hosted on
an m5 . large virtual machine. This type of hybrid design
definitely has its merits, but it raises the question of how
far can a pure FaaS design go? As we will see, for some
workloads (e.g., communication-efficient and bursty) a pure
FaaS design can also be competitive due to its flexibility,
autoscaling, fast start-up, and pay by usage.

(Overview and Structure of Our Study) We conduct an
extensive experimental study inspired by the current land-
scape of FaaS-based distributed ML training. Specifically,
we

A systematic evaluation of machine learning on serverless infrastructure

systematically explore both the algorithm choice and
system design for FaaS ML training and depict the
tradeoff over a diverse range of models, training work-
loads, and infrastructure choices.

In addition to the depiction of this empirical tradeoff using
today’s infrastructure, we further

develop an analytical model that characterizes the
tradeoff between FaaS and laaS-based training, and
use it to speculate the performance of potential config-
urations used by future systems.

In our study, we have considered (1) a diverse set of
models (both simple and more complex deep models), (2)
large-scale datasets (> 30-100GB), (3) diverse workloads
(both single training workload and multi-tenant workloads),
(4) hyper-parameter tuning capabilities, and (5) diverse
IaaS infrastructures (e.g., different CPU VMs and GPU VMs
for deep learning). The goal of this work is not to champion
one platform over the other, but to systematically depict the
tradeoff to facilitate future research on both. We further orga-
nize our study into the following three parts:

Part 1—Optimizing ML Training Over FaaS Infras-
tructure. To fairly conduct our study, we need to optimize
the performances of both FaaS and laaS-based implementa-
tions. As laaS-based training has been studied intensively,
we simply take advantage of these advancements and pick
a collection of state-of-the-art systems. Here, we focus on
optimizing an FaaS-based system. Specifically, we apply
popular, existing techniques in ML systems to the FaaS sce-
nario. Although none of these techniques is new, our work
is the first to put them together and analyze their tradeoff in
the context of serverless computing. As we will see, choos-
ing appropriate techniques often allows us to significantly
outperform the design choices in previous work [12, 64],
sometimes by orders of magnitude. Although the primary
goal of this paper is not to optimize FaaS implementations,
such optimizations are prerequisites for a fair comparison
between FaaS and IaaS ML systems. Consolidating a large
design space of existing techniques, we implement LAMB-
DAML, an FaaS-based ML training platform (Sect.4). We
study the above design space using LAMBDAML and observe
significant improvement by choosing a different point in the
design space. We further empower LAMBDAML with a hyper-
parameter tuning module that can effectively leverage the
auto-scaling nature of FaaS.

Part 2—FaaS versus IaaS ML on Single Training Job.
Given a well-optimized implementation on top of an FaaS
infrastructure, we are able to depict a precise picture of the
tradeoff between FaaS and IaaS for ML training via empirical
evaluation and analytical modeling. When there is a single
training job, the principle that governs our insights can be
summarized by an analytical model developed in Sect. 6.3

for FaaS and TaaS. With all the optimizations we described
(Part 1), we observe varying tradeoffs for different models.

Part 3—FaaS versus IaaS ML on Multiple Training
Jobs. We further explore the scenarios in which the system
needs to serve multiple independent training jobs from differ-
ent users. We consider different deployment scenarios (e.g.,
both on-demand and reserved resources), and then study the
tradeoff between On-Demand IaaS, Reserved IaaS, and FaaS
solutions. Some of these comparisons can be extrapolated
from the single job comparison, while others do reveal new
insights. The tradeoff is governed by two dimensions of the
workload—the number of concurrent requests and the fre-
quency of the incoming requests.

(Takeaway messages) We observe diverse insights from
the empirical results. For single training jobs, FaaS only
works for short-running and communication-efficient scenar-
ios; when it comes to communication-intensive algorithms,
an FaaS implementation is significantly slower than an
laaS implementation. For multi-tenant workloads, FaaS is
superior to laaS only when the workload is “bursty,” short-
running, and communication-efficient; otherwise, IaaS is
better.

2 Related work
2.1 Distributed ML

Distributed machine learning is a category of machine learn-
ing tasks that scale the training of ML model to a cluster of
machines. The parallel paradigm adopted by distributed ML
includes data parallelism [47, 52], model parallelism [2, 29],
and hybrid parallelism [32, 51].

Data parallelism is perhaps the most common strategy
used by distributed ML systems, which partitions and dis-
tributes data evenly across workers. Each worker executes the
training algorithm over its local partition and synchronizes
with other workers from time to time. A typical implemen-
tation of data parallelism is parameter server [16, 25, 29,
42]. Another popular implementation is message passing
interface (MPI) [21], e.g., the A11Reduce MPI primitive
leveraged by XGBoost [15], PyTorch [43], etc. [39]. We have
also used data parallelism to implement LAMBDAML. Other
research topics in distributed ML include compression [31,
69], decentralization [62, 63], synchronization [14, 26, 65],
straggler [57, 61], data partition [1, 35], etc.

2.1.1 Distributed optimization
Different ML models rely on different optimization algo-
rithms. Most of these optimization algorithms are iterative.

In each iteration, the training procedure would typically scan
the training data, compute necessary quantities (e.g., gradi-

@ Springer

J. Jiang et al.

ents), and update the model. When a single machine does not
have the computation power or storage capacity (e.g., mem-
ory) to efficiently run an ML training job, one has to deploy
and execute the job across multiple machines. Training ML
models in a distributed setting is more complicated, due to
the extra complexity of distributed computation as well as
coordination of the communication between executors. Lots
of distributed optimization algorithms have been proposed.
Some of them are straightforward extensions of their single-
node counterparts (e.g., k-means), while the others require
more sophisticated adaptations dedicated to distributed exe-
cution environments (e.g., parallelized SGD [72], distributed
ADMM [10]).

(Communication Mechanism) One key differentiator
in the design and implementation of distributed optimiza-
tion algorithms is the communication mechanism employed,
including communication channel, communication pattern,
and synchronization protocol. For communication channel,
one can either rely on pure message passing between execu-
tors, or use a certain storage medium, such as a disk-based
file system [64] or an in-memory key-value store [12, 30],
to provide a central access point for the shareable global
states. A number of collective communication patterns can be
used for data exchange between executors, such as Gather,
AllGather, Al11Reduce, and ScatterReduce. The
iterative nature of the optimization algorithms introduces
synchronizations between executors at certain boundary
points. Two common protocols used by existing systems are
bulk synchronous parallel (BSP) [47, 72] and asynchronous
parallel (ASP) [57,71].

2.2 Serverless data processing

Inspired by the increasing popularity of serverless comput-
ing, recently there have been quite a few studies devoted
to leveraging these serverless platforms for large-scale data
processing. For example, Locus [55] explores the trade-off
of using fast and slow storage mediums when shuffling data
under serverless architectures. Numpywren [59] is a linear
algebra library built on top of a serverless architecture to
achieve elasticity. Lambada [49] designs an efficient invo-
cation approach for TB-scale data analytics. Starling [53]
proposes a query execution engine for data analytics built on
cloud function services. Jonas et al. [33] discuss the attrac-
tiveness and the limitation of current serverless computing
platforms, and forecast the future directions in terms of sys-
tem and networking. Moneyball [54] studies auto-scaling
problem in serverless databases. Polardb [11] proposes a
cloud native database for data centers.

(Serverless ML) Due to the elasticity of serverless
computing, building ML systems on top of serverless infras-
tructures has emerged as a new research area. Since ML
model inference is a straightforward use case of serverless

@ Springer

computing [8, 28, 68], the focus of recent research effort
has been on ML model training. For instance, Cirrus [12]
is a serverless framework that supports end-to-end training
of linear models. It utilizes a VM-based parameter server as
storage service. In [19], the authors study training neural net-
works using AWS Lambda, and study different aggregation
structures. SIREN [64] proposes an asynchronous distributed
neural network training framework based on AWS Lambda,
using S3 to store training data and a shared model. Hellerstein
etal. [23] show 21 x to 127 x performance gap on the task of
prediction serving, with FaaS lagging behind [aaS because
of the overhead of data loading and the limited computation
power. On the other hand, Fonseca et al. [12] in their Cirrus
system, Gupta et al. [22] in their OverSketched Newton algo-
rithm, and Wang et al. [64] in their SIREN system, depict a
more promising picture in which FaaS is 2x to 100x faster
than IaaS on a range of workloads. Despite these early explo-
rations, it remains challenging for a practitioner to reach a
firm conclusion about the relative performance of FaaS and
TaaS for ML Training.

3 Preliminaries

(Data and Model) A training dataset D consists of n data
examples that are i.i.d. samples generated by the underlying
data distribution D. Let D = {(x; € R", y; € R)}Y |, where
X; represents the feature vector and y; represents the label
of the i™ data example. The goal of ML training is to find
an ML model w that minimizes a loss function f over the
training dataset D: arg miny, % > f X, yi,w).

(IaaS) In IaaS, users have to build a cluster by renting
VMs or reserve a cluster with predetermined configuration
parameters. As aresult, users pay bills based on the computa-
tion resources that have been reserved, regardless of whether
these resources are in use or not. Moreover, users have to
manage the resources by themselves—there is no elasticity
or auto-scaling if the reserved computation resources turn out
to be insufficient, even for just a short moment (e.g., during
the peak of a periodic or seasonal workload). Therefore, to
tolerate such uncertainties, users tend to overprovisioning by
reserving more computation resources than actually needed.

(FaaS) The move toward FaaS infrastructure lifts the
burden of managing computation resources from users.
Resource allocation is on-demand in Faas, and users are only
charged by their actual resource usages. These features of
FaaS are very attractive from the user’s point of view. From
the system-centric view, FaaS is potentially beneficial for
building ML systems—(1) FaaS saves the efforts spent on
system management for developers, (2) FaaS-based ML sys-
tem can be easily integrated with other cloud services (e.g.,
storage, database, logging), (3) FaaS can increase the system
throughput and decrease energy consumption through elas-

A systematic evaluation of machine learning on serverless infrastructure

tic resource scheduling. However, current offerings by major
cloud service providers impose certain limitations and/or
constraints that lower some of the values of shifting from IaaS
to FaaS. Current FaaS infrastructures only support stateless
function calls with limited computation resource and dura-
tion. For instance, a function call in AWS Lambda has a
maximal memory budget and a limited lifetime .! Such con-
straints automatically eliminate some simple yet natural ideas
in implementing FaaS-based ML systems. For example, one
cannot just wrap the code of SGD in an AWS Lambda func-
tion and execute it, which would easily run out of memory
or hit the timeout limit on large training data.

4 LAMBDAML

We now conduct a systematic and in-depth study of the ques-
tion: How do we design an ML system using the current
Faas infrastructure? Our methodology is to first explore the
design space of building FaaS-based ML systems and then
propose solutions to address new challenges arisen in each
individual dimension.

4.1 Challenges and solutions

As mentioned in Sect.3, one in general needs to consider
four dimensions when developing distributed ML systems:
(1) the distributed optimization algorithm, (2) the communi-
cation channel, (3) the communication pattern, and (4) the
synchronization protocol. These elements remain valid when
migrating ML systems from laaS to FaaS, although new
challenges arise. One main challenge is that current FaaS
infrastructures do not allow direct communication between
stateless functions. As a result, one has to use a certain stor-
age channel to allow the functions to read/write intermediate
state generated during the iterative training procedure.

Note that, there are other related techniques in distributed
ML, e.g., data loading, data parallelism and model paral-
lelism. In this work, since the major bottleneck of FaaS is
communication, we focus on the above four dimensions and
assume a prevailing setting—the worker loads the training
data from a distributed file system and trains a model in a
data parallelism manner.

4.1.1 Optimization algorithm

(Distributed SGD) Stochastic gradient descent (SGD) is
perhaps the most popular optimization algorithm in today’s
world, partly attributed to the success of deep neural net-
works. We consider two variants when implementing SGD

! https://docs.aws.amazon.com/lambda/latest/dg/ gettingstarted-
limits.html

in a distributed manner: (1) gradient averaging (GA) and (2)
model averaging (MA). In both implementations, we par-
tition the training data evenly and have one executor be in
charge of one partition. Each executor runs mini-batch SGD
independently and in parallel, while sharing and updating the
global ML model at certain synchronization barriers (e.g.,
after one or a couple of iterations). The difference lies in
the way that the global model gets updated. GA updates the
global model in every iteration by harvesting and aggregat-
ing the (updated) gradients from the executors. In contrast,
MA collects and aggregates the local models, instead of the
gradients, from the executors and does not force synchro-
nization at the end of each iteration. That is, executors may
combine the local model updates accumulated in a number
of iterations before synchronizing with others to obtain the
latest consistent view of the global model [70].
(Distributed ADMM) Alternating direction method of
multipliers (ADMM) is another popular distributed optimiza-
tion algorithm proposed by Boyd et al. [10]. ADMM breaks a
large-scale convex optimization problem into several smaller
subproblems, each of which is easier to handle. In a dis-
tributed setting, each executor solves one subproblem (i.e.,
until convergence of the local solution) and then exchanges
local model parameters with other executors to obtain the
latest view of the global model. While this paradigm has a
similar communication pattern as MA, it has been shown that
ADMM can have better convergence guarantees [10].

