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Index tuning aims to find the optimal index configuration for an input workload. It is often a time-consuming

and resource-intensive process, largely attributed to the huge amount of “what-if” calls made to the query

optimizer during configuration enumeration. Therefore, in practice it is desirable to set a budget constraint that
limits the number of what-if calls allowed. This yields a new problem of budget allocation, namely, deciding

on which query-configuration pairs (QCP’s) to issue what-if calls. Unfortunately, optimal budget allocation

is NP-hard, and budget allocation decisions made by existing solutions can be inferior. In particular, many

of the what-if calls allocated by using existing solutions are devoted to QCP’s whose what-if costs can be

approximated by using cost derivation, a well-known technique that is computationally much more efficient

and has been adopted by commercial index tuning software. This results in considerable waste of the budget,

as these what-if calls are unnecessary. In this paper, we propose “Wii,” a lightweight mechanism that aims to

avoid such spurious what-if calls. It can be seamlessly integrated with existing configuration enumeration

algorithms. Experimental evaluation on top of both standard industrial benchmarks and real workloads

demonstrates that Wii can eliminate significant number of spurious what-if calls. Moreover, by reallocating
the saved budget to QCP’s where cost derivation is less accurate, existing algorithms can be significantly

improved in terms of the final configuration found.
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1 INTRODUCTION
Index tuning aims to find the optimal index configuration (i.e., a set of indexes) for an input workload
of SQL queries. It is often a time-consuming and resource-intensive process for large and complex

workloads in practice. From user’s perspective, it is therefore desirable to constrain the index

tuner/advisor by limiting its execution time and resource, with the compromise that the goal of

index tuning shifts to seeking the best configuration within the given time and resource constraints.

Indeed, commercial index tuners, such as the Database Tuning Advisor (DTA) developed for
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Fig. 1. The architecture of budget-aware index tuning with “Wii”, i.e., what-if (call) interception, where𝑊
represents the input workload, 𝑞𝑖 ∈𝑊 represents an individual SQL query in the workload, Γ represents a
set of tuning constraints, 𝐵 represents the budget on the number of what-if calls allowed. Moreover, {𝑧 𝑗 }
represents the set of candidate indexes generated for𝑊 , and 𝐶 ⊆ {𝑧 𝑗 } represents an index configuration
proposed during configuration enumeration.

Microsoft SQL Server, have been offering a timeout option that allows user to explicitly control the

execution time of index tuning to prevent it from running indefinitely [1, 7]. More recently, there

has been a proposal of budget-aware index tuning that puts a budget constraint on the number of

“what-if” (optimizer) calls [46], motivated by the observation that most of the time and resource in

index tuning is spent on what-if calls [19, 26] made to the query optimizer during configuration

enumeration (see Figure 1).

A what-if call takes as input a query-configuration pair (QCP) and returns the estimated cost of

the query by utilizing the indexes in the configuration. It is the same as a regular query optimizer

call except for that it also takes hypothetical indexes, i.e., indexes that are proposed by the index

tuner but have not been materialized, into consideration [9, 40]. There can be thousands or even

millions of potential what-if calls when tuning large and complex workloads [36]. Therefore, it is

not feasible to make a what-if call for every QCP encountered in configuration enumeration/search.

As a result, one key problem in budget-aware index tuning is budget allocation, where one needs to
determine which QCP’s to make what-if calls for so that the index tuner can find the best index

configuration. Unfortunately, optimal budget allocation is NP-hard [6, 11, 46]. Existing budget-

aware configuration search algorithms [46] range from adaptations of the classic greedy search

algorithm [8] to more sophisticated approaches with Monte Carlo tree search (MCTS) [18], which

allocate budget by leveraging various heuristics. For example, the greedy-search variants adopt a

simple “first come first serve” (FCFS) strategy where what-if calls are allocated on demand, and the

MCTS-based approach considers the rewards observed in previous budget allocation steps to decide

the next allocation step. These budget allocation strategies can be inferior. In particular, we find

in practice that many of the what-if calls made are unnecessary, as their corresponding what-if

costs are close to the approximations given by a well-known technique called cost derivation [8].

Compared to making a what-if call, cost derivation is computationally much more efficient and has

been integrated into commercial index tuning software such as DTA [1, 7]. In the rest of this paper,

we refer to the approximation given by cost derivation as the derived cost. Figure 2 presents the
distribution of the relative gap between what-if cost and derived cost when tuning the TPC-DS

benchmark workload with 99 complex queries. We observe that 80% to 90% of the what-if calls were

made for QCP’s with relative gap below 5%, for two state-of-the-art budget-aware configuration

search algorithms two-phase greedy and MCTS (Section 2.2). If we know that the derived cost is
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Fig. 2. Distribution of the relative gap between what-if cost and derived cost when tuning TPC-DS under a
budget of 5,000 what-if calls. Here the relative gap is defined as derived cost−what-if cost

derived cost × 100%, as derived cost
is an upper bound of the what-if cost under monotonicity assumption.

indeed a good approximation, we can avoid such a spurious what-if call. The challenge, however, is
that we need to learn this fact before the what-if call is made.

The best knowledge we have so far is that, under mild assumption on the monotonicity of query

optimizer’s cost function (i.e., a larger configuration with more indexes should not increase the

query execution cost), the derived cost acts as an upper bound of the what-if cost (Section 2.2.2).

However, the what-if cost can still lie anywhere between zero and the derived cost. In this paper,

we take one step further by proposing a generic framework that develops a lower bound for the

what-if cost. The gap between the lower bound and the upper bound (i.e., the derived cost) therefore

measures the closeness between the what-if cost and the derived cost. As a result, it is safe to avoid

a what-if call when this gap is small and use the derived cost as a surrogate.

Albeit a natural idea, there are a couple of key requirements to make it relevant in practice. First,

the lower bound needs to be nontrivial, i.e., it needs to be as close to the what-if cost as possible—an
example of a trivial but perhaps useless lower bound would be always setting it to zero. Second,

the lower bound needs to be computationally efficient compared to making a what-if call. Third,

the lower bound needs to be integratable with existing budget-aware configuration enumeration

algorithms. In this paper, we address these requirements as follows.

Nontriviality. We develop a lower bound that depends only on common properties of the cost

functions used by the query optimizer, such as monotonicity and submodularity, which have

been widely assumed by previous work [10, 15, 22, 31, 44] and independently verified in our

own experiments [41]. In a nutshell, it looks into the marginal cost improvement (MCI) that each

individual index in the given configuration can achieve, and then establishes an upper bound on the

cost improvement (and therefore a lower bound on the what-if cost) of the given configuration by

summing up the upper bounds on the MCI’s of individual indexes (Section 3.1). We further propose

optimization techniques to refine the lower bound for budget-aware greedy search algorithms

(Section 4.1) and MCTS-based algorithms (Section 4.2).