4.1.2 Communication channel

As we mentioned, it is necessary to have a storage compo-
nent in an FaaS-based ML system to allow stateless functions
to read/write intermediate state information generated dur-
ing the lifecycle of ML training. Often, there are various
options for this storage component, with a broad spectrum of
cost/performance tradeoffs. For example, in Amazon AWS,
one can choose between three alternatives—S3, ElastiCache
for Redis, and ElastiCache for Memcached. S3 is a disk-
based object storage service, whereas Redis and Memcached
are in-memory key-value data stores provided by Ama-
zon ElastiCache. In addition to using external cloud-based
storage services, one may also consider building his/her
own customized storage layer. For instance, Cirrus [12]
implements a parameter server [30] on top of a dedicated
virtual machine (VM) on AWS, which serves as the stor-
age access point of the global model shared by the executors
(implemented using AWS Lambda functions). This design,
however, is not a pure FaaS architecture, as one has to main-
tain the parameter server by itself. We will refer to it as a
hybrid design.

Different choices of the communication channel lead to
different cost/performance tradeoffs. For example, on AWS,
it usually takes some time to start an ElastiCache instance or

@ Springer

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

J. Jiang et al.

Intermediate
State

Merged
State

g ti s

9(Global Mode

VM-based Parameter Server

Train Data Model

[]

i

S3/ElastiCache

Fig.1 Design of FaaS-based communication

a VM, whereas S3 does not incur such a startup delay since it
is an “always-on” service. On the other hand, accessing files
stored in S3 is in general slower but cheaper than accessing
data stored in ElastiCache.

(An FaaS-based Scheme) We now design a commu-
nication scheme using a storage service, such as S3 or
ElastiCache, as the communication channel. As shown in
Fig. 1, the entire communication process contains the follow-
ing steps: (1) Each executor stores its generated intermediate
data as a temporary file in S3 or ElastiCache; (2) The first
executor (i.e., the leader) pulls all temporary files from the
storage service and merges them to a single file; (3) The
leader writes the merged file back to the storage service; (4)
All the other executors (except the leader) read the merged
file from the storage service; (5) All executors refresh their
(local) model with information read from the merged file.

Figure 1 also presents an alternative implementation using
a VM-based parameter server, following the hybrid design
exemplified by Cirrus [12]. In this implementation, (1) each
executor pushes local updates to the parameter server, with
which (2) the parameter server updates the global model.
Afterward, (3) each executor pulls the latest model from the
parameter server.

4.1.3 Communication pattern

To study the impact of communication patterns, we focus on
two popular MPI primitives, AllReduce and
ScatterReduce [70], that have been widely implemented
in distributed ML systems. Here we assume using an external
storage service such as S3 or ElastiCache.

(AllReduce) With A11Reduce, all executors first write
their local updates to the storage. Then the first executor (i.e.,
the leader) reduces/aggregates the local updates and writes
the aggregated updates back to the storage service. Finally,
all the other executors read the aggregated updates back from
the storage service.

@ Springer

(ScatterReduce) When there are too many executors or
a large amount of local updates to be aggregated, the single
leader executor in A11Reduce may become a performance
bottleneck. This is alleviated by using ScatterReduce.
Here, all executors are involved in the reduce/aggregate
phase, each taking care of one partition of the local updates
being aggregated. Specifically, assume that we have n execu-
tors. Each executor divides its local updates into n partitions,
and then writes each partition separately (e.g., as a file) to
the storage service. During the reduce/aggregate phase, the
executori (1 <i < n)collects the ith partitions generated by
all executors and aggregates them. It then writes the aggre-
gated result back to the storage service. Finally, each executor
i pulls aggregated results produced by all other executors to
obtain the entire model.

4.1.4 Synchronization protocol

We focus on two synchronization protocols that have been
adopted by many existing distributed ML systems.

(Synchronous) We design a two-phase synchronous pro-
tocol, which includes a merging and an updating phase. We
leverage an external storage service to implement this in FaaS
architecture.

— Merging phase. All executors first write their local
updates to the storage service. The reducer/aggregator
(e.g., the leader in A11Reduce and essentially every
executor in ScatterReduce) then needs to make sure
that it has aggregated local updates from all other execu-
tors. Otherwise, it should just wait.

— Updating phase. After the aggregator finishes aggregat-
ing all data and stores the aggregated information back
to the storage service, all executors can read the aggre-
gated information to update their local models and then
proceed to the next round of training.

All executors will be synchronized properly using this
two-phase framework. Moreover, one can rely on certain
atomicity guarantees provided by the storage service to
implement these two phases.

(Asynchronous) Following SIREN [64], the implementa-
tion of asynchronous communication is simpler. One replica
of the trained model is stored on the storage service as a global
state. Each executor runs independently—it reads the model
from the storage service, updates the model with training
data, writes the new model back to the storage service—
without caring about the speeds of the other executors.

4.2 Implementation of LAMBDAML

In the following, we present the additional implementation
details of LAMBDAML.

A systematic evaluation of machine learning on serverless infrastructure

LambdaML
()
[R][swm | [kMeans | [MobiteNet |
Model Pool
User
[sep | [Modetaverage | [apmm |
Eg)) Optimizer
s
AWS Web Ul Comm. Primitive Synchronization
} /
@Subm\’t.}ob e .
\ e
— -
4 Worker e
RAHDCE"Q [Training Engine]
esource Worker
l Train Data | I Model |

4 Compute
| 12} States

| [Intermediate of Worker
Serverless State
Instances T‘
o Load | -t Send e Update
Data| _ —~ (3) Stean(e Model
— [.))
1,
mlul=
[‘States |Merged State

Train data
~—

J

AWS S3 Communication Channel

Fig.2 Framework of LAMBDAML

4.2.1 Overview of LAMBDAML

Figure 2 shows the overview framework of LAMBDAML.
The users upload their code and settings to Amazon AWS
Lambda. The platform then allocates serverless resources
and launches workers. We develop a training engine with
PyTorch that handles model training and data communi-
cation. We assume that the user uploads the input dataset
to AWS S3, and the input dataset is partitioned (Lamb-
daML also provides utility tools to automatically partition
the dataset). The worker creates the target model and initial-
izes the model parameters. The training process is as follows:
(1) the responsible training subset is retrieved from AWS S3,
(2) intermediate states (e.g., gradients) are computed using
training data and model parameters, (3) intermediate states
are sent to communication channel, (4) intermediate states
are merged and (5) each worker pulls the merged state and
updates local model parameters accordingly. The above pro-
cess iterates until convergence.

4.2.2 Synchronization implementation

Our proposed synchronous protocol contains a merging
phase and an updating phase.

(Merging Phase) We name the files that store local model
updates using a scheme that includes all essential informa-
tion, such as the training epoch, the training iteration, and
the partition ID. The reducer/aggregator can then request the
list of file names from the storage service (using APIs that

I Workﬂl Worker }_x’triggerl Worker ||_Worker |
— 4

— ~5—
Model Model
Checkpoint Checkpoint

Storage Channel

Fig.3 Invocation structure of Lambda workers

are presumed atomicz), filter out uninteresting ones, and then
count the number of files that it has aggregated. Only if the
number of aggregated files matches the number of workers
should the aggregator proceed. Otherwise, it waits and keeps
polling the storage service until the desired number of files
is reported.

(Updating Phase) We name the merged file that contains
the aggregated model updates in a similar manner, which
consists of the training epoch, the training iteration, and the
partition ID. For any executor that is pending on the merged
file, it can then keep polling the storage service until the
merged file shows up.

4.2.3 Handling limited lifetime

One major limitation of Lambda functions is their (short) life-
time, that is, the execution cannot be longer than 15 min. We
implement a hierarchical invocation mechanism to sched-
ule their executions, as illustrated in Fig. 3. Assume that the
training data has been partitioned and we have one executor
(i.e., a Lambda function) for each partition. We start Lambda
executors with the following steps: (1) a starter Lambda func-
tion is triggered once the training data has been uploaded into
the storage service, e.g., S3; (2) the starter triggers n worker
Lambda functions where n is the number of partitions of the
training data. Each worker is in charge of its partition, which
is associated with metadata such as the path to the partition
file and the ID of the partition/worker. Moreover, (3) a worker
monitors its execution to watch for the 15-minute timeout.
It pauses execution when the timeout is approaching, and
saves a checkpoint to the storage service that includes the
latest local model parameters. (4) It then resumes execution
by triggering its Lambda function with a new worker. (5)
The new worker inherits the same worker ID and thus would
take care of the same training data partition (using model
parameters saved in the checkpoint).

Note that, we establish a starter Lambda to ease the trigger
of distributed training tasks. The user only needs to send the

2 https://docs.aws.amazon.com/AmazonS3/latest/userguide/
Welcome.html#ConsistencyModel.

@ Springer

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html#ConsistencyModel
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html#ConsistencyModel

J. Jiang et al.

Recorder ﬂ m trfge;;r
-
_—t history Tuner Tuner vee
() Worker Worker
—
l l lconfigsll_ _l
P T T T T STttt = 1
: Trial Function I
-l:Jrcl)il Trial Trial l
Job Job | Trial see
feedback y[Job
Trial Trial
Job Job

Fig.4 Hyper-parameter tuning framework

code and settings to Lambda, and the rest is automatically
managed by the starter function.

4.3 Hyper-parameter tuning

In the training process of an ML model, an important, yet
expensive, step is tuning the related hyper-parameters, e.g.,
learning rate, batch size, regularization term, and number
of workers. Since one major merit of serverless computing
is ease-of-use, it is of great value to provide hyperparameter
tuning functionality in LAMBDAML so that ordinary users do
not need to have the tuning knowledge nor spend time on it. To
this end, we implement a module for hyperparameter tuning
inside LAMBDAML. However, the goal of this work is by no
means to provide a complete solution for automatic machine
learning in the serverless infrastructure. We believe, with our
framework, other automatic machine learning techniques can
be integrated in the future.

Regarding prior works, Hyperopt [7], Hyperband [41], and
BOHB [17] are AutoML libraries; HyperSched [44] and Rub-
berBand [48] study resource allocation and job scheduling
in [aaS-based hyperparameter tuning. In contrast, our goal is
to provide AutoML capabilities as a service in a pure FaaS
environment that has autoscaling and pay-by-use advantages.

4.3.1 Framework of tuning module

Figure 4 shows the framework of hyper-parameter tuning.
There are three components—tuner function, trial function,
and recorder.

(Workload estimator) We have implemented an estima-
tor that measures the space cost according to the dataset and
model. Specifically, the estimated space cost is the sum of
the dataset size, the model size, and all the intermediate data
(e.g., forward activation and backward gradient). Conceptu-

@ Springer

ally, storing only input data, model, and the maximum size
of live variables would be sufficient with techniques such as
CPU offload and checkpoint. Our current version is designed
for simplicity and independence of the underlying execution
engine. Based on this estimator, we choose appropriate par-
allelism for each job.

(Tuner function) A tuner worker is launched by the tuner
function to supervise the hyper-parameter tuning process. It
periodically obtains history of hyper-parameters that have
been evaluated, with which new hyper-parameters are gener-
ated. The tuner worker sends requests to the trial function to
trigger training jobs with new configurations. Since the maxi-
mal concurrency of trials is restricted, we infer the number of
currently running trials according to the number of trials ever
submitted and the number of records in the recorder. If the
maximal concurrency is met, the tuner function waits until
there is a free quota. Besides, to resolve the limited lifetime
of AWS Lambda (15min), we leverage our proposed hier-
archical invocation mechanism to overcome this limitation.
Specifically, when the execution time of the tuner worker is
approaching 15 min, the tuner worker triggers the tuner func-
tion, after which the new tuner worker starts running. We call
this mechanism self-trigger.

(Trial function) Each training job is called a trial in
this tuning framework. Once receiving the related hyper-
parameters from the tuner worker, a trial job is launched
and executed accordingly. Each trial job will independently
launch its workers and then conduct training. When the trial
job finishes, the leader worker will send the feedback to the
recorder, including the used hyper-parameters and output
metrics (e.g., model accuracy and runtime).

(Recorder) All the configurations and feedbacks are
stored in a recorder. With the tuning history maintained, the
tuner can perform better suggestions of new trials. In our
implementation of the recorder, we use DynamoDB as the
underlying storage. We store one record for each trial that
contains the values of hyper-parameters, the execution time,
and the quality of the output model.

4.3.2 Tuning approaches

During the tuning process, a critical technique is to generate
new trials. Since each specific hyper-parameter has its range
and possible values, we support different kinds of hyper-
parameters and tuning strategies.

(Hyper-parameter Space) Since different hyper-parameters

can have diverse data types and distributions, we provide var-
ious spaces for hyper-parameters. ContHyper represents
a floating-point numerical hyper-parameter that is contin-
uous within a range. DiscHyper represents a numerical
hyper-parameter that contains discrete values (floating-point
or integer) within arange. CateHyper represents a categor-

A systematic evaluation of machine learning on serverless infrastructure

ical hyper-parameter that contains several mutually exclusive
choices (e.g., the choice of optimizer).
(Tuning Strategy) We provide four strategies — Grid

Search,Random Search,Bayesian Optimization,

and Bandit Algorithm. These methods select hyper-
parameter values in different manners. Grid search generates
a set of trials by enumerating every possible combination of
hyper-parameter values. Random search randomly chooses
each hyper-parameter from possible values. Bayesian opti-
mization is an effective method for optimizing blackbox,
expensive, and potentially noisy functions that do not have
any gradient information. We choose an open-source library,
RoBO [36], in this work. Bandit algorithm formulates hyper-
parameter optimization as a pure-exploration nonstochastic
infinite-armed bandit problem, where a predefined resource
like iterations or samples is allocated to randomly sampled
configurations. We choose Hyperband algorithm that extends
the SuccessiveHalving algorithm [41].

5 Evaluation of LAMBDAML

We evaluate LAMBDAML by comparing the design options
covered in Sect.4.1. We report evaluation results with respect
to each dimension of the design space.

5.1 Experiment settings

(Datasets) Table 1 presents the datasets used in our evalu-
ation. We choose these datasets due to their diverse dataset
type, dataset size and feature dimensionality [4, 40]. In this
section, we focus on the first three datasets to understand the
system behavior, and leave the larger dataset (YFCC100M) to
the next section when we conduct the end-to-end study. Higgs
is adataset for binary classification, produced by using Monte
Carlo simulations. RCV1 is a two-class classification corpus
of manually categorized newswire stories made available by
Reuters [40]. Cifar10 is an image dataset that consists of 60
thousand 32 x 32 images categorized by 10 classes, with 6
thousand images per class. We resize the Cifar10 dataset to
224 x 224 pixel images so that they can be fed into the eval-
uated neural network models.’

(ML Models) We use the following ML models in our
evaluation. Logistic Regression (LR) and Support Vector
Machine (SVM) are linear models for classification that are
trained by mini-batch SGD or ADMM.* MobileNet (MN)

3 Although we did a lot of efforts to run larger image dataset (e.g.,
ImageNet), the performance is extremely slow, since Lambda does not
provide GPUs and limits the maximal memory.

4 We do not include regression models such as linear regression, but
we believe the trade-off space would be the same, since the model
complexity is similar.

Table 1 Datasets used in this work

Dataset Size # Ins # Feat # Class
Cifar10 220 MB 60 K 1K 10
RCV1 1.2 GB 697 K 47K 2
Higgs 8 GB 11M 28

YFCC100M 110 GB 100 M 4K 2

is a neural network model that uses depth-wise separable
convolutions to build lightweight deep neural networks. The
size of each input image is 224 x 224 x 3, and the size of
model parameters is 12MB. ResNet50 (RN) is a neural net-
work model that was the first to introduce identity mapping
and shortcut connection. The size of each input image is
224 x 224 x 3, and the size of model parameters is 89MB.
KMeans (KM) is a clustering model for unsupervised prob-
lems, trained by using expectation maximization (EM).

(Protocols) We choose t2.medium instance for IaaS and
LambdaML-3 G for FaaS since they have the similar memory
size and vCPU cores. We randomly shuffle and split the data
into a training set (90%) and a validation set (10%). The batch
size for training LR over Higgs is 100K, whereas it is 128
for training MN and 32 for training RN over Cifar10. We
tune the learning rate for each ML model in the range from
0.001 to 1.

5.2 Optimization algorithms

Carefully choosing the right algorithm is important in
optimizing FaaS-based system, and the widely adopted
SGD algorithm is not “one-size-fits-all.”

We implemented GA-SGD (i.e., SGD with gradient aver-
aging), MA-SGD (i.e., SGD with model averaging), and
ADMM, using ElastiCache for Memcached as the external
storage service. Figure 5 presents the results for various data
and ML models we tested.

(LR and SVM) When training LR on Higgs using 300
workers, GA-SGD is the slowest because transmitting gra-
dients every batch can lead to high communication cost.
ADMM converges the fastest, followed by MA-SGD. Com-
pared with GA-SGD, MA-SGD reduces the communication
frequency from every batch to every epoch, which can
be further reduced by ADMM. Moreover, MA-SGD and
ADMM can converge with fewer communication steps in
spite of reduced communication frequency. We observe sim-
ilar results when training SVM on Higgs: ADMM converges
faster than GA-SGD and MA-SGD.

(MN) We have different observations when turning to
training neural network models. Figure Sc presents the results
of training MN on Cifar10. First, we note that ADMM is
mostly used for optimizing convex objective functions and

@ Springer

J. Jiang et al.

Speedup
o ADMM, W=300 ADMM, W=300 100 4 w=10
MA-SGD, W=300 MA-SGD, W=300 1 W=300
m GA-SGD, W=300 GA-SGD, W=300 104 35
j 0.68 4 5 1 1 1
0.1 0.08
0.64 T T T T T T T T
0 200 400 600 0 50 100 150 200 ADMM MA-SGD GA-SGD
Wall clock time (seconds) # Communications
a) LR, Higgs.
() ? g8 Speedup
0.65
ADMM, W=300 ADMM, W=300 100 w=10
0.6 MA-SGD, W=300 1 MA-SGD, W=300 15 w=300
a GA-SGD, W=300 GA-SGD, W=300 0 37
8 055 1
o
- 1 1 1
1
0.5
0.1 0.08
0.45 T T T T T
0 10 2 30 00 25 50 75 100 ADMM MA-SGD GA-SGD
Wall clock time |: ds) #C icati
(b) SVM, Higgs.
Speedup
MA-SGD, W=300 MA-SGD, W=300 w=10
GA-SGD, W=300 GA-SGD, W=300 10 W=300
w 103 1.9
H 1 1
- 1
0.1
0.1
01 T . : : . :
109 108 10! 109 MA-SGD GA-SGD
Wall clock time (ds) #C i

(c) MobileNet, Cifarl0.

Fig.5 Comparison of optimization algorithms. W denotes the number
of workers

therefore is not suitable for training neural network mod-
els. Comparing GA-SGD and MA-SGD, we observe that the
convergence of MA-SGD is unstable. On the other hand,
GA-SGD can converge steadily and achieve a lower loss.

5.3 Communication channels

For many workloads, a pure FaaS architecture can be
competitive to the hybrid design given the right choice
of the algorithm. A dedicated PS can definitely help in
principle, but its potential is currently bounded by the
communication between FaaS and laaS.

We next evaluate the impact of communication channels.
LR is optimized by ADMM, MN is optimized by GA-SGD,
and KM is optimized by EM. Figure 6 compares disk-based
S3 with other memory-based mediums. A memory-based
medium is slower than S3 if its slowdown is greater than 1;
on the other hand, it is less economical than S3 if its relative
cost is larger than 1.

(Pure FaaS Solutions) We compare S3 with Memcached,
Redis, and DynamoDB.

— Memcached versus S3. Memcached introduces a lower
latency than S3, therefore one round of communica-
tion using Memcached is significantly faster than using
S3. Furthermore, Memcached has a well-designed multi-
threading architecture. As a result, its communication is
faster than S3 over a large cluster with up to 50 work-

@ Springer

LR, Higgs, W=10 [relative cost) LR, Higgs, W=10 (slowdown)

Memcached vs. S3 285
#/7. DynamoDB vs. S3
I VM-PSvs. S3

5 &7

ﬁ S N |
. 0.95 7
lr===——n o —— 3 7

LR, Higgs, W=50 (relative cost) _ LR, Higgs, W=50 (stowdown)

relative cost

slowdown
T i it 1

37 37

relative cost
HH:
1
slowdown
‘h
3
1
1
1
I o |

KM, Higgs, W=50, k=10 (relative cost)

X
<
ES

=
@
L
=
N
a
s
=
i
o
Iy
3
H
I
)
H
3

158

relative cost

N\

KM, Higgs, W=50, k=1K (relative cost) KM, Higgs, W=50, k=1K (slowdown)

152

FEE
-
s

MN, Cifar10, W=10 (relative cost) MN, Cifar10, W=10 (slowdown)

relative cost
RARSEES
1
slowdown

T
b
B
: :
1

MN, Cifar10, W=50 (relative cost) MN, Cifar10, W=50 (slowdown)
6 6

relative cost
:E:Hj:H:li B
1
slowdown
T
b
5]
1

0

Fig. 6 Comparison of S3, Memcached, DynamoDB, and VM-based
parameter server. We present the slowdown and relative costs of using
different mediums w.r.t. using S3. A relative cost larger than 1 means
S3 is cheaper, whereas a slowdown larger than 1 means S3 is faster

ers, showing 7x and 7.7x improvements when training
LR and KM. Nonetheless, the overall execution time of
Memcached is actually longer than S3, because it takes
more than two minutes to start Memcached, whereas
starting S3 is instant. Since LR and KM converge quickly
on Higgs, the startup cost overshadows the savings on
communication cost by using Memcached. When train-
ing MN on Cifar10, using Memcached becomes faster,
since it takes much longer for MN to converge. Mean-
while, although the pricing of ElastiCache is higher than
S3 (1000x higher per GB), the total cost of using Mem-
cached is actually lower than using S3 as it saves the
computation.

— Redis versus Memcached. According to our benchmark,
Redis is similar to Memcached when training small ML
models. However, when an ML model is large or is trained
on a big cluster, Redis is inferior to Memcached since
Redis lacks a similar high-performance multi-threading
mechanism that underlies Memcached. Since Redis is

A systematic evaluation of machine learning on serverless infrastructure

worse than Memcached inside ElastiCache, we do not
present its results in Fig. 6.

— DynamoDB versus S3. Compared to S3, DynamoDB
reduces the communication time by roughly 20% when
training LR on Higgs, though it remains significantly
slower than IaaS if the startup time is not considered.
Nevertheless, DynamoDB only allows messages smaller
than 400KB, making it infeasible for many median mod-
els or large models (e.g., MN on Cifar10).

(Hybrid Solutions) CIRRUS [12] presents a hybrid design—
having a dedicated VM to serve as parameter server and all
FaaS workers communicate with this centralized PS. This
design definitely has its merit in principle—giving the PS
the ability of doing data aggregation can potentially save
2x communication compared with an FaaS communica-
tion channel via S3/Memcached. However, we find that this
hybrid design has several limitations, which limit the regime
under which it outperforms a pure FaaS solution. Note that
some of these limitations are artifacts of the existing FaaS
platform, not fundamental to the hybrid strategy.

When training LR and KM, VM-based PS performs sim-
ilarly as using Memcached or Redis, which are slower than
S3 considering the start-up time. In this case, a pure FaaS
solution is competitive even without the dedicated VM. This
is as expected—when the model size is small and the run-
time is relatively short, communication is not a significant
bottleneck.

When the model is larger and the workload is more
communication-intensive (MN), we would expect that the
hybrid design performs significantly better. However, this
is not the case under the current infrastructure. To con-
firm our claim, we use two RPC frameworks (Thrift and
gRPC), vary CPUs in Lambda (by varying memory size
from 1 to 3GB), use different EC2 types, and evaluate the
communication between Lambda and EC2 by transferring
an array of 75MB. We find several constraints of commu-
nication between Lambda and VM-based parameter server:
(1) The communication speed from the PS is much slower
than Lambda-to-EC2 bandwidth (up to 70 MBps reported
by [37, 66]) and EC2-to-EC2 bandwidth (e.g., 10 Gbps for
c5.4xlarge). In contrast, the hybrid solution takes at least
1.85 s to transfer 75 MB. (2) Increasing the number of vCPUs
can decrease the communication time by accelerating data
serialization and deserialization. But the serialization perfor-
mance is eventually bounded by the limited CPU resource of
Lambda (proportional to the memory size). (3) Model update
on the parameter server is costly when the workload scales
to a large cluster due to frequent locking operation of param-
eters. As a result, HybridPS is currently bounded not only by
the network bandwidth, but also serialization/deserialization
and model update. However; if this problem is fixed, we would

Table2 Comparison of communication patterns

Model & Dataset Model size AllReduce ScatterReduce
LR, Higgs, W = 50 224B 9.2s 9.8s
MN, Cifar10, W =10 12MB 3.3s 3.1s
RN, Cifar10, W = 10 89 MB 17.3s 8.5s

W denotes the number of workers

expect that a hybrid design might be a good fit for deep learn-
ing. We will explore this in Sect. 6.4.1.

5.4 Communication patterns

Communication using ScatterReduce is faster than
AllReduce across different ML models.

We use another model, called ResNet50 (RN), in this
study to introduce a larger model than MN. We train LR
on Higgs, and MN and RN on Cifar10, using S3 as the
storage service. Table 2 presents the time spent on com-
munication by Al11Reduce and ScatterReduce. We
observe that using ScatterReduce is slightly slower
when training LR. Here, communication is not a bottleneck
and ScatterReduce incurs extra overhead due to data
partitioning. On the other hand, the communication costs
of Al1Reduce and ScatterReduce are roughly the
same when training MN. A11Reduce is 2x slower than
ScatterReduce when training RN, as communication
becomes heavy and the aggregator in A1 1Reduce becomes
a bottleneck.

5.5 Synchronization protocols

Synchronous communication (BSP) is generally a bet-
ter choice than asynchronous communication (ASP)
given its stable convergence.

Finally, we study the impact of the two synchronization
protocols: Synchronous and Asynchronous. Note that the
asynchronous protocol here is different from ASP in tradi-
tional distributed learning. In traditional distributed learning,
ASP is implemented in the parameter server architecture,
where there is an in-memory model replica that can be
requested and updated by workers [16, 25, 30]. However, this
ASP routine is challenging, if not infeasible, in FaaS infras-
tructure. We thus follow SIREN [64] to store a global model
on S3 and let every FaaS instance rewrite it. In this imple-
mentation, if the workers read the same model and compute
gradients, only the last model rewriting is effective.