Efficiency. We demonstrate that the computation time of our lower bound is orders of magnitude
less compared to a what-if call, though it is in general more expensive than computing the upper

bound, i.e., the derived cost (Section 6.4). For example, as shown in Figure 16(b), when running the

MCTS configuration enumeration algorithm on top of the TPC-DS benchmark, on average it takes

0.02 ms and 0.04 ms to compute the derived cost and our lower bound, respectively; in contrast, the

average time of making a what-if call to the query optimizer is around 800 ms.

Integratability. We demonstrate that our lower bound can be seamlessly integrated with existing

budget-aware index tuning algorithms (Section 5). From a software engineering perspective, the
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integration is non-intrusive, meaning that there is no need to change the architecture of the current

cost-based index tuning software stack. As illustrated in Figure 1, we encapsulate the lower-bound

computation inside a component called “Wii,” which is shorthand for “what-if (call) interception.”

During configuration enumeration, Wii intercepts every what-if call made to the query optimizer,

computes the lower bound of the what-if cost, and then checks the closeness between the lower

bound and the derived cost (i.e., the upper bound) with a confidence-based mechanism (Section 3.3).

If Wii feels confident enough, it will skip the what-if call and instead send the derived cost back to

the configuration enumerator.

More importantly, we demonstrate the efficacy of Wii in terms of (1) the number of what-if calls

it allows to skip (Section 6.3) and (2) the end-to-end improvement on the final index configuration

found (Section 6.2). The latter is perhaps the most valuable benefit of Wii in practice, and we show

that, by reallocating the saved budget to what-if calls where Wii is less confident, it can yield

significant improvement on both standard industrial benchmarks and real customer workloads

(Section 6.2). For example, as showcased in Figure 6(f), with 5,000 what-if calls as budget and

20 as the maximum configuration size allowed, on TPC-DS Wii improves the baseline two-phase
greedy configuration enumeration algorithm by increasing the percentage improvement of the final
configuration found from 50% to 65%; this is achieved by skipping around 18,000 unnecessary

what-if calls, as shown in Figure 14(b).

Last but not least, while we focus on budget-aware index tuning in this paper, Wii can also be

used in a special situation where one does not enforce a budget on the index tuner, namely, the

tuner has unlimited budget on the number of what-if calls. This special situation may make sense

if, for example, one has a relatively small workload. Wii plays a different role here. Since there is

no budget constraint, Wii cannot improve the quality of the final configuration found, as the best

quality can anyways be achieved by keeping on issuing what-if calls to the query optimizer. Instead,

by skipping spurious what-if calls, Wii can significantly improve the overall efficiency of index

tuning. For example, without a budget constraint, when tuning the standard TPC-H benchmark

with 22 queries, Wii can reduce index tuning time by 4× while achieving the same quality on the

best configuration found (Section 6.8).

2 PRELIMINARIES
In this section, we present a brief overview of the budget-aware index configuration search problem.

2.1 Cost-based Index Tuning
As Figure 1 shows, cost-based index tuning consists of two stages:

• Candidate index generation. We generate a set of candidate indexes for each query in the

workload based on the indexable columns [8]. Indexable columns are those that appear in

the selection, join, group-by, and order-by expressions of a SQL query, which are used as key
columns for fast seek-based index look-ups. We then take the union of the candidate indexes

from individual queries as the candidate indexes for the entire workload.

• Configuration enumeration. We search for a subset (i.e., a configuration) of the candidate
indexes that can minimize the what-if cost of the workload, with respect to constraints such

as the maximum number of indexes allowed or the total amount of storage taken by the

index configuration.

Index tuning is time-consuming and resource-intensive, due to the large amount of what-if calls

issued to the query optimizer during configuration enumeration/search. Therefore, previous work

proposes putting a budget on the amount of what-if calls that can be issued during configuration

search [46]. We next present this budget-aware configuration search problem in more detail.
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Fig. 3. Example of budget-aware greedy search.

2.2 Budget-aware Configuration Search
2.2.1 Problem Statement. Given an input workload𝑊 with a set of candidate indexes 𝐼 [8], a

set of constraints Γ, and a budget 𝐵 on the number of what-if calls allowed during configuration

enumeration, our goal is to find a configuration 𝐶∗ ⊆ 𝐼 whose what-if cost 𝑐 (𝑊,𝐶∗) is minimized

under the constraints given by Γ and 𝐵.

In this paper, we focus on index tuning for data analytic workloads𝑊 (e.g., the TPC-H and

TPC-DS benchmark workloads). Although the constraints in Γ can be arbitrary, we focus on the

cardinality constraint 𝐾 that specifies the maximum configuration size (i.e., the number of indexes

contained by the configuration) allowed. Moreover, under a limited budget 𝐵, it is often impossible

to know the what-if cost of every query-configuration pair (QCP) encountered during configuration

enumeration. Therefore, to estimate the costs for QCP’s where what-if calls are not allocated,

one has to rely on approximation of the what-if cost without invoking the query optimizer. One

common approximation technique is cost derivation [7, 8], as we discuss below.

2.2.2 Cost Derivation. Given a QCP (𝑞,𝐶), its derived cost 𝑑 (𝑞,𝐶) is the minimum cost over all

subset configurations of 𝐶 with known what-if costs. Formally,

Definition 1 (Derived Cost). The derived cost of 𝑞 over 𝐶 is

𝑑 (𝑞,𝐶) = min

𝑆⊆𝐶
𝑐 (𝑞, 𝑆). (1)

Here, 𝑐 (𝑞, 𝑆) is the what-if cost of 𝑞 using only a subset 𝑆 of indexes from the configuration 𝐶 .

We assume the following monotone property [15, 31] of index configuration costs w.r.t. to an

arbitrary query 𝑞:

Assumption 1 (Monotonicity). Let 𝐶1 and 𝐶2 be two index configurations where 𝐶1 ⊆ 𝐶2. Then
𝑐 (𝑞,𝐶2) ≤ 𝑐 (𝑞,𝐶1).

That is, including more indexes into a configuration does not increase the what-if cost. Our

validation results using Microsoft SQL Server show that monotonicity holds with probability

between 0.95 and 0.99, on a variety of benchmark and real workloads (see [41] for details). Under

Assumption 1, we have

𝑑 (𝑞,𝐶) ≥ 𝑐 (𝑞,𝐶),
i.e., derived cost is an upper bound 𝑈 (𝑞,𝐶) of what-if cost:

𝑈 (𝑞,𝐶) = 𝑑 (𝑞,𝐶) = min

𝑆⊆𝐶
𝑐 (𝑞, 𝑆).

2.2.3 Existing Solutions. The budget-aware configuration search problem is NP-hard. At the core of

this problem is budget allocation, namely, to decide on which QCP’s to make what-if calls. Existing

heuristic solutions to the problem include: (1) vanilla greedy, (2) two-phase greedy, (3) AutoAdmin
greedy, and (4) MCTS. Since (2) and (3) are similar, we omit (3) in this paper.
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Fig. 4. Example of budget allocation in MCTS.

Vanilla greedy. Figure 3(a) illustrates the vanilla greedy algorithm with an example of three

candidate indexes {𝑧1, 𝑧2, 𝑧3} and the cardinality constraint 𝐾 = 2. Throughout this paper, we use ∅
to represent the existing configuration. Vanilla greedy works step-by-step, where each step adopts

a greedy policy to choose the next index to be included that can minimize the workload cost on

the chosen configuration. In this example, we have two greedy steps. The first step examines the

three singleton configurations {𝑧1}, {𝑧2}, and {𝑧3}. Suppose that {𝑧2} results in the lowest workload

cost. The second step tries to expand {𝑧2} by adding one more index, which leads to two candidate

configurations {𝑧1, 𝑧2} and {𝑧2, 𝑧3}. Suppose that {𝑧1, 𝑧2} is better and therefore returned by vanilla
greedy. Note that the configuration {𝑧1, 𝑧3} is never visited in this example. Vanilla greedy adopts a

simple “first come first serve (FCFS)” budget allocation policy to make what-if calls.

Two-phase greedy. Figure 3(b) illustrates the two-phase greedy algorithm that can be viewed as

an optimization on top of vanilla greedy. Specifically, there are two phases of greedy search in

two-phase greedy. In the first phase, we view each query as a workload by itself and run vanilla
greedy on top of it to obtain the best configuration for that query. In this particular example, we

have three queries 𝑞1, 𝑞2, and 𝑞3 in the workload. After running vanilla greedy, we obtain their

best configurations 𝐶∗
1
, 𝐶∗

2
, and 𝐶∗

3
, respectively. In the second phase, we take the union of the best

configurations found for individual queries and use that as the refined set of candidate indexes

for the entire workload. We then run vanilla greedy again for the workload with this refined

set of candidate indexes, as depicted in Figure 3(b) for the given example. Two-phase greedy has

particular importance in practice as it has been adopted by commercial index tuning software such

as Microsoft’s Database Tuning Advisor (DTA) [1, 7]. Again, budget is allocated with the simple

FCFS policy—the same as in vanilla greedy.

MCTS. Figure 4 illustrates the MCTS algorithm with the same example used in Figure 3. It is

an iterative procedure that allocates one what-if call in each iteration until the budget runs out.

The decision procedure in each iteration on which query and which configuration to issue the

what-if call is an application of the classic Monte Carlo tree search (MCTS) algorithm [3] in the

context of index configuration search. It involves four basic steps: (1) selection, (2) expansion, (3)

simulation, and (4) update. Due to space limitation, we refer the readers to [46] for the full details

of this procedure. After all what-if calls are issued, we run vanilla greedy again without making

extra what-if calls to find the best configuration. Our particular version of MCTS here employs an

𝜖-greedy policy [39] when selecting the next index to explore.

3 WHAT-IF CALL INTERCEPTION
We develop “Wii” that can skip spurious what-if calls where their what-if costs and derived costs

are close. One key idea is to develop a lower bound for the what-if cost: if the gap between the
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lower bound and the derived cost is small, then it is safe to skip the what-if call. In this section,

we present the generic form of the lower bound, as well as a confidence-based framework used by

Wii on top of the lower bound to skip spurious what-if calls. We defer the discussion on further

optimizations of the lower bound to Section 4.

3.1 Lower Bound of What-if Cost
We use 𝐿(𝑞,𝐶) to denote the lower bound of the what-if cost 𝑐 (𝑞,𝐶). In the following, we first

introduce the notion ofmarginal cost improvement (MCI) of an index, which indicates the additional

benefit of adding this index to a configuration for a query. We then establish 𝐿(𝑞,𝐶) by leveraging

the upper bounds of MCI.

Definition 2 (Marginal Cost Improvement). We define the marginal cost improvement (MCI)
of an index 𝑧 with respect to a query 𝑞 and a configuration 𝑋 as

𝛿 (𝑞, 𝑧, 𝑋 ) = 𝑐 (𝑞,𝑋 ) − 𝑐 (𝑞,𝑋 ∪ {𝑧}) . (2)

Definition 3 (Cost Improvement). We define the cost improvement (CI) of a query 𝑞 given a
configuration 𝑋 as

Δ(𝑞,𝑋 ) = 𝑐 (𝑞, ∅) − 𝑐 (𝑞,𝑋 ). (3)

We can express CI in terms of MCI. Specifically, consider a query 𝑞 and a configuration 𝐶 =

{𝑧1, ..., 𝑧𝑚}. The cost improvement Δ(𝑞,𝐶) can be seen as the sum of MCI’s by adding the indexes

from 𝐶 one by one, namely,

Δ(𝑞,𝐶) =
(
𝑐 (𝑞, ∅) − 𝑐 (𝑞, {𝑧1})

)
+
(
𝑐 (𝑞, {𝑧1}) − 𝑐 (𝑞, {𝑧1, 𝑧2})

)
+ · · · +

(
𝑐 (𝑞, {𝑧1, ..., 𝑧𝑚−1}) − 𝑐 (𝑞,𝐶)

)
.

Let 𝐶0 = ∅ and 𝐶 𝑗 = 𝐶 𝑗−1 ∪ {𝑧 𝑗 } for 1 ≤ 𝑗 ≤ 𝑚. It follows that 𝐶𝑚 = 𝐶 and therefore, Δ(𝑞,𝐶) =∑𝑚
𝑗=1 𝛿 (𝑞, 𝑧 𝑗 ,𝐶 𝑗−1).
If we can have a configuration-independent upper bound 𝑢 (𝑞, 𝑧 𝑗 ) for 𝛿 (𝑞, 𝑧 𝑗 ,𝐶 𝑗−1), namely,

𝑢 (𝑞, 𝑧 𝑗 ) ≥ 𝛿 (𝑞, 𝑧 𝑗 , 𝑋 ) for any 𝑋 , then

Δ(𝑞,𝐶) ≤
∑︁𝑚

𝑗=1
𝑢 (𝑞, 𝑧 𝑗 ).

As a result,

𝑐 (𝑞, ∅) − 𝑐 (𝑞,𝐶) ≤
∑︁𝑚

𝑗=1
𝑢 (𝑞, 𝑧 𝑗 ),

and it follows that

𝑐 (𝑞,𝐶) ≥ 𝑐 (𝑞, ∅) −
∑︁𝑚

𝑗=1
𝑢 (𝑞, 𝑧 𝑗 ).