We use GA-SGD to train LR on Higgs, LR on RCV1,
and MN on Cifar10, with Asynchronous or Synchronous
enabled for the executors. As suggested by previous work
[25], we use a learning rate decaying with rate 1/+/T for

@ Springer

J. Jiang et al.

LR, Higgs, W=10 LR, RCV1, W=5 ~ MN, Cifar10, W=10
0.72 4 ASP 2.0
BSP | 067 15

0.68 1] 1.04
0.5

T T T 0 T T
0 200 400 0 200 400 0 4000 8000
Time (seconds) Time (seconds) Time (seconds)

Fig.7 Comparison of synchronization protocols

ASP where T denotes the number of iterations. Figure7
presents the results. We observe that Synchronous converges
steadily, whereas Asynchronous suffers from unstable con-
vergence, although Asynchronous runs faster per iteration.
The convergence problem of Asynchronous is caused by the
inconsistency between local model parameters. Those faster
executors may read stale model parameters from the strag-
glers. Consequently, the benefit of system efficiency brought
by Asynchronous is offset.

6 FaaS$ versus laaS for single training
workload

We now turn to the second theme of this paper, where we
compare FaaS and TaaS for single model training.

6.1 Empirical study

(Principles) We follow a set of principles:

1. Best versus Best. When comparing FaaS with IaaS, we
compare the best configuration of an FaaS implementation
with the best configuration of an laaS implementation.
This includes the algorithm that each implementation
uses, the hyper-parameters, the VM types, the number
of workers and VMs, etc.

2. Strong IaaS Competitors. When comparing with laaS,
we should compare with state-of-the-art machine learning
systems.

3. End-to-end Benchmark. We focus on the end-to-end
training performance—the wall-clock time (or cost in dol-
lar) that each system needs to converge to the same loss.

6.1.1 Experimental settings

(Competing Systems) We compare our serverless ML sys-
tem LAMBDAML with the following systems:

— Distributed PyTorch. We partition the training data and
run PyTorch across multiple machines. We use all CPU
cores on each machine, if possible. To manage a PyTorch

@ Springer

Table 3 Experimental settings

Model, dataset Setting Threshold (loss, accuracy)

LR/SVM, Higgs W =10, B = 10K 0.66/0.48, 62%/62%

KM, Higgs W =10,k =10 0.15
LR/SVM,RCVl W =5,B=2K 0.68/0.05, 95%/92%
KM, RCV1 W =50k=3 0.01

LR/SVM, YFCC W =100, B =800 2/0.9,95%/90%
KM, YFCC W =100, k =10 50

MN, Cifar10 W =10, B =128 0.2, 90%

RN, Cifar10 W =10, B =128 0.4, 93%

W denotes the number of workers, B the batch size, and k£ the number
of clusters

cluster, we use StarCluster,” a toolkit for EC2 clusters.
We use the A11Reduce operator of PyTorch for cross-
machine communication, and we implement both mini-
batch SGD and ADMM for training linear models.

— Distributed PyTorch on GPUs. For deep learning models,
we also consider GPU instances. The other settings are
the same as above.

— Angel. Angel is an open-source ML system based on
parameter servers [32]. Angel works on top of the Hadoop
ecosystem (e.g., HDFS, Yarn, etc.) and we use Angel
2.4.0 in our evaluation.

— HybridPS. Following the hybrid architecture proposed by
Cirrus [12], we implement a parameter server on a VM
using gRPC, a cross-language RPC framework. Lambda
instances use a gRPC client to pull and push data to
the parameter server. We also implement the same SGD
framework as in Cirrus.

(Datasets) In addition to Higgs, RCV1 and Cifar10,
Table 1 presents one more dataset YFCC100M.,° which con-
sists of approximately 99.2 million photos and 0.8 million
videos. In YFCC100M, each image has several label tags
and a feature vector of 4096 dimensions. We randomly sam-
ple 4 million data points, and convert this subset into a binary
classification dataset by treating the “animal” tag as the pos-
itive label and the other tags as negative labels. After this
conversion, there are about 300K (out of 4 M) positive data
examples.

(ML Models) As shown in Table 3, we evaluate different
ML models, including LR, SVM, KMeans (KM), MobileNet
(MN), and ResNet50 (RN). As the readers might suspect,
some previous works (e.g., Hogwild! [57]) have reported that
a single machine can train SVM over RCV1 within ten sec-
onds. Indeed, training a linear model on RCV1 is not costly
since RCV1 is relatively small. Therefore, we treat linear

3 http://star.mit.edu/cluster/
6 http://projects.dfki.uni-kI.de/yfcc100m/

http://star.mit.edu/cluster/
http://projects.dfki.uni-kl.de/yfcc100m/

A systematic evaluation of machine learning on serverless infrastructure

SGD-PyTorch
—&— ADMM-PyTorch
—4— Angel

~&— LambdaML
HybridPS
—#— SGD-PyTorch-GPU

T ¢ T
0 200 400 600 800
Wall clock time (seconds)

(a) LR, Higgs

T T T
0 100 200 300 400 500
Wall clock time (seconds)

(b) SVM, Higgs

Loss
o

0 200 400 600
Wall clock time (seconds)

(c) KMeans, Higgs

T T T
0 200 400 600 800
Wall clock time (seconds)

(d) LR, RCV1

Loss

T T
0 200 400 600
Wall clock time (seconds)

(e) SVM, RCV1

Loss

2.0 = are—.

sz

0.75 4
0.50 4
0.25 4
0.00 - * ~ -

0 200 400 600 800 1000
Wall clock time (seconds)

(f) KMeans, RCV1

0.96

0.95 4

Ases oo
Nl adiing Alhad

t T T T T
0 200 400 600 800 1000
Wall clock time (seconds)

(g) LR, YFCC100M

600

T T
0 200 400 600
Wall clock time (seconds)

(h) SVM, YFCC100M

400

Loss

200 A

s e
T

? T
0 200 400 600 800
Wall clock time (seconds)

(i) KMeans, YFCC100M

T
0 5000 10000
Wall clock time (seconds)

(j) MobileNet, Cifarl0

T
40000 80000

Wall clock time (seconds)

(k) ResNet50, Cifarl0

Fig.8 End-to-end FaaS versus IaaS comparison

models on RCV1 as toy scenarios, and the other training
workloads as realistic scenarios.

(Hardware) We tune the optimal EC2 instance from the t2
and c5 family. To run PyTorch on GPUs, we tune the optimal
GPU instances from the g3 family. We use one c5.4xlarge
instance as the parameter server in the hybrid architecture.
For FaaS, we use 3GB memory for all tasks.

(Protocols) We choose the optimal learning rate between
0.001 and 1. We vary the number of workers from 1 to 150.
Before running the competing systems, we partition the train-
ing data on S3. We trigger Lambda functions after the data is
uploaded and Memcached is launched (if required). We use
one cache.t3.small Memcached node. Each ADMM round
scans the training data ten times. We stop training when
the loss or accuracy is below a threshold, as summarized
in Table 3.

(“COST” Validation Check) Before we report end-to-
end experimental results, we first report a sanity check as in
COST [46] to make sure all scaled-up solutions outperform a
single-machine solution. Taking Higgs, RCV1, and Cifar10
as examples, we store the datasets in a single machine and
use a single EC2 instance to train the model and compare the
performance with FaaS/IaaS.

For the Higgs dataset, using a single t2 instance (PyTorch)
would converge in 960s for LR trained by ADMM, while
our FaaS (LAMBDAML) and IaaS (distributed PyTorch) solu-
tions, using 10 workers, converge in 107 and 98 s. Similarly,
on Higgs and SVM/KMeans, FaaS and IaaS achieve 9.4/6.2
and 9.9/7.2 speedups using 10 workers. We also choose a
more powerful c4.xlarge instance, which is equipped with
more CPUs than FaaS. The single-threading convergence
time of LR is 719s, and the convergence time using all four
threads is 247s. This verifies the benefit of FaaS and dis-
tributed IaaS on the evaluated workloads, compared with a
single thread or multiple threads in a dedicated machine.

On RCV1 and LR, using a t2 instance converges in 380s,
including the startup time and data loading time; and using
a c4.xlarge instance needs 352 s (one thread) and 186 s (four
threads). FaaS (LAMBDAML) and [aaS (distributed PyTorch)
solutions, using 10 workers, converge in 46 and 174s. ’

On Cifar10 and MobileNet, FaaS and IaaS achieve 4.8 and
6.7 speedups. We run distributed serverless jobs since: (1) the
resource of serverless platform is limited, therefore using a
single instance is infeasible for relatively large datasets or
incurs too long runtime (e.g., deep learning models); (2) the
maximal lifetime is limited, so that using a single instance
may easily encounter timeout or multiple self-invocations;

7 Note that, Hogwild! [57] uses a single machine to train RCV 1 within
9.5 s (without startup and data loading time). The model training time
of LambdaML is about 27s. Hogwild! uses a lock-free asynchronous
strategy and prefers sparse datasets. Although the training algorithm
is different from our setting, we believe it is important to report these
numbers as a reference.

@ Springer

J. Jiang et al.

Table 4 End-to-end convergence time (time to reach loss threshold)

Model, dataset PyTorch Angel LambdaML HybridPS
LR, Higgs 260 588 107 233

KM, Higgs 149 468 33 139
SVM, RCV1 226 610 87 213

LR, YFCC100M 358 711 103 389

MN, Cifar10 725 - 11397 33759
RN, Cifar10 5965 - 22217 88625

The numbers are in seconds. We report the best of PyTorch among SGD, ADMM, and GPU

(3) one main goal of this paper is to study the scalability of

serverless ML.

6.1.2 Experimental results

End-to-end Comparison. We first run all competing systems
with the same number of workers. We illustrate the end-to-
end convergence w.r.t wall-clock time in Fig.8, and report
the convergence time of six representative tasks to reach the
loss threshold in Table 4.

1. LR, SVM, KM. We train LR, SVM, and KM over

YFCC100M. Angel is the slowest as a result of slow
start-up and computation. Running ADMM on PyTorch
is slightly faster than SGD, verifying ADMM saves
considerable communication while assuring convergence
meanwhile. HybridPS outperforms PyTorch as it only
needs to launch one VM and it is efficient in commu-
nication when the model is relatively small. LAMBDAML
achieves the fastest speed due to a swift start-up and the
adoption of ADMM.

. MN. As was analyzed above, datacommunication between
Lambda and VM is bounded by the serialization over-
head, and therefore the hybrid approach is slower than a
pure FaaS approach with a large model. PyTorch is faster
than LAMBDAML because communication between VMs
is faster than using ElastiCache in Lambda. PyTorch-GPU
is the fastest as GPU can accelerate the training of deep
learning models.

Runtime Breakdown.

The fundamental tradeoff between start-up time and
communication overhead makes FaaS-based imple-
mentation significantly faster on some datasets.

Figure 9a presents a breakdown for runtime, taking LR

on Higgs (10 epochs) as an example.

1. Start-up. It takes more than 2min to start a 10-node

EC2 cluster, including the time spent on launching VMs,
instance initialization, mounting shared volumes, con-

@ Springer

Run time (seconds)

PyTorch ## Angel HybridPS SNN LambdaML

618
213

2y, 16

A

Total w/o startup

802580 80
N\

Computation Communication

9;599 %
Z'N ?

Load data

Startup Total

(a) End-to-end Runtime Breakdown

—
o
S

70

~
v
L

wu
o
L

33

N
&
L

13 10 6

0

Run time (seconds)

T T T T T
Launching Initialization Mounting Configuring Submission

(b) EC2 Start-up Time Breakdown

Fig.9 Time breakdown (LR, Higgs, W = 10, 10 epochs)

figuring secure communication channels, and submitting
the training job. We further conduct a breakdown for the
start-up time of a 10-node PyTorch EC2 cluster (t2.xlarge
instance) in Fig. 9b. It takes even more time to start Angel,
as it needs to first start dependent libraries such as HDFS
and Yarn. The hybrid solution also needs to start and con-
figure VMs, but it avoids the time spent on submitting job
due to quick startup of FaaS functions. In contrast, LAMB-

DAML took 1.3 s to start. The number is cold start-up time
and does not include data loading. Since the platform does
not reserve resources, we cannot recover previous trans-
actions. The FaaS platform manages a pool of instances
and allocates them to new jobs, so that the start-up is fast.
Data Loading and Computation. In terms of data load-
ing and computation, PyTorch, HybridPS, and LAMB-

DAML spend similar amount of time because they all read
datasets from S3 and use the same training engine. Angel
spends more time on data loading since it loads data from
HDEFS. Its computation is also slower due to inefficient
matrix calculation library.

Communications. Communication in LAMBDAML is
slower than in other baselines since LAMBDAML uses S3
as the medium.

Total Run Time. In terms of the total run time, LAMB-

DAML is the fastest when including the startup time.