We therefore can set the lower bound 𝐿(𝑞,𝐶) as

𝐿(𝑞,𝐶) = 𝑐 (𝑞, ∅) −
∑︁𝑚

𝑗=1
𝑢 (𝑞, 𝑧 𝑗 ). (4)

Generalization. This idea can be further generalized if we know the what-if costs of configurations

that are subsets of𝐶 . Specifically, let 𝑆 ⊂ 𝐶 be a subset of𝐶 with knownwhat-if cost 𝑐 (𝑞, 𝑆). Without

loss of generality, let 𝐶 − 𝑆 = {𝑧1, ..., 𝑧𝑘 }. We have

𝑐 (𝑞, 𝑆) − 𝑐 (𝑞,𝐶) =
∑︁𝑘

𝑖=1

(
𝑐 (𝑞,𝐶𝑖−1) − 𝑐 (𝑞,𝐶𝑖 )

)
≤
∑︁𝑘

𝑖=1
𝑢 (𝑞, 𝑧𝑖 ),

where 𝐶0 is now set to 𝑆 . Therefore,

𝑐 (𝑞,𝐶) ≥ 𝑐 (𝑞, 𝑆) −
∑︁𝑘

𝑖=1
𝑢 (𝑞, 𝑧𝑖 ).
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Since 𝑆 is arbitrary, we conclude

𝑐 (𝑞,𝐶) ≥ max

𝑆⊂𝐶

(
𝑐 (𝑞, 𝑆) −

∑︁
𝑧∈𝐶−𝑆

𝑢 (𝑞, 𝑧)
)
.

As a result, it is safe to set

𝐿(𝑞,𝐶) = max

𝑆⊂𝐶

(
𝑐 (𝑞, 𝑆) −

∑︁
𝑧∈𝐶−𝑆

𝑢 (𝑞, 𝑧)
)
. (5)

Since ∅ ⊂ 𝐶 , Equation 5 is a generalization of Equation 4.

3.2 Upper Bound of MCI
The main question is then to maintain an upper bound 𝑢 (𝑞, 𝑧) for the MCI of each query 𝑞 and each

individual index 𝑧 so that 𝑢 (𝑞, 𝑧) ≥ 𝛿 (𝑞, 𝑧, 𝑋 ) for any configuration 𝑋 . Below we discuss several

such upper bounds. Our basic idea is to leverage the CIs of explored configurations that contain

𝑧, along with some well-known properties, such as monotonicity and submodularity, of the cost
function used by the query optimizer.

3.2.1 Naive Upper Bound. Let Ω be the set of all candidate indexes.

Definition 4 (Naive Upper Bound). Under Assumption 1,

𝑢 (𝑞, 𝑧) = 𝑐 (𝑞, ∅) − 𝑐 (𝑞,Ω) = Δ(𝑞,Ω) (6)

is a valid upper bound of 𝛿 (𝑞, 𝑧, 𝑋 ) for any 𝑋 .

Intuitively, by the monotonicity property, the MCI of any single index 𝑧 cannot be larger than

the CI of all candidate indexes in Ω combined. In practical index tuning applications, we often have

𝑐 (𝑞,Ω) available. However, if 𝑐 (𝑞,Ω) is unavailable, then we set 𝑢 (𝑞, 𝑧) = 𝑐 (𝑞, ∅) as it always holds
that 𝑐 (𝑞,Ω) ≥ 0.

3.2.2 Upper Bound by Submodularity. We can improve over the naive upper bound by assuming

that the cost function is submodular, which has been studied by previous work [10].

Assumption 2 (Submodularity). Given two configurations 𝑋 ⊆ 𝑌 and an index 𝑧 ∉ 𝑌 , we have

𝑐 (𝑞,𝑌 ) − 𝑐 (𝑞,𝑌 ∪ {𝑧}) ≤ 𝑐 (𝑞,𝑋 ) − 𝑐 (𝑞,𝑋 ∪ {𝑧}) . (7)

Or equivalently, 𝛿 (𝑞, 𝑧, 𝑌 ) ≤ 𝛿 (𝑞, 𝑧, 𝑋 ).

That is, the MCI of an index 𝑧 diminishes when 𝑧 is included into larger configuration with more

indexes. Submodularity does not hold often due to index interaction [31]. We also validated the

submodularity assumption using Microsoft SQL Server and the same workloads that we used to

validate the monotonicity assumption. Our validation results show that submodularity holds with

probability between 0.75 and 0.89 on the workloads tested [41].

Lemma 1. Under Assumption 2, we have

𝛿 (𝑞, 𝑧, 𝑋 ) ≤ Δ(𝑞, {𝑧})

for any configuration 𝑋 .

Due to space constraint, all proofs are postponed to the full version of this paper [41]. Intuitively,

Lemma 1 indicates that the CI of a singleton configuration {𝑧} can be used as an upper bound of

the MCI of the index 𝑧. As a result, we can set

𝑢 (𝑞, 𝑧) = Δ(𝑞, {𝑧}) = 𝑐 (𝑞, ∅) − 𝑐 (𝑞, {𝑧}) . (8)
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There are cases where 𝑐 (𝑞, {𝑧}) is unknown but we know the cost of some configuration 𝑋 that

contains 𝑧, e.g., in MCTS where configurations are explored in random order. By Assumption 1,

𝑐 (𝑞, {𝑧}) ≥ max

𝑧∈𝑋
𝑐 (𝑞,𝑋 ).

Therefore, we can generalize Equation 8 to have

Definition 5 (Submodular Upper Bound).

𝑢 (𝑞, 𝑧) = 𝑐 (𝑞, ∅) −max

𝑧∈𝑋
𝑐 (𝑞,𝑋 )

= min

𝑧∈𝑋

(
𝑐 (𝑞, ∅) − 𝑐 (𝑞,𝑋 )

)
= min

𝑧∈𝑋
Δ(𝑞,𝑋 ).

That is, the MCI of an index should be no larger than the minimum CI of all the configurations

that contain it.

3.2.3 Summary. To summarize, assuming monotonicity and submodularity of the cost function 𝑐 ,

we can set 𝑢 (𝑞, 𝑧) as follows:

𝑢 (𝑞, 𝑧) = min{𝑐 (𝑞, ∅),Δ(𝑞,Ω),Δ(𝑞, {𝑧}),min

𝑧∈𝑋
Δ(𝑞,𝑋 )}. (9)

3.3 Confidence-based What-if Call Skipping
Intuitively, the confidence of skipping the what-if call for a QCP (𝑞,𝐶) depends on the closeness
between the lower bound 𝐿(𝑞,𝐶) and the upper bound 𝑈 (𝑞,𝐶), i.e., the derived cost 𝑑 (𝑞,𝐶). We

define the gap between𝑈 (𝑞,𝐶) and 𝐿(𝑞,𝐶) as

𝐺 (𝑞,𝐶) = 𝑈 (𝑞,𝐶) − 𝐿(𝑞,𝐶).