A systematic evaluation of machine learning on serverless infrastructure

Run Time Cost Validation Accuracy
40000 100
/U laaS-Grid FaaS-Grid 0.75 -
3 777 laaS-Random [l FaaS-Random AN
S 20000 1 -+ laas-BO 8 50 FaaS-BO 0.50 1 N
§ N\ laaS-Bandit) FaaS-Bandit 0.25 §
0 NaZz=N \u T — X/‘ [I \. 0.00 \| T
LR, Higgs, W=10 MN, Cifarl0, W=10 LR, Higgs, W=10 MN, Cifarl0, W=10 LR, Higgs, W=10 MN, Cifarl0, W=10
Fig. 10 Tuning learning rate and regularization term (time is in seconds and cost is in $)
However, if the startup time is excluded, PyTorch outper- 100 vlv-—Rw Higgs MobileNet, Cifar10
forms LAMBDAML. Especially, PyTorch does not incur £ | = "2 . £ welg i
K] =035 50 10 g =1 W=10
start-up cost with reserved laaS resources. One related ki S~eseo 2% ERCE R =l
. . . . 2 102 W=10 3)
issue is how to serve workloads during off-peak periods, £ 29 £ 10204
R . 5 0 150 s ~1020
as we will discuss for multi-tenant workloads. & o oo € W=10
0.02 0.05 0.1 0.5 1 0.1 1 10
Cost ($) Cost ($)

6.2 Evaluation of hyper-parameter tuning

To evaluate our proposed framework for tuning hyper-
parameters, we conduct experiments on Higgs and Cifar10
datasets, by tuning the learning rate and the number of work-
ers.

(Tune Learning Rate and Regularization) For FaaS, we
use our proposed hyper-parameter tuning framework, as elab-
orated in Sect.4.3. Each trial job launches multiple workers
(the number of workers is calculated by the workload estima-
tor) and runs for 10 epochs using S3 as the communication
medium, and the maximal number of concurrent trials is 5.
We compare grid search, random search, Bayesian optimiza-
tion (RoBO), and bandit algorithm (Hyperband). We tune
learning rate within [0.01, 1] and regularization term within
[0.001, 0.1] The total number of trials is 100, and we set
R = 10 and n = 3 for Hyperband. The other settings are
the same as Sect.6.1.1. For IaaS, we run the tuner worker in
a t2.medium instance and run each trial job for 10 epochs
using ten t2.medium instances.

The results of hyper-parameter tuning are shown in
Fig. 10, including end-to-end runtime, cost, and validation
accuracy. On LR, FaaS is faster than IaaS, however, is
not cheaper. Our proposed FaaS-based tuning framework
benefits from the fast start-up and auto-scaling of server-
less infrastructure, and hence achieves faster execution. We
find that GridSearch and RandomSearch strategies achieve
comparable validation accuracy, which resonates with prior
works [6]. BO achieves slightly higher accuracies, at the
expense of extra computation. The bandit algorithm achieves
the fastest performance since the Hyperband approach we
choose introduces early stopping. On MobileNet, however,
TaaS is both significantly faster and cheaper than FaaS since
each trial job is long-running and communication-intensive.

(Tune Number of Workers) Comparing FaaS and laaS
by forcing them to use the same number of workers is not
necessarily a fair comparison—an end-to-end comparison
should also tune the optimal number of workers to use for

—6— laa$ (t2.medium)
laas (c5.4xlarge)

—r— laa$ (g3s.xlarge)
FaaS

Fig. 11 Tuning number of workers

each case. We expect this could result in different trade-offs
regarding runtime and cost.

To study the impact of workers, we use grid search to tune
the number of workers for both FaaS and IaaS. Figure 11
illustrates two representative runtime versus cost profiles.
Here we choose two types of CPU instances for LR and
one GPU instance for MN. Note that, we do not report
the accuracy numbers since they are almost the same. On
LR and Higgs, adding workers initially makes both FaaS
and TaaS systems faster since this task can take advan-
tage of communication-efficient algorithms. Then, the curve
becomes flattened (e.g., FaaS at 100 workers) since the accel-
eration of computation is compensated by the increase of
communication. Different systems plateaued at different run-
time levels, illustrating the difference in its start-up time and
communication cost. On the other hand, the more workers we
add, the more costly the execution is. On MobileNet that can-
not take advantage of communication-efficient algorithms,
the FaaS system flattens earlier, illustrating the difficulty of
scale-up.

6.3 Analytical model

Based on the empirical observations, we now develop an
analytical model that captures the cost/performance tradeoff
between different configuration points in the design space.

Given an ML task, for which the dataset size is s MB and
the model size is m MB, let the start-up time of w FaaS (resp.
TaaS) workers be 7 (w) (resp. ¢/ (w)); the bandwidth of S3,
EBS (Elastic Block Store), network, and ElastiCache be Bg3,
Brps, By, BEc; the latency of S3, EBS, network, and Elas-
tiCache be Lg3, Lgps, Ly, LEc. N¢p denotes the number
of checkpointing in FaaS. Assuming that the algorithm used

@ Springer

J. Jiang et al.

by Faa$S (resp. IaaS) requires R (resp. R’) epochs to con-
verge with one single worker, we use f Fw) (resp. f L(w))
to denote the “scaling factor” of convergence which means
that using w workers will lead to £ (w) times more epochs.
Let CT (resp. C') be the time that a single worker needs for
computation of a single epoch. Table 5 lists symbols in the
cost model. With w workers, the execution time of FaaS and
TaaS can be modeled as follows (to model the cost in dollar,
we can simply multiply the unit cost per second):

convergence
m

—_——
rg +RFfF(w)><
S3

FaaS(w) =" (w) + —— + N,
Bs3

start up & loading checkpoint

computation
——

m/w cr
GBw —2)(+Ls3/ec) + —
Bs3 w

communication

convergence
R
TaaS(w) = ! (w) + o+ R’ 1 (w) x
S3

start up & loading

computation

—
m/w c!
Qw —2)(+Ly) + —
B, w

communication

where the color-coded terms represent the “built-in” advan-
tages of FaaS/laaS (green means holding advantage)—FaaS
incurs smaller start-up overhead, while IaaS incurs smaller
communication overhead because of its flexible mechanism
and higher bandwidth. Assuming FaaS adopts ScatterReduce
communication primitive, each worker writes local model
partitions (size of (w — 1)m /w) to storage, reads responsible
partitions (size of (w — 1)m /w), writes merged partition (size
of m/w), and reads other partitions (size of (w — 1)m/w).
Therefore, the term of FaaS’s communication costis (3w —2).
The difference in the constant, i.e., Gw — 2) and Qw — 2), is
caused by the fact that FaaS can only communicate via exter-
nal storage services that do not have a computation capacity.
The latency terms L s3,£c and L, could dominate for smaller
messages.

Recall our experimental results, FaaS performs better for
ML workloads that are communication efficient and con-
verge quickly. If we look at the analytical model, that means
the convergence term RY f¥(w) is small—the model can
converge within a few epochs and communication rounds.

6.3.1 Validation of analytical model

We provide an empirical validation of this analytical model.
First, we show that given the right constant, this model cor-

@ Springer

Table 5 Symbols in the analytical model

Symbol Definition
s Size of dataset
m Size of ML model
b Batch size
w Number of workers
tF (w)/t! (w) Startup time of w FaaS/IaaS workers
RF/R! Epochs to converge for FaaS/IaaS
)/ f1w) Scaling factor of convergence for FaaS/laaS
Cr/Cy Epoch computation time for FaaS/IaaS
Bgs3 Bandwidth of S3
Brps Bandwidth of EBS
B, Bandwidth of network
Bec Bandwidth of ElastiCache
Lg3 Latency of S3
Lggs Latency of EBS
L, Latency of network
Lgc Latency of ElastiCache
LR, Higgs, W=10 predict # actual
Tome,] g tRMsss s
s f e Bk
3 £ .
2 5 R s

LR, YFCC100M SVM, YFCC100M
" 100] #%

Run time [seconds)

- 2
o Cim
20

s b 0 0 10

0 5
epoch # epoch # epoch

(a) Analytical Model
and Actual Runtime.

(b) Predicted Runtime (Sampling-
based Estimator plus. Analytical
Model) vs. Actual Runtime.

2000
Estimator (LR, Higgs)
L Actual (LR, Higgs)

= Estimator (LR, YECC100M)
| 'mmm Actual (LR, YFCC100M)

=
o

Run time (seconds)

=
2

updates

[

o o O

o o o

o o o

-
o

0
FaaS laaS FaaS laaS

(c) Cost of Estimator. We compare the runtime of the estimator
and the actual training, and then compare the number of model
updates until convergence.

Fig. 12 Evaluation of analytical model

rectly reflects the runtime performance of FaaS-based and
laaS-based systems. We train a logistic regression model on
Higgs with ten workers (the results on other models and
datasets are similar) and show the analytical model versus
the actual runtime in Fig. 12a. Across a range of fixed num-
ber of epochs (from 1 to 100), and using the representative

A systematic evaluation of machine learning on serverless infrastructure

values for the symbols in Table 5, we see that the analytical
model approximates the actual runtime reasonably well.

The goal of our analytical model is to understand the
fundamental tradeoff governing the runtime performance,
instead of serving as a predictive model. To use it as a pre-
dictive model, one has to estimate the number of epochs that
each algorithm needs. This problem has been the focus of
many previous works (e.g., [34]) and is thus orthogonal to
this paper. Nevertheless, we implement the sampling-based
estimator in [34], use 10% of training data and 3 epochs
to estimate the number of epochs needed for convergence.
Then, the estimated epoch number and unit runtime are used
to predict the end-to-end runtime. We choose four workloads
(LR/SVM & Higgs/YFCC100M) and train them with two
optimization algorithms (SGD and ADMM) in both FaaS
(LAMBDAML) and IaaS (distributed PyTorch). Figure 12b
shows that this simple estimator can estimate the number
of epochs well for both SGD and ADMM, and the analyti-
cal model can also estimate the runtime accurately (see the
“predict” datapoints). Itis interesting future work to develop a
full-fledged predictive model for FaaS and IaaS by combining
the insights obtained from this paper and [34]. To evaluate the
efficiency of the estimator, we also report the runtime of the
estimator, as well as the number of model updates on sampled
and full data until convergence. We choose two workloads
(LR/Higgs and LR/YFCC100M) as examples, and show the
results of FaaS and IaaS in Fig. 12c. The estimator takes less
time (about 24% and 21%) than running on the full data,
since this speculation-based estimator samples a subset and
does not need to train the model to convergence. We then use
the estimator to predict the number of model updates until
convergence, and we observe that the numbers are quite close
to the actual execution.

6.4 Insights and case studies

(Summary of Insights) This model provides us a framework
to reason about performance. However, to depict the full pic-
ture of the tradeoff space we need to substantiate all constants
with well-optimized system designs and algorithm choices.
With all optimizations we described (Part 1), we have the
following insights.

Insight 1. Comparable Algorithms. For many models, the
optimal choices of algorithm are the same for FaaS and laaS.
For example, when training GLMs and KMeans, both FaaS
and laaS implementations benefit from communication-
efficient algorithms such as ADMM for GLMs. Another
example is deep learning—both FaaS and laaS need to
use communication-intensive algorithms (i.e., GA-SGD)
because of its convergence behavior. For such cases, we have
RF fF(w) = R! f(w) in the analytical model, and there-
fore, the tradeoff is dominated by the relative total cost of
communication with respect to the start-up cost.

1. Case 1.1 Communication-Efficient Algorithms. For mod-
els such as GLMs and KMeans, we see scenarios under
which an FaaS implementation can outperform an laaS
implementation. This claim holds for both the wall-clock
runtime and the cost in dollar.

2. Case 1.2 Communication-Intensive Algorithms. For mod-
els such as deep neural networks, we see scenarios under
which an FaaS implementation is significantly slower than
an laaS implementation. This holds for both the wall-
clock runtime and the cost in dollar.

Insight 2. Incomparable Algorithms. In principle, there
are cases where the optimal choices of algorithm for FaaS
and [aaS can be different. However, given our current choices
of models and algorithms, we did not observe such cases in
our experimentation.

(Limitation of Our Empirical Study) Despite the efforts in
this empirical study, there inevitably exist limitations consid-
ering the diversity of ML workloads. For example, there are
other related ML techniques (e.g., data loading and model
parallelism) that are not covered in this work; the com-
parison of cost is not fully scientific, since the pricing is
determined by the platform’s commercial strategy; we have
not chosen all the [aaS instances, and considering other types
might change the FaaS/IaaS trade-offs; the experiments that
benchmark ML pipelines might favor FaaS because the fine-
grained elasticity is advantageous for fluctuations in pipeline
workload. In addition, this empirical study does not choose
an extremely high-dimensional dataset (e.g., kdd2012) and
provide sparse operations, since FaaS only provides limited
memory resources and cannot efficiently handle such dataset.

6.4.1 Case studies

We can further use this analytical model to explore alterna-
tive configurations that may be leveraged by potential future
infrastructures and understand how they would impact the
relative performance of FaaS and IaaS. We provide two exam-
ple case studies in the following.

Q1: What if Lambda-to-VM communication becomes
faster (and support GPUs)? As we previously analyzed, the
performance of HybridPS is bounded by the communication
speed between FaaS and TaaS. How would accelerating the
FaaS-IaaS communication change our tradeoff? This is pos-
sible in the future by having higher FaaS-to-IaaS bandwidth,
faster RPC frameworks, or more CPU resources in FaaS.
To simulate this, we assume that bandwidth between FaaS
and JaaS can be fully utilized and change the bandwidth to
10GBps in our analytical model. As shown in Fig. 13, the
performance of HybridPS could be significantly improved.
When training LR over YFCC100M, HybridPS-10GBps is
worse than FaaS since FaaS saves the start-up time of one
VM and uses ADMM instead of SGD. When training MN

@ Springer

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.htm#kdd2012

J. Jiang et al.

LR, YFCC MobileNet, Cifar10
— 500
w
€ 400 30000 7 laa$
v
& 300 laaS 20000 * laas-GPU
@ 500 | ¢ Faas ¢ Faas
£ A Hybrid 100004 ¢ Hybrid
g 1001 ¢ A Hybrid-106 . A Hybrid-106
© 90 T T 0 T T
0 1 2 3 0 50 100 150
Cost ($) Cost ($)

Fig. 13 Simulation: Faster FaaS-IaaS communication

LR, YFCC MobileNet, Cifar10
600 40000
i
-
c
§ 400 4
u laaS 20000 laas
E 200 4 ¢ Faas ¢ Faas
= HybridPS ¢ HybridPS
2 At A FaaS-PS A A FaaS-PS
0 . ‘ 0 ; : :
0 1 2 3 0 5 10 15 20
Cost ($) Cost ($)

Fig. 14 Simulation: an always-on PS service

over Cifar10, HybridPS-10GBps would be about 10% faster
than IaaS; however, it is still slower than IaaS-GPU.

If future FaaS further supports GPUs and offers similar
pricing compared with comparable IaaS infrastructure—
$0.75/hour for g3s.xlarge, HybridPS-10GBps would be 18%
cheaper than laaS. This would make FaaS a promising plat-
form for training deep neural networks; otherwise, under the
current pricing model, IaaS is still more cost-efficient even
compared with HybridPS-10GBps.

Q2: What if there is an always-on dedicated PS service
with smaller start-up time? Current FaaS solutions lever-
age S3 or ElastiCache to store model parameters. But these
two services are not like PS-style, where a centrally stored
model replica can be accessed and updated. Therefore, more
data transmissions are required during model synchroniza-
tion. If there is an always-on PS service which is also fast in
start-up, training ML model over FaaS can be further accel-
erated. Figure 14 shows the simulated performance of FaaS
with an always-on PS service (FaaS-PS) via assuming the
same communication speed as [aaS. FaaS-PS is 1.38 x faster
than FaaS over YFCC100M and 3.74 x faster over Cifar10.
This improvement is mainly brought by communication sav-
ing during model synchronization.

7 FaaS versus laa$S for multi-tenant
workloads

In this section, we consider a more realistic setting other
than training a single model and focus on the scenario in
which multiple training jobs are executed during a period
of time. In reality, one often needs to execute multiple ML
training jobs, perhaps on a cloud-based ML service that can

@ Springer

Table 6 Models used in multi-tenant workloads

Model Dataset # Workers
LR/SVM Higgs W = 10-50
KM Higgs W = 10-50
LR/SVM RCV1 W =5-20
KM RCV1 W = 50-200
LR/SVM YFCC100M W = 100-500
KM YFCC100M W = 100-500
MN Cifar10 W = 10-50

be either FaaS or IaaS. It is therefore worthy to understand the
performance/cost tradeoffs between FaaS-based and laaS-
based ML services in this broader context. Specifically, we
study the following two multi-tenant workloads.

— Training as a Service. Many machine learning plat-
forms on the cloud, such as Microsoft Azure, Google
Al Platform and Alibaba MaxCompute, provide training
services to users. One user uploads a dataset to the plat-
form, and the platform returns the trained model to the
user.

— Incremental Training. For a range of applications, it is
infeasible to train all the historical data periodically since
these applications generate data continuously. Alterna-
tively, incremental training is adopted to read new data for
one loop and update the model accordingly. For example,
many e-commerce companies train models incremen-
tally to recommend items to users. The recommendation
engine receives new data if one user performs actions
such as clicking and purchasing. With newly generated
data, the recommendation model is accordingly updated.

7.1 Protocol

(Baselines) We use the same baselines described in Sect. 6.1.1.
To simplify the presented results, we choose the best result
from all the PyTorch-based IaaS baselines, denoted by
PyTorch®.

(Datasets and ML Models) Table 6 presents the (combi-
nation of) datasets and ML models used in our multi-tenant
evaluation. The number of workers was tuned to obtain the
best performance. The other settings are the same as those
presented in Table 3.

8 Distributed PyTorch with ADMM achieves the best results when
training LR and SVM, distributed PyTorch achieves the best results
when training KM, and distributed PyTorch with SGD achieves the
best results when training MN.

A systematic evaluation of machine learning on serverless infrastructure

(Deployment of IaaS Baselines) While we can simply create
one instant FaaS job for each incoming request, we need to
consider two deployment scenarios for laaS-based systems:

— On-demand IaaS. Once receiving a training job, we
launch the requested number of VMs, run the job, and
shutdown the VMs upon job completion.

— Reserved laaS. We reserve the maximum number of VMs
requested (by any job) and use them to run all training
jobs.

(Principles) We follow the same principle of Best versus best
in Sect. 6. For each workload, we have two ways to pick the
best system configurations:

— Min-Cost, in which we pick the configuration that mini-
mizes the cost in dollar.

— Min-Time, in which we pick the configuration that mini-
mizes the runtime.

(Experimental Design) Combing deployment scenarios
and principles, we obtain four experimental designs— “On-
demand” plus “Min-cost”, “On-demand” plus “Min-time”,
“Reserved” plus “Min-cost”, and “Reserved” plus “Min-
time”.

(Related Variables) In the experiments of reserved laaS,
there are two related variables:

— ReqRate refers to the average throughput of workload,
i.e., the average number of training jobs within a unit time
(e.g., per hour).

— MaxConc refers to the peak of the workload, i.e., the
maximum number of training jobs that are concurrently
executing.

To generate a workload using a certain combination of
ReqRate and MaxConc, we assume a period T having 7' x
Reg Rate jobs in total and a bursting peak of MaxConc jobs.

7.2 Training as a service

In the multi-tenant workload of training as a service, the
platform receives requests from users and trains ML models
until convergence.

7.2.1 “On-demand” plus “min-cost”

Forminimizing cost, FaaS-based frameworks are better
for ML tasks that are short-running and have minimal
communication. For long-running or communication-
heavy tasks, laaS is better.

For minimizing overall cost, Fig. 15 presents the results
using on-demand IaaS. We observe that LAMBDAML is either
the most or the second most economical when training linear
or clustering models, although the hourly pricing of Lambda
functions is higher than comparable VM instances. LAMB-
DAML can be more economical as its execution is much faster
than the baselines. Interestingly, the hybrid approach is the
most expensive one among the participants. This is not sur-
prising, though, as the Lambda functions have to wait for the
startup of the EC2 VM (as the parameter server), which sig-
nificantly increases the cost. On the other hand, when training
deep learning models such as MN, LAMBDAML becomes
much more expensive (e.g., 5x more than PyTorch), due to
both heavier communication and higher pricing.

7.2.2 “On-demand” plus “min-time”

For the goal of minimizing time, the results are sim-
ilar as minimizing cost. Besides, FaaS-based system
achieves better scalability.

As shown in Fig. 16, LAMBDAML is the fastest when train-
ing all the models except MN, with a speedup of up to 11 x.
An interesting observation we have is that we can increase
the number of workers for LAMBDAML if an ML model only
needs a few number of communications to converge. How-
ever, this is not true for the [aaS-based baselines—it might not
be worthwhile to rent more VMs due to the increased startup
time of the VMs. When training MN on Cifar10, however,
distributed PyTorch outperforms LAMBDAML, due to the sig-
nificant increase in communication cost that slows down
FaaS functions. MN is optimized by GA-SGD rather than
MA-SGD or ADMM, which is communication-intensive.
Moreover, compared to linear or clustering models, MN
requires solving a nonconvex optimization problem and
therefore needs more epochs and longer time before conver-
gence, alleviating the start-up saving of FaaS infrastructure.

7.2.3 “Reserved” plus “min-cost”

The relative cost of reserved laaS and FaasS is affected
by the peak and the average rate of jobs. laaS-based
system is cheaper with low degree of peak (maximal
concurrency) or high average rate, and is more expen-
sive in the opposite cases.

(MaxConc and ReqRate) By keeping the reserved laaS
instances (VMs) running, one can avoid the problem of slow
startup of VMs. However, it raises a new problem regarding
the number of VMs to be reserved. One needs to reserve as
many VMs as required by the peak of the workload (i.e., the
maximal concurrency of training jobs that are concurrently
executing). In our evaluation, we assume that this peak num-

@ Springer

J. Jiang et al.

10! PyTorch y## Angel HybridPS NS LambdaML = 575

—_ 2.25 N

?‘ 100 4 07 ;U.BW 0‘5‘ Dm'u,; 0.44 11A38é171 02 0454"]/3‘7712 - §

o) o 021404 N '4 m“ 2 : S N
o 10 'nmz, 0.05 008 0.06 0.081 006 / / \ / N / \

R e - BN NN

LR, Higgs SVM,Higgs KMeans,Higgs LR, RCV1 ~ SVM, RCV1 KMeans, RCV1 LR,YFCC SVM, YFCC KMeans, YFCC MN, Cifar10

Fig. 15 Training as a service (“on-demand” plus “min-cost”). y-axis is the cost in US dollars

"gma_ PyTorch @#%. Angel HybridPS NSNS LambdaML - m‘g
E 159 % 257 " ? o o ; o o % . . ;m 3 332 % 32 358 ; 495 30 '5; 347 360 % 359 §
2 o %% sV NY s s Nh N
s 7« % - V7N y\ %% 7 \ N ZN Z N\ N
K K XK K DD 1

LR, Higgs SVM,Higgs KMeans,Higgs LR, RCV1 SVM, RCV1 KMeans, RCV1 LR, YFCC SVM, YFCC KMeans, YFCC MN, Cifar10

Fig. 16 Training as a service (“on-demand” plus “min-time”). y-axis is the execution time in seconds

ber of VMs is known, although in practice one may have
to make an estimation that often results in overprovisioning.
For example, assume that a training job requires 10 workers,
each of which needs 1 vCPU and 3GB memory. We then need
in total 50 EC2 VM, if there are at most 10 concurrent jobs
and each EC2 VM is equipped with 2 vCPUs and 8GB. This
overprovisioning, however, might make resource in idle not
within the peak period. On the other hand, the cost of FaaS
functions is sensitive to the average request rate of ML train-
ing jobs instead of the maximum degree of concurrency, due
to its “on demand” and “pay by usage” nature.

(Fix ReqRate) Figure 17 presents the results when we fix
the average request rate (ReqRate) and increase the degree
of maximal concurrency (MaxConc). * We observe that the
cost of LAMBDAML remains the same regardless of the con-
currency level. The hybrid approach is more expensive than
LAMBDAML since it needs to keep a powerful VM running
as the parameter server. laaS-based systems, PyTorch and
Angel, need to reserve more EC2 instances for the peak con-
currency level, leading to linearly increasing costs.

(Fix MaxConc) Figure 18 further presents the results in
the other direction, i.e., when we fix the maximum degree of
concurrency (MaxConc) as 5 or 10 and increase the average
request rate (ReqRate). Now the costs of laaS-based sys-
tems remain the same, while the cost of FaaS-based system
increases linearly.

7.2.4 “Reserved” plus “min-time”
When the goal is minimizing time, FaaS$ is faster than

reserved laaS over short-running linear or clustering
Jjobs, while slower over long-running nonconvex jobs.

9 Due to space limitations, we show results of four representative tasks.
The observed patterns are the same on the other workloads.

@ Springer

Figure 19 presents the results when we switch the opti-
mization goal from minimizing the total cost to minimizing
the total execution time. Note that we use a reserved Mem-
cached for LAMBDAML to maximize the training speed. We
observe that LAMBDAML is faster than PyTorch and Angel
in most of the cases. Note that, although we do not need to
start VMs for PyTorch and Angel, it still takes time to sub-
mit training jobs. The hybrid approach is also slower than
LAMBDAML when training linear models, because it uses
GA-SGD, whereas LAMBDAML uses more efficient ADMM.
On the other hand, LAMBDAML is slower than PyTorch when
training MN on Cifar10, since our implementation using
Memcached requires more communication time.

7.3 Incremental training

We study another multi-tenant service, i.e., incremental train-
ing, in which an ML system stores an ML model, receives
new data from users, and updates the model incrementally.
The key difference to the first workload (training as a service)
is that incremental training only needs to scan new incoming
data for one pass.