Clearly, the larger the gap is, the lower the confidence is. Therefore, it is natural to define the

confidence as

𝛼 (𝑞,𝐶) = 1 − 𝐺 (𝑞,𝐶)
𝑈 (𝑞,𝐶) =

𝐿(𝑞,𝐶)
𝑈 (𝑞,𝐶) . (10)

Following this definition, we have 0 ≤ 𝛼 (𝑞,𝐶) ≤ 1. We further note two special cases: (1) 𝛼 (𝑞,𝐶) = 0,

which implies 𝐿(𝑞,𝐶) = 0; and (2) 𝛼 (𝑞,𝐶) = 1, which implies 𝐿(𝑞,𝐶) = 𝑈 (𝑞,𝐶).
Let 𝛼 ∈ [0, 1] be a threshold for the confidence, i.e., it is the minimum confidence for skipping a

what-if call and we require 𝛼 (𝑞,𝐶) ≥ 𝛼 . Intuitively, the higher 𝛼 is, the higher confidence that a

what-if call can be skipped with. In our experimental evaluation, we further varied 𝛼 to test the

effectiveness of this confidence-based interception mechanism (see Section 6).

4 OPTIMIZATION
We present two optimization techniques for the generic lower bound detailed in Section 3.1, which is
agnostic to budget-aware configuration enumeration algorithms—it only relies on general assump-

tions (i.e., monotonicity and submodularity) of the cost function 𝑐 . One optimization is dedicated to

budget-aware greedy search (i.e., vanilla/two-phase greedy), which is of practical importance due

to its adoption in commercial index tuning software [7] (Section 4.1). The other optimization is

more general and can also be used for other configuration enumeration algorithms mentioned in

Section 2.2.3 such as MCTS (Section 4.2).
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4.1 MCI Upper Bounds for Greedy Search
We propose the following optimization procedure for maintaining the MCI upper-bound 𝑢 (𝑞, 𝑧),
which is the basic building block of the lower bound presented in Section 3.1, in vanilla greedy and

two-phase greedy (see Section 2):

Procedure 1. For each index 𝑧 that has not been selected by greedy search, we can update 𝑢 (𝑞, 𝑧)
w.r.t. the current configuration selected by greedy search as follows:
(1) Initialize 𝑢 (𝑞, 𝑧) = min{𝑐 (𝑞, ∅),Δ(𝑞,Ω)} for each index 𝑧.
(2) During each greedy step 1 ≤ 𝑘 ≤ 𝐾 , update

𝑢 (𝑞, 𝑧) = 𝑐 (𝑞,𝐶𝑘−1) − 𝑐 (𝑞,𝐶𝑘−1 ∪ {𝑧}) = 𝛿 (𝑞, 𝑧,𝐶𝑘−1)

if both 𝑐 (𝑞,𝐶𝑘−1) and 𝑐 (𝑞,𝐶𝑘−1 ∪ {𝑧}) are available.

In step (2),𝐶𝑘 is the configuration selected by greedy search in step 𝑘 and we set𝐶0 = ∅. A special

case is when 𝑘 = 1, if we know 𝑐 (𝑞, {𝑧}) then we can update𝑢 (𝑞, 𝑧) = 𝑐 (𝑞, ∅) −𝑐 (𝑞, {𝑧}) = Δ(𝑞, {𝑧}),
which reduces to the general upper bound (see Lemma 1).

Theorem 1. Under Assumptions 1 and 2, Procedure 1 is correct, i.e., the 𝑢 (𝑞, 𝑧) after each update
remains an MCI upper bound w.r.t. any future configuration 𝑋 explored by greedy search.

4.2 Coverage-based Refinement
The tightness of the MCI upper bounds in Section 3.2 largely depends on the knowledge about

𝑐 (𝑞, {𝑧}), namely, what-if costs of singleton configurations with one single index. Unfortunately,

such information is often unavailable, and the MCI upper bound in Equation 9 is reduced to its

naive version (Equation 6). For vanilla greedy and two-phase greedy, this implies that none of the

QCP’s with singleton configurations can be skipped under a reasonable confidence threshold (e.g.,

0.8), which can take a large fraction of the budget, although the bounds are effective at skipping

what-if calls for multi-index configurations; for MCTS where configurations are explored in a

random order, this further implies that skipping can be less effective for multi-index configurations

as they are more likely to contain indexes with unknown what-if costs, in contrast to greedy search

where multi-index configurations are always explored after singleton configurations. To overcome

this limitation, we propose refinement techniques based on estimating the what-if cost 𝑐 (𝑞, {𝑧}) if
it is unknown, by introducing the notion of “coverage.”

4.2.1 Definition of Coverage. We assume that 𝑐 (𝑞,Ω) is known for each query 𝑞. Moreover, we

assume that we know the subset Ω𝑞 ⊂ Ω of indexes that appear in the optimal plan of 𝑞 by using

indexes in Ω. Clearly, 𝑐 (𝑞,Ω) = 𝑐 (𝑞,Ω𝑞).
For an index 𝑧, we define its coverage on the query 𝑞 as

𝜌 (𝑞, 𝑧) = 𝑐 (𝑞, ∅) − 𝑐 (𝑞, {𝑧})
𝑐 (𝑞, ∅) − 𝑐 (𝑞,Ω𝑞)

=
Δ(𝑞, {𝑧})
Δ(𝑞,Ω𝑞)

. (11)

In other words, coverage measures the relative cost improvement of 𝑧 w.r.t. the maximum possible

cost improvement over 𝑞 delivered by Ω𝑞 . If we know 𝜌 (𝑞, 𝑧), the cost 𝑐 (𝑞, {𝑧}) can be recovered as

𝑐 (𝑞, {𝑧}) = 𝑐 (𝑞, ∅) − 𝜌 (𝑞, 𝑧) ·
(
𝑐 (𝑞, ∅) − 𝑐 (𝑞,Ω𝑞)

)
=

(
1 − 𝜌 (𝑞, 𝑧)

)
· 𝑐 (𝑞, ∅) + 𝜌 (𝑞, 𝑧) · 𝑐 (𝑞,Ω𝑞).

In the following, we present techniques to estimate 𝜌 (𝑞, 𝑧) based on the similarities between index

configurations, in particular {𝑧} and Ω𝑞 .
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4.2.2 Estimation of Coverage. We estimate coverage based on the assumption that it depends on

the similarity between {𝑧} and Ω𝑞 . Specifically, let Sim({𝑧},Ω𝑞) be some similarity measure that is
between 0 and 1, and we define

𝜌 (𝑞, 𝑧) = Sim({𝑧},Ω𝑞).
The problem is then reduced to developing an appropriate similarity measure. Our current solution

is the following, while further improvement is possible and left for future work.

Configuration Representation. We use a representation similar to the one described in DBA
bandits [28] that converts an index 𝑧 into a feature vector ®z. Specifically, we use one-hot encoding
based on all indexable columns identified in the given workload𝑊 . Let D = {𝑐1, ..., 𝑐𝐿} be the
entire domain of these 𝐿 indexable columns. For a given index 𝑧, ®z is an 𝐿-dimensional vector. If

some column 𝑐𝑙 ∈ D (1 ≤ 𝑙 ≤ 𝐿) appears in 𝑧, then ®z[𝑙] receives some nonzero weight𝑤𝑙 based on

the weighing policy described below:

• If 𝑐𝑙 is the 𝑗-th key column of 𝑧,𝑤𝑙 =
1

2
𝑗−1 ;

• If 𝑐𝑙 is an included column of 𝑧,𝑤𝑙 =
1

2
𝐽 where 𝐽 is the number of key columns contained by 𝑧.