7.3.1 “On-demand” plus “min-cost”

Figure 20 illustrates the results of incremental training using
on-demand IaaS that aims for minimizing cost. LAMBDAML
spends the least money on all models except KMeans/RCV 1
and MobileNet/Cifar10, and the cost saving can be at most
91% over linear models. When training KMeans on RCV1,
LAMBDAML runs 1.63 x faster than PyTorch, but the cost of
LAMBDAML is higher because the pricing of LAMBDAML
is 3.8 higher than EC2. LAMBDAML costs 2.6x more on
MobileNet owing to the same reason. This resonates with our

A systematic evaluation of machine learning on serverless infrastructure

Average Request Rate = 1/hour Average Request Rate = 10/hour Average Request Rate = 1/hour

Average Request Rate = 10/hour

2 10’!
—_ == PyTorch HybridPS 5 —_ == PyTorch HybridPS
5 A= Angel == LambdaML 5 107 <A Angel —4— LambdamL & 102
= o =
& 1004 / 1004w & 104 / /
- (S bl - 10" 4
3 & 104 — 5
102 T T T 1072 T T T 107! T T T 100 T T T
1 10 100 1 10 100 1 10 100 1 10 100
Maximal Request Concurrency Maximal Request Concurrency Maximal Request Concurrency Maximal Request Concurrency
(a) LR, Higgs. (b) KMeans, RCV1.
Average Request Rate = 1/hour Average Request Rate = 10/hour Average Request Rate = 1/hour Average Request Rate = 10/hour
1 1
_ ~i— PyTorch HybridPs 2 _ ~i— PyTorch
§ 107 4 o= Angel —4— LambdaML 1021 § 102 4 HybridPS 102 4 —%
£ - £ =6= LambdaML |
5 101 / 5 10" ambdal 1004 /
2 00] L g 0] / 0]
o Vv o
107! T T T 10° T T T 107" T T T 107 T T T
1 10 100 1 10 100 1 10 100 1 10 100

Maximal Request Concurrency Maximal Request Concurrency Maximal Request Concurrency

(¢) LR, YFCC100M.

Fig. 17 Training as a service (“reserved” plus “min-cost”). We fix ReqRate and increase MaxConc

Maximal Request Concurrency =5 Maximal Request Concurrency = 10 Maximal Request Concurrency =5

Maximal Request Concurrency

(d) MobileNet, Cifarl0.

Maximal Request Concurrency = 10

102
— == PyTorch HybridPS — == PyTorch HybridPs 4
§ A= Angel ~&= LambdaML § 101 | A= Angel ~&= LambdaML 101 1
2 2 = X A
& 100 100 4 & o A
a % 1004 100 4
o o
o o
102 T T T 1072 T T T 107! T T T 107 T T T
1 10 100 1 10 100 1 10 100 1 10 100
Average Request Rate Per Hour Average Request Rate Per Hour Average Request Rate Per Hour Average Request Rate Per Hour
(a) LR, Higgs. (b) KMeans, RCV1.
Maximal Request Concurrency =5 Maximal Request Concurrency = 10 . Maximal Request Concurrency =5 Maximal Request Concurrency = 10
10
—_ == PyTorch HybridPS —_ == PyTorch
5 1074 —A— Angel ~&= LambdaML 102 4 5 HybridPS ,
° o 107 4 10% 4
£ ; < == LambdaML
& 10"+ 10" 4 a
B % 10" 4 / 10" 4
S 1074 100 4 3 & N N & < -
107! T 107! T 100 T T 100 T T T
1 10 100

T
10 100
Average Request Rate Per Hour

T T
10 100
Average Request Rate Per Hour

T T
1 10 100 1
Average Request Rate Per hour

(c) LR, YFCC100M.

Fig. 18 Training as a service (“reserved” plus “min-cost”). We fix MaxConc and increase ReqRate

Average Request Rate Per Hour

(d) MobileNet, Cifar10.

N8N LambdaML

& PyTorch

@#% Angel HybridPS

Run time (seconds)

LR, Higgs SVM,Higgs KMeans, Higgs LR, RCV1 SVM, RCV1 KMeans, RCV1 LR, YFCC

Fig. 19 Training as a service (“reserved” plus “min-time”). y-axis is the execution time in seconds

SVM, YFCC KMeans, YFCC MN, Cifar10

10!
@82 PyTorch ##2. Angel HybridPS NNN LambdaML o 17 1 i
— 077 0.77 0.77
% uz; ke :51 035 yn.s1 2 '”5* 7 033 034
§ 10-" 4 . 0.05 0081 . 0.06 0083 N 0'0580,077 " 00 . s }/ § y § % § V \‘ N %
f . m- f J) m‘ J 0 un: * usy 0.007 > nvwz' 0.007 }“ \) \ \ } \ ’v‘ \

SVM, RCV1 KMeans, RCV1

LR, Higgs SVM, Higgs KMeans, Higgs LR, RCV1 LR, YFCC

Fig.20 Incremental training (“on-demand” plus “min-cost”). y-axis is the cost in US dollars

@ Springer

J. Jiang et al.

o
ES
L

LR, Higgs

SVM, Higgs KMeans, Higgs LR, RCV1

SVM, RCV1

% PyTorch @#% Angel HybridPS SSN LambdaML
E R RN N Y Y
T E R R T L

LR,YFCC 9V

<

KMeans, RCV1

Fig.21 Incremental training (“on-demand” plus “min-time”). y-axis is the execution time in seconds

4

37
174 177

N\
o, -

, YFCC KMeans, YFCC MN, Cifar10

LR, Higgs KMeans, RCV1 LR, YFCC100M MobileNet, Cifar10
E 101 PyTorch HybridPS A— e
8 —A— Angel —6— LambdaML ?’7543 e/e/é s :Z
= S — — :
g‘:? 10°! <9/9/é>
n
o
o T T T

1 5 10
Training Frequency Per Hour

1 5 10
Training Frequency Per Hour

1 5 10
Training Frequency Per Hour

Fig.22 Incremental training (“reserved” plus “min-cost”). y-axis is the cost in US dollars

1 5 10
Training Frequency Per Hour

"g PyTorch @#% Angel HybridPS N8N LambdaML
g 1027 2% 33 27 35 29 } %
E V% ?14 /13 W/m o W/
: / / > / \] /
i TGS INIs9N Y

LR, Higgs SVM, Higgs KMeans, Higgs LR, RCV1

LR

NK

SVM, RCV1 KMeans, RCV1

LR, YFCC SVM, YFCC KMeans, YFCC MN, Cifar10

Fig.23 Incremental training (“reserved” plus “min-time”). y-axis is the execution time in seconds

previous claim, that is, the FaaS-based solution does not fit
communication-intensive and long-running algorithms.

7.3.2 “On-demand” plus “min-time”

If one user requires minimizing the execution time using on-
demand IaaS, LAMBDAML is able to beat all the baselines
on all the models, as shown in Fig.21. Since incremental
training scans the input dataset for only one loop, LAMB-

DAML does not suffer from the communication dilemma of
FaaS infrastructure, and the improvement brought by the fast
startup of FaaS becomes important. Compared with training
as a service, FaaS reveals more benefits for incremental train-
ing because the communication cost is much less.

7.3.3 “Reserved” plus ‘min-cost”

In this study, we choose reserved laaS for incremental
training and require the minimal cost. The cost of LAMB-
DAML is affected by the training frequency since FaaS
platform charges for every triggering. The results on four
representative models are illustrated in Fig.22. When the
hourly training frequency increases from 1 to 10, the cost
of each laaS-based system does not change because their
cost is only affected by the number of reserved VMs. The

@ Springer

cost of LAMBDAML, however, increases linearly. FaaS-
based system is cost-efficient (up to 51x cheaper) over
linear models when the training is not frequent. Neverthe-
less, on communication-intensive or long-running models
(MobileNet/Cifar10, KMeans/RCV1), FaaS system is more
costly than IaaS system under a high training frequency.

7.3.4 “Reserved” plus “min-time”

Figure 23 shows the results using reserved IaaS under the
requirement of minimizing the execution time. Although
TaaS-based solutions save the startup time of VMs, they still
take some time to submit and initialize the job. Therefore,
LAMBDAML is faster than IaaS baselines over linear models
and clustering models. Besides, LAMBDAML achieves bet-
ter scalability than other systems. For example, LAMBDAML
achieves the best performance when using 500 workers for
LR on YFCC. However, the performance of PyTorch dete-
riorates when using 500 workers as a result of increased
time spent on submitting the tasks. Similar to earlier results,
LAMBDAML is slower than PyTorch over MobileNet which
is communication intensive. HybridPS utilizes gradient aver-
aging SGD as the optimization method over linear models,
therefore it is slower than LAMBDAML which uses ADMM.
Overall, LAMBDAML is at most 11 x faster than the baselines.

A systematic evaluation of machine learning on serverless infrastructure

~ 600 ~ 400

% PyTorch % PyTorch

c “= LambdaML < 300 4 PyTorch (Queue)

8 400 8 NN LambdaML

& &

~ ~ 200 A

[] []

"g" 2001 'g 100 N\

c N c §\

S |3

e Ne N\ EENNY |
TaaS IncTrain TaaS IncTrain

(a) Poisson Arrival Process. (b) Workload Scheduling

Fig.24 More workload scenarios. TaaS represents training as a service,
and IncTrain represents incremental training

7.4 Summary

After evaluating LAMBDAML over multi-tenant workloads,
we can draw the following conclusions:

For multi-tenant workloads, the performances of train-
ing systems are highly affected by the concurrency
and frequency of requests. Due to quick startup and
strong scalability, FaaS can be more promising than
laaS when the workload is bursty, short-running, and
communication-efficient.

7.5 More workload scenarios

In this section, we evaluate more flexible workload scenarios,
instead of fixed workloads in the above study.

(Poisson Arrival Process) Following a previous ML
workload trace [50], we assume the job arrival pattern is a
Poisson process with A = 2. The job type is randomly sam-
pled from Table 6, with the sample rate inversely proportional
to the average completion time. The maximal request concur-
rency and request rate are set to 10 and 10 per hour. Under
the setting of “On-demand” plus “Min-time,” we compare
LambdaML with PyTorch and report the average job run-
time in Fig.24a. We observe that LambdaML outperforms
PyTorch on two workloads, verifying that it can adapt to var-
ious job distributions.

(Workload Scheduling) For reserved IaaS, it is also pos-
sible to preserve fewer resources and queue the incoming
jobs. We conduct an experiment that allocates 50% resources
for the peak period and uses an FIFO queue to schedule the
jobs. We also choose the Poisson arrival process to gener-
ate jobs. As shown in Fig. 24b, introducing the job scheduler
inevitably increases the job completion time, but can save
significant costs meanwhile.

8 Conclusion

We conducted a systematic study regarding the tradeoff
between FaaS-based and laaS-based systems for training

ML models. We started by an anatomy of the design space
that covers the optimization algorithm, the communication
channel, the communication pattern, and the synchronization
protocol, which had not yet been explored by previous work.
We then implemented LAMBDAML, a prototype system of
FaaS-based training on Amazon Lambda, following which
we systematically depicted the tradeoff space and identified
cases where FaaS holds an edge. Our results indicate that ML
training pays off in serverless infrastructures only for models
with efficient (i.e., reduced) communication and that quickly
converge, or multi-tenant scenarios that are “bursty.”

(Future Work) Since serverless computing is a busy area,
we will keep studying new techniques proposed by the com-
munity. For example, there exists some early work that tries
to add networking in serverless infrastructure [67]; we will
explore how it would impact the trade-offs in our future work
if the serverless platforms include such features.

Acknowledgements This work was sponsored by National Key R&D
Program of China (No. 2022ZD0116315), Key R&D Program of
Hubei Province (No. 2023BAB077), the Fundamental Research Funds
for the Central Universities (No. 2042023kf0219). This work was
supported by Ant Group. We gratefully acknowledge the help from
Quanqing Xu (xuquanging.xqq@oceanbase.com) and Chuanhui Yang
(rizhao.ych@oceanbase.com) from OceanBase, AntGroup.

References

1. Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-
stores: how different are they really? In: SIGMOD, pp. 967-980
(2008)

2. Abadi, M., Barham, P., Chen, J., et al.: Tensorflow: a system for
large-scale machine learning. In: OSDI, pp. 265-283 (2016)

3. Akkus, LE., Chen, R., Rimac, I., et al.: Sand: towards high-
performance serverless computing. In: USENIX ATC, pp. 923-935
(2018)

4. Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic particles
in high-energy physics with deep learning. Nat. Commun. 5(1), 1-9
(2014)

5. Baldini, L., Castro, P., Chang, K., et al.: Serverless computing: cur-
rent trends and open problems. In: Research Advances in Cloud
Computing, pp. 1-20 (2017)

6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter opti-
mization. JMLR 13(2), 281-305 (2012)

7. Bergstra, J., Yamins, D., Cox, D.D., et al.: Hyperopt: a python
library for optimizing the hyperparameters of machine learning
algorithms. In: SciPy, vol. 13, p. 20 (2013)

8. Bhattacharjee, A., Barve, Y., Khare, S., Bao, S., Gokhale, A.,
Damiano, T.: Stratum: a serverless framework for the lifecycle
management of machine learning-based data analytics tasks. In:
OpML, pp. 59-61 (2019)

9. Boehm, M., Tatikonda, S., Reinwald, B., et al.: Hybrid paral-
lelization strategies for large-scale machine learning in systemML.
VLDB 7(7), 553-564 (2014)

10. Boyd, S., Parikh, N., Chu, E., et al.: Distributed optimization and
statistical learning via the alternating direction method of multipli-
ers. Found. Trends Mach. Learn. 3(1), 1-122 (2011)

11. Cao, W, Zhang, Y., Yang, X., Li, F, Wang, S., Hu, Q., Cheng,
X., Chen, Z., Liu, Z., Fang, J., et al.: PolarDB serverless: a cloud

@ Springer

J. Jiang et al.

13.

14.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

native database for disaggregated data centers. In: SIGMOD, pp.
2477-2489 (2021)

Carreira, J., Fonseca, P., Tumanov, A., Zhang, A., Katz, R.: Cirrus:
a serverless framework for end-to-end ML workflows. In: SoCC,
pp. 13-24 (2019)

Castro, P., Ishakian, V., Muthusamy, V., Slominski, A.: The rise of
serverless computing. Commun. ACM 62(12), 44-54 (2019)
Chaturapruek, S., Duchi, J.C., Ré, C.: Asynchronous stochastic
convex optimization: the noise is in the noise and SGD don’t care.
In: NeurIPS, pp. 1531-1539 (2015)

. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system.

In: SIGKDD, pp. 785-794 (2016)

Dean, J., Corrado, G., Monga, R., et al.: Large scale distributed
deep networks. In: NeurIPS, pp. 1223-1231 (2012)

Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyper-
parameter optimization at scale. In: ICML, pp. 1437-1446 (2018)
Fard, A., Le, A., Larionov, G., Dhillon, W., Bear, C.: Vertica-ML:
distributed machine learning in vertica database. In: SIGMOD, pp.
755-768 (2020)

Feng, L., Kudva, P, Da Silva, D., Hu, J.: Exploring serverless
computing for neural network training. In: CLOUD, pp. 334-341
(2018)

Fingler, H., Akshintala, A., Rossbach, C.J.: USETL: unikernels
for serverless extract transform and load why should you settle for
less? In: APSys, pp. 23-30 (2019)

Gropp, W., Gropp, W.D., Lusk, E., Lusk, A.D.EE.E., Skjellum,
A.: Using MPI: portable parallel programming with the message-
passing interface, vol. 1 (1999)

Gupta, V., Kadhe, S., Courtade, T., Mahoney, M.W., Ramchandran,
K.: Oversketched Newton: fast convex optimization for serverless
systems. arXiv:1903.08857 (2019)

Hellerstein, J.M., Faleiro, .M., Gonzalez, J., et al.: Serverless com-
puting: one step forward, two steps back. In: CIDR (2019)
Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V.,
Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Serverless compu-
tation with openlambda. In: HotCloud (2016)

Ho, Q., Cipar, J., Cui, H., et al.: More effective distributed ml
via a stale synchronous parallel parameter server. In: NeurIPS, pp.
1223-1231 (2013)

Hsieh, K., Harlap, A., Vijaykumar, N., Konomis, D., Ganger, G.R.,
Gibbons, P.B., Mutlu, O.: Gaia: geo-distributed machine learning
approaching LAN speeds. In: NSDI, pp. 629-647 (2017)

Huang, Y., Jin, T., Wu, Y., et al.: FlexPS: flexible parallelism control
in parameter server architecture. VLDB 11(5), 566-579 (2018)
Ishakian, V., Muthusamy, V., Slominski, A.: Serving deep learning
models in a serverless platform. In: IC2E, pp. 257-262 (2018)
Jiang, J., Cui, B., Zhang, C., Fu, E.: DimBoost: boosting gradi-
ent boosting decision tree to higher dimensions. In: SIGMOD, pp.
1363-1376 (2018)

Jiang, J., Cui, B., Zhang, C., Yu, L.: Heterogeneity-aware dis-
tributed parameter servers. In: SIGMOD, pp. 463-478 (2017)
Jiang, J., Fu, F.,, Yang, T., Cui, B.: SketchML: accelerating dis-
tributed machine learning with data sketches. In: SIGMOD, pp.
1269-1284 (2018)

Jiang, J., Yu, L., Jiang, J., Liu, Y., Cui, B.: Angel: a new large-scale
machine learning system. Natl. Sci. Rev. 5(2), 216-236 (2018)
Jonas, E., Schleier-Smith, J., Sreekanti, V., et al.: Cloud pro-
gramming simplified: a Berkeley view on serverless computing.
arXiv:1902.03383 (2019)

Kaoudi, Z., Quiané-Ruiz, J.A., Thirumuruganathan, S., Chawla,
S., Agrawal, D.: A cost-based optimizer for gradient descent opti-
mization. In: SIGMOD, pp. 977-992 (2017)

Kara, K., Eguro, K., Zhang, C., Alonso, G.: ColumnML: column-
store machine learning with on-the-fly data transformation. VLDB
12(4), 348-361 (2018)

@ Springer

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

. Klein, A., Falkner, S., Mansur, N., Hutter, F.: RoBO: a flexible and

robust Bayesian optimization framework in Python. In: NIPS 2017
Bayesian Optimization Workshop, pp. 4-9 (2017)

Klimovic, A., Wang, Y., Kozyrakis, C., Stuedi, P., Pfefferle, J.,
Trivedi, A.: Understanding ephemeral storage for serverless ana-
lytics. In: USENIX ATC, pp. 789-794 (2018)

Klimovic, A., Wang, Y., Stuedi, P., Trivedi, A., Pfefferle, J.,
Kozyrakis, C.: Pocket: elastic ephemeral storage for serverless ana-
lytics. In: OSDI, pp. 427-444 (2018)

Kraska, T., Talwalkar, A., Duchi, J.C., Griffith, R., Franklin, M.J.,
Jordan, M.I.: MLbase: a distributed machine-learning system. In:
CIDR, vol. 1, pp. 2-1 (2013)

Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark
collection for text categorization research. JIMLR 5(4), 361-397
(2004)

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar,
A.: Hyperband: a novel bandit-based approach to hyperparameter
optimization. JIMLR 18(1), 6765-6816 (2017)

Li, M., Andersen, D.G., Smola, A.J., Yu, K.: Communication effi-
cient distributed machine learning with the parameter server. In:
NeurIPS, pp. 19-27 (2014)

Li, S., Zhao, Y., Varma, R., et al.: PyTorch distributed: experiences
on accelerating data parallel training. VLDB 13(12), 3005-3018
(2020)

Liaw, R., Bhardwaj, R., Dunlap, L., Zou, Y., Gonzalez, J.E., Stoica,
I., Tumanov, A.: HyperSched: dynamic resource reallocation for
model development on a deadline. In: SoCC, pp. 61-73 (2019)
Liu, J., Zhang, C.: Distributed learning systems with first-order
methods. Found. Trends Databases 9, 1-100 (2020)

McSherry, F,, Isard, M., Murray, D.G.: Scalability! but at what cost?
In: HotOS (2015)

Meng, X., Bradley, J., Yavuz, B., et al.: MLIlib: machine learning
in apache spark. JMLR 17(1), 1235-1241 (2016)

Misra, U., Liaw, R., Dunlap, L., Bhardwaj, R., Kandasamy, K.,
Gonzalez, J.E., Stoica, 1., Tumanov, A.: RubberBand: cloud-based
hyperparameter tuning. In: EuroSys, pp. 327-342 (2021)

Miiller, 1., Marroquin, R., Alonso, G.: Lambada: interactive data
analytics on cold data using serverless cloud infrastructure. In: SIG-
MOD, pp. 115-130 (2020)

Narayanan, D., Santhanam, K., Kazhamiaka, F., Phanishayee, A.,
Zaharia, M.: Heterogeneity-aware cluster scheduling policies for
deep learning workloads. In: OSDI, pp. 481-498 (2020)

Ooi, B.C., Tan, K.L., Wang, S., et al.: SINGA: a distributed deep
learning platform. In: MM, pp. 685-688 (2015)

Paszke, A., Gross, S., Massa, F., et al.: PyTorch: an imperative style,
high-performance deep learning library. NeurIPS 32, 8026-8037
(2019)

Perron, M., Castro Fernandez, R., DeWitt, D., Madden, S.: Starling:
A scalable query engine on cloud functions. In: SIGMOD, pp. 131-
141 (2020)

Poppe, O., Guo, Q., Lang, W., Arora, P., Oslake, M., Xu, S., Kalhan,
A.: Moneyball: proactive auto-scaling in Microsoft Azure SQL
database serverless. In: VLDB (2022)

Pu, Q., Venkataraman, S., Stoica, I.: Shuffling, fast and slow: scal-
able analytics on serverless infrastructure. In: NSDI, pp. 193-206
(2019)

Rausch, T., Hummer, W., Muthusamy, V., Rashed, A., Dustdar, S.:
Towards a serverless platform for edge Al In: HotEdge (2019)
Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In: NeurIPS,
pp. 693-701 (2011)

Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J., Yad-
wadkar, N.J., Popa, R.A., Gonzalez, J.E., Stoica, L., Patterson, D.A.:
What serverless computing is and should become: the next phase
of cloud computing. Commun. ACM 64(5), 76-84 (2021)

http://arxiv.org/abs/1903.08857
http://arxiv.org/abs/1902.03383

A systematic evaluation of machine learning on serverless infrastructure

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Shankar, V., Krauth, K., Pu, Q., etal.: Numpywren: serverless linear
algebra. arXiv:1810.09679 (2018)

Sparks, E.R., Venkataraman, S., Kaftan, T., Franklin, M.J., Recht,
B.: KeystoneML: optimizing pipelines for large-scale advanced
analytics. In: ICDE, pp. 535-546 (2017)

Tandon, R., Lei, Q., Dimakis, A.G., Karampatziakis, N.: Gradient
coding: avoiding stragglers in distributed learning. In: ICML, pp.
3368-3376 (2017)

Tang, H., Gan, S., Zhang, C., Zhang, T., Liu, J.: Communication
compression for decentralized training. In: NeurIPS, pp. 7663—
7673 (2018)

Tang, H., Lian, X., Yan, M., Zhang, C., Liu, J.: D2: decentralized
training over decentralized data. In: ICML, pp. 4848-4856 (2018)
Wang, H., Niu, D., Li, B.: Distributed machine learning with a
serverless architecture. In: INFOCOM, pp. 1288-1296 (2019)
Wang, J., Joshi, G.: Adaptive communication strategies to
achieve the best error-runtime trade-off in local-update sgd.
arXiv:1810.08313 (2018)

Wang, L., Li, M., Zhang, Y., Ristenpart, T., Swift, M.: Peeking
behind the curtains of serverless platforms. In: USENIX ATC, pp.
133-146 (2018)

Wawrzoniak, M., Miiller, 1., Fraga Barcelos Paulus Bruno, R.,
Alonso, G.: Boxer: data analytics on network-enabled serverless
platforms. In: CIDR (2021)

Wu, Y., Dinh, T.T.A., Hu, G., Zhang, M., Chee, Y.M., Ooi, B.C.:
Serverless data science-are we there yet? A case study of model
serving (2022)

69.

70.

71.

72.

Zhang, H., Li, J., Kara, K., Alistarh, D., Liu, J., Zhang, C.: ZipML:
training linear models with end-to-end low precision, and a little
bit of deep learning. In: ICML, pp. 4035-4043 (2017)

Zhang, Z., Jiang, J., Wu, W., Zhang, C., Yu, L., Cui, B.: MLIlib*:
fast training of GLMs using spark MLIib. In: ICDE, pp. 1778-1789
(2019)

Zheng, S., Meng, Q., Wang, T., et al.: Asynchronous stochastic
gradient descent with delay compensation. In: ICML, pp. 4120-
4129 (2017)

Zinkevich, M., Weimer, M., Smola, A.J., Li, L.: Parallelized
stochastic gradient descent. In: NeurIPS, pp. 2595-2603 (2010)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer

http://arxiv.org/abs/1810.09679
http://arxiv.org/abs/1810.08313

	A systematic evaluation of machine learning on serverless infrastructure
	Abstract
	1 Introduction
	2 Related work
	2.1 Distributed ML
	2.1.1 Distributed optimization

	2.2 Serverless data processing

	3 Preliminaries
	4 LambdaML
	4.1 Challenges and solutions
	4.1.1 Optimization algorithm
	4.1.2 Communication channel
	4.1.3 Communication pattern
	4.1.4 Synchronization protocol

	4.2 Implementation of LambdaML
	4.2.1 Overview of LambdaML
	4.2.2 Synchronization implementation
	4.2.3 Handling limited lifetime

	4.3 Hyper-parameter tuning
	4.3.1 Framework of tuning module
	4.3.2 Tuning approaches

	5 Evaluation of LambdaML
	5.1 Experiment settings
	5.2 Optimization algorithms
	5.3 Communication channels
	5.4 Communication patterns
	5.5 Synchronization protocols

	6 FaaS versus IaaS for single training workload
	6.1 Empirical study
	6.1.1 Experimental settings
	6.1.2 Experimental results

	6.2 Evaluation of hyper-parameter tuning
	6.3 Analytical model
	6.3.1 Validation of analytical model

	6.4 Insights and case studies
	6.4.1 Case studies

	7 FaaS versus IaaS for multi-tenant workloads
	7.1 Protocol
	7.2 Training as a service
	7.2.1 ``On-demand'' plus ``min-cost''
	7.2.2 ``On-demand'' plus ``min-time''
	7.2.3 ``Reserved'' plus ``min-cost''
	7.2.4 ``Reserved'' plus ``min-time''

	7.3 Incremental training
	7.3.1 ``On-demand'' plus ``min-cost''
	7.3.2 ``On-demand'' plus ``min-time''
	7.3.3 ``Reserved'' plus `min-cost''
	7.3.4 ``Reserved'' plus ``min-time''

	7.4 Summary
	7.5 More workload scenarios

	8 Conclusion
	Acknowledgements
	References