Otherwise, we set ®z[𝑙] = 0. Note that the above weighing policy considers the columns contained

by an index as well as their order. Intuitively, leading columns in index keys play a more important

role than other columns (e.g., for a “range predicate”, an access path chosen by the query optimizer

needs to match the “sort order” specified in the index key columns).

We further combine feature vectors of individual indexes to generate a feature vector for the

entire configuration. Specifically, consider a configuration 𝐶 = {𝑧1, ..., 𝑧𝑚} and let ®z𝑖 be the feature
representation of the index 𝑧𝑖 (1 ≤ 𝑖 ≤ 𝑚). The feature representation ®C of 𝐶 is again an 𝐿-

dimensional vector where

®C[𝑙] = max{®z1 [𝑙], ..., ®z𝑚 [𝑙]}, for 1 ≤ 𝑙 ≤ 𝐿.

That is, the weight ®C[𝑙] is the largest weight of the 𝑙-th dimension among the indexes contained by

𝐶 . In particular, we generate the feature vector ®Ω𝑞 for Ω𝑞 in this way.

Query Representation. We further use a representation similar to the one described in ISUM [35]

to represent a query 𝑞 as a feature vector ®q. Specifically, we again use one-hot encoding for the

query 𝑞 with the same domain D = {𝑐1, ..., 𝑐𝐿} of all indexable columns. If some column 𝑐𝑙 ∈ D
appears in the query 𝑞, we assign a nonzero weight to ®q[𝑙]; otherwise, ®q[𝑙] = 0. Here, we use the

same weighing mechanism as used by ISUM. That is, the weight of a column is computed based on

its corresponding table size and the number of candidate indexes that contain it. The intuition is

that a column from a larger table and contained by more candidate indexes is more important and

thus is assigned a higher weight.

Similarity Measure. Before measuring the similarity, we first project ®z and ®Ω𝑞 onto ®q to get their

images under the context of the query 𝑞. The projection is done by taking the element-wise dot
product, i.e., z̃ = ®z · ®q and Ω̃𝑞 = ®Ω𝑞 · ®q. Note that z̃ and Ω̃𝑞 remain vectors. We now define the

similarity measure as

Sim({𝑧},Ω𝑞) =
⟨z̃, Ω̃𝑞⟩
|Ω̃𝑞 |2

=
|z̃| · |Ω̃𝑞 | · cos𝜃
|Ω̃𝑞 |2

=
|z̃| · cos𝜃
|Ω̃𝑞 |

, (12)

where 𝜃 represents the angle between the two vectors z̃ and Ω̃𝑞 .

Figure 5 illustrates and contrasts the definition and estimation of coverage. Figure 5(a) highlights

the observation that 𝑐 (𝑞, {𝑧}) must lie between 𝑐 (𝑞,Ω𝑞) and 𝑐 (𝑞, ∅), and coverage measures the

cost improvement Δ(𝑞,Ω𝑞) of Ω𝑞 (i.e., the green segment) that is covered by the cost improvement

Δ(𝑞, {𝑧}) of {𝑧} (i.e., the orange segment). On the other hand, Figure 5(b) depicts the geometric
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𝜌 =
𝑐 𝑞, ∅ − 𝑐(𝑞, {𝑧})

𝑐 𝑞, ∅ − 𝑐(𝑞, Ω𝑞)

𝑐(𝑞, Ω𝑞) 𝑐(𝑞, ∅)

𝑐(𝑞, {𝑧})

෩Ω𝑞

ǁ𝑧

ǁ𝑧 ⋅ cos 𝜃

|෩Ω𝑞|

𝜃

(a) Definition of “Coverage” (b) Estimation of “Coverage”

Fig. 5. The definition and estimation of “coverage.”

Algorithm 1: InitMCIBounds(𝑊 , 𝐼 )

Input:𝑊 , the workload; 𝐼 , the candidate indexes.

Output: 𝑢, the initialized MCI upper bounds.

1 foreach 𝑞 ∈𝑊 do
2 𝐼𝑞 ←GetCandidateIndexes(𝑞, 𝐼 );
3 foreach 𝑧 ∈ 𝐼𝑞 do
4 if 𝑐 (𝑞,Ω𝑞) is available then
5 𝑢 (𝑞, 𝑧) ← 𝑐 (𝑞, ∅) − 𝑐 (𝑞,Ω𝑞);
6 else
7 𝑢 (𝑞, 𝑧) ← 𝑐 (𝑞, ∅);

view involved in the estimation of coverage using the similarity metric Sim({𝑧},Ω𝑞). Intuitively,
the similarity measures how much “length” of the configuration Ω𝑞 is covered by the “length” of

the index 𝑧 when projected to the (same) “direction” of Ω𝑞 in the feature vector space. Note that it

is not important whether the lengths are close to the corresponding cost improvements—only their

ratio matters. Based on our evaluation, the estimated coverage using Equation 12 is close to the

ground-truth coverage in Equation 11 (see the full version of this paper [41] for details).

5 INTEGRATION
In this section, we present design considerations and implementation details when integrating

Wii with existing budget-aware configuration search algorithms. We start by presenting the API

functions provided byWii. We then illustrate how existing budget-aware configuration enumeration

algorithms can leverage the Wii API’s without modification to the algorithms.

5.1 Wii API Functions
As illustrated in Figure 1, Wii sits between the index tuner and the query optimizer. It offers two

API functions that can be invoked by a budget-aware configuration enumeration algorithm: (1)

InitMCIBounds that initializes the MCI upper-bounds 𝑢 (𝑞, 𝑧); and (2) EvalCost that obtains the

cost of a QCP (𝑞,𝐶) in a budget-aware manner by utilizing the lower bound 𝐿(𝑞,𝐶) and the upper

bound𝑈 (𝑞,𝐶), i.e., the derived cost 𝑑 (𝑞,𝐶).

5.1.1 The InitMCIBounds Function. Algorithm 1 presents the details. It initializes the MCI upper

bound 𝑢 (𝑞, 𝑧) for each query 𝑞 ∈𝑊 and each of its candidate indexes 𝑧 ∈ 𝐼𝑞 . If 𝑐 (𝑞,Ω𝑞) is available,
it uses the naive upper bound (Equation 6); otherwise, it uses 𝑐 (𝑞, ∅).

5.1.2 The EvalCost Function. Algorithm 2 presents the details. If the what-if cost 𝑐 (𝑞,𝐶) is known,
it simply uses that and updates the MCI upper-bounds (lines 1 to 3). Otherwise, it checks whether

the budget 𝐵 on the number of what-if calls has been reached and returns the derived cost 𝑑 (𝑞,𝐶)
if so (lines 4 to 5). On the other hand, if there is remaining budget, i.e., 𝐵 > 0, it then tries to use the

upper-bound𝑈 (𝑞,𝐶) and the lower-bound 𝐿(𝑞,𝐶) to see whether the what-if call for (𝑞,𝐶) can be
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skipped; if so, the derived cost 𝑑 (𝑞,𝐶) is returned (lines 6 to 11)—the budget 𝐵 remains the same in

this case. Finally, if the confidence of skipping is low, we make one what-if call to obtain 𝑐 (𝑞,𝐶)
(lines 12 to 13) and update the MCI upper-bounds (line 14). As a result, we deduct one from the

current budget 𝐵 (line 15).

One may have noticed the optional input parameter 𝑆 in Algorithm 2, which represents some

subset configuration of 𝐶 and is set to be the existing configuration ∅ by default. We will discuss

how to specify this parameter when using Wii in existing budget-aware configuration enumeration

algorithms (e.g., greedy search and MCTS) shortly.

5.2 Budget-aware Greedy Search
To demonstrate how to use theWii API’s withoutmodifying the existing budget-aware configuration

search algorithms, Algorithm 3 showcases how these API’s can be used by budget-aware greedy

search, a basic building block of the existing algorithms. Notice that the InitMCIBounds API is

invoked at line 1, whereas the EvalCost API is invoked at line 9, which are the only two differences
compared to regular budget-aware greedy search. Therefore, there is no intrusive change to the

greedy search procedure itself.

Remarks. We have two remarks here. First, when calling Wii to evaluate cost at line 9, we pass

𝐶∗ to the optional parameter 𝑆 in Algorithm 2. Note that this is just a special case of Equation 5 for

greedy search, as stated by the following theorem:

Algorithm 2: EvalCost(𝑞, 𝐶 , 𝐵, 𝛼 , 𝑆 ← ∅)
Input: 𝑞, the query;𝐶 , the configuration; 𝐵, the budget on the number of what-if calls; 𝛼 , the threshold

on the confidence 𝛼 (𝑞,𝐶); 𝑆 , an (optional) subset of 𝐶 with known what-if cost 𝑐 (𝑞, 𝑆), which
defaults to the existing configuration ∅.

Output: cost(𝑞,𝐶), the cost of 𝑞 w.r.t. 𝐶; 𝐵′, the remaining budget.

1 if 𝑐 (𝑞,𝐶) is known then
2 UpdateMCIBounds(𝐶 , 𝑆);

3 return
(
cost(𝑞,𝐶) ← 𝑐 (𝑞,𝐶), 𝐵′ ← 𝐵

)
;

4 if 𝐵 is zero then
5 return

(
cost(𝑞,𝐶) ← 𝑑 (𝑞,𝐶), 𝐵′ ← 0

)
;

6 ## 𝑐 (𝑞,𝐶) is unknown and we still have budget.

7 𝑈 (𝑞,𝐶) ← 𝑑 (𝑞,𝐶);
8 𝐿(𝑞,𝐶) ← max{0, 𝑐 (𝑞,Ω𝑞), 𝑐 (𝑞, 𝑆) −

∑
𝑥∈𝐶−𝑆 𝑢 (𝑞, 𝑥)};

9 if 𝛼 (𝑞,𝐶) = 𝐿 (𝑞,𝐶 )
𝑈 (𝑞,𝐶 ) ≥ 𝛼 then

10 ## The confidence is high enough.

11 return
(
cost(𝑞,𝐶) ← 𝑑 (𝑞,𝐶), 𝐵′ ← 𝐵

)
;

12 ## Need to go to the query optimizer to get 𝑐 (𝑞,𝐶).
13 𝑐 (𝑞,𝐶) ←WhatIfCall(𝑞, 𝐶);
14 UpdateMCIBounds(𝐶 , 𝑆);

15 return
(
cost(𝑞,𝐶) ← 𝑐 (𝑞,𝐶), 𝐵′ ← 𝐵 − 1

)
;

16

17 UpdateMCIBounds(𝐶 , 𝑆)
18 ## Update the MCI bounds based on 𝑐 (𝑞,𝐶) and 𝑐 (𝑞, 𝑆).
19 foreach 𝑥 ∈ 𝐶 − 𝑆 do
20 𝑢 (𝑞, 𝑥) ← min{𝑢 (𝑞, 𝑥), 𝑐 (𝑞, 𝑆) − 𝑐 (𝑞,𝐶)};
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Theorem 2. In the context of greedy search, Equation 5 reduces to

𝐿(𝑞,𝐶𝑧) = 𝑐 (𝑞,𝐶∗) −
∑︁

𝑥∈𝐶𝑧−𝐶∗
𝑢 (𝑞, 𝑥) = 𝑐 (𝑞,𝐶∗) − 𝑢 (𝑞, 𝑧),

where 𝐶𝑧 = 𝐶∗ ∪ {𝑧} and 𝐶∗ is the latest configuration selected by budget-aware greedy search (as
shown in Algorithm 3).

Second, in the context of greedy search, the update step at line 20 of Algorithm 2 becomes

𝑢 (𝑞, 𝑥) ← min{𝑢 (𝑞, 𝑥), 𝑐 (𝑞,𝐶∗) − 𝑐 (𝑞,𝐶)}.

The correctness of this update has been given by Theorem 1.

Algorithm 3: GreedySearch(𝑊 , 𝐼 , 𝐾 , 𝐵, 𝛼)

Input:𝑊 , the workload; 𝐼 , the candidate indexes; 𝐾 , the cardinality constraint; 𝐵, the budget on the

number of what-if calls; 𝛼 , the confidence threshold.

Output: 𝐶∗, the best configuration; 𝐵′, the remaining budget.

1 InitMCIBounds(𝑊 , 𝐼 );

2 𝐶∗ ← ∅, cost∗ ← cost(𝑊, ∅), 𝐵′ ← 𝐵;

3 while 𝐼 ≠ ∅ and |𝐶∗ | < 𝐾 do
4 𝐶 ← 𝐶∗, cost← cost

∗
;

5 foreach index 𝑧 ∈ 𝐼 do
6 𝐶𝑧 ← 𝐶∗ ∪ {𝑧};
7 cost(𝑊,𝐶𝑧) ← 0;

8 foreach 𝑞 ∈𝑊 do
9

(
cost(𝑞,𝐶𝑧), 𝐵′

)
←EvalCost(𝑞,𝐶𝑧 , 𝐵′, 𝛼,𝐶∗);

10 cost(𝑊,𝐶𝑧) ← cost(𝑊,𝐶𝑧) + cost(𝑞,𝐶𝑧);
11 if cost(𝑊,𝐶𝑧) < cost then
12 𝐶 ← 𝐶𝑧 , cost← cost(𝑊,𝐶𝑧);
13 if cost ≥ cost

∗ then
14 return

(
𝐶∗, 𝐵′

)
;

15 else
16 𝐶∗ ← 𝐶 , cost∗ ← cost, 𝐼 ← 𝐼 −𝐶∗;
17 return

(
𝐶∗, 𝐵′

)
;

5.3 Budget-aware Configuration Enumeration
We now outline the skeleton of existing budget-aware configuration enumeration algorithms after

integrating Wii. We use the integrated budget-aware greedy search procedure in Algorithm 3 as a

building block in our illustration.

5.3.1 Vanilla Greedy. The vanilla greedy algorithm after integrating Wii is exactly the same as the

GreedySearch procedure presented by Algorithm 3.

5.3.2 Two-phase Greedy. Algorithm 4 presents the details of the two-phase greedy algorithm

after integrating Wii. There is no change to two-phase greedy except for using the version of

GreedySearch in Algorithm 3. The function GetCandidateIndexes selects a subset of candidate

indexes 𝐼𝑞 from 𝐼 , considering only the indexable columns contained by the query 𝑞 [8].
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Algorithm 4: TwoPhaseGreedy(𝑊 , 𝐼 , 𝐾 , 𝐵, 𝛼)

Input:𝑊 , the workload; 𝐼 , the candidate indexes; 𝐾 , the cardinality constraint; 𝐵, the budget on the

number of what-if calls; 𝛼 , the confidence threshold.

Output: 𝐶∗, the best configuration; 𝐵′, the remaining budget.

1 𝐼𝑊 ← ∅, 𝐵′ ← 𝐵;

2 foreach 𝑞 ∈𝑊 do
3 𝐼𝑞 ←GetCandidateIndexes(𝑞, 𝐼 );

4

(
𝐶𝑞, 𝐵

′
)
←GreedySearch({𝑞}, 𝐼𝑞 , 𝐾 , 𝐵′, 𝛼);

5 𝐼𝑊 ← 𝐼𝑊 ∪𝐶𝑞 ;
6

(
𝐶∗, 𝐵′

)
←GreedySearch(𝑊 , 𝐼𝑊 , 𝐾 , 𝐵′, 𝛼);

7 return
(
𝐶∗, 𝐵′

)
;

5.3.3 MCTS. Algorithm 5 presents the skeleton of MCTS after Wii is integrated. The details of

the three functions InitMCTS, SelectQueryConfigByMCTS, and UpdateRewardForMCTS can be

found in [46]. Again, there is no change to the MCTS algorithm except for that cost evaluation at

line 5 is delegated to the EvalCost API of Wii (Algorithm 2).

Note that here we pass the existing configuration ∅ to the optional parameter 𝑆 in Algorithm 2,

which makes line 8 of Algorithm 2 on computing 𝐿(𝑞,𝐶) become

𝐿(𝑞,𝐶) ← max{0, 𝑐 (𝑞,Ω𝑞), 𝑐 (𝑞, ∅) −
∑︁

𝑥∈𝐶
𝑢 (𝑞, 𝑥)}.

Essentially, this means that we use Equation 4 for 𝐿(𝑞,𝐶), instead of its generalized version shown

in Equation 5. Although we could have used Equation 5, it was our design decision to stay with

Equation 4, not only for simplicity but also because of the inefficacy of Equation 5 in the context

of MCTS. This is due to the fact that in MCTS configurations and queries are explored in random

order. Therefore, the subsets 𝑆 w.r.t. a given pair of 𝑞 and 𝐶 with known what-if costs 𝑐 (𝑞, 𝑆) are
sparse. As a result, Equation 5 often reduces to Equation 4 when running Wii underlying MCTS.

Algorithm 5: MCTS(𝑊 , 𝐼 , 𝐾 , 𝐵, 𝜏)

Input:𝑊 , the workload; 𝐼 , the candidate indexes; 𝐾 , the cardinality constraint; 𝐵, the budget on the

number of what-if calls; 𝛼 , the confidence threshold.

Output: 𝐶∗, the best configuration; 𝐵′, the remaining budget.

1 𝐵′ ← 𝐵;

2 InitMCTS(𝑊 , 𝐼 );

3 while 𝐵′ > 0 do
4 (𝑞,𝐶) ←SelectQueryConfigByMCTS(𝑊 , 𝐼 , 𝐾 );

5

(
cost(𝑞,𝐶), 𝐵′

)
←EvalCost(𝑞,𝐶, 𝐵′, 𝛼, ∅);

6 UpdateRewardForMCTS(𝑞, 𝐶 , cost(𝑞,𝐶));
7

(
𝐶∗, 𝐵′

)
←GreedySearch(𝑊 , 𝐼 , 𝐾 , 𝐵′, 𝛼);

8 return
(
𝐶∗, 𝐵′

)
;

6 EXPERIMENTAL EVALUATION
We now report experimental results on evaluating Wii when integrated with existing budget-aware

configuration search algorithms. We perform all experiments using Microsoft SQL Server 2017

under Windows Server 2022, running on a workstation equipped with 2.6 GHz multi-core AMD

CPUs and 256 GB main memory.
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6.1 Experiment Settings
Datasets. We used standard benchmarks and real workloads in our study. Table 1 summarizes

the information of the workloads. For benchmark workloads, we use both the TPC-H and TPC-DS
benchmarks with scaling factor 10. We also use two real workloads, denoted byReal-D andReal-M
in Table 1, which are significantly more complicated compared to the benchmark workloads, in

terms of schema complexity (e.g., the number of tables), query complexity (e.g., the average number

of joins and table scans contained by a query), and database/workload size. Moreover, we report

the number of candidate indexes of each workload, which serves as an indicator of the size of the

corresponding search space faced by an index configuration search algorithm.

Algorithms Evaluated. We focus on two state-of-the-art budget-aware configuration search

algorithms described in Section 2: (1) two-phase greedy, which has been adopted by commercial

index tuning software [7]; and (2) MCTS, which shows better performance than two-phase greedy.
We omit vanilla greedy as it is significantly inferior to two-phase greedy [46]. Both two-phase greedy
and MCTS use derived cost as an estimate for the what-if cost when the budget on what-if calls is

exhausted. We evaluate Wii when integrated with the above configuration search algorithms.

Other Experimental Settings. In our experiments, we set the cardinality constraint 𝐾 ∈ {10, 20}.
Since the TPC-H workload is relatively small compared to the other workloads, we varied the

budget 𝐵 on the number of what-if calls in {500, 1000}; for the other workloads, we varied the

budget 𝐵 in {500, 1000, 2000, 5000}.

Name DB Size # Queries # Tables Avg. # Joins Avg. # Scans # CandidateIndexes
TPC-H sf =10 22 8 2.8 3.7 168

TPC-DS sf =10 99 24 7.7 8.8 848

Real-D 587GB 32 7,912 15.6 17 417

Real-M 26GB 317 474 20.2 21.7 4,490

Table 1. Summary of database and workload statistics.

6.2 End-to-End Improvement
The evaluation metric used in our experiments is the percentage improvement of the workload
based on the final index configuration found by a search algorithm, defined as

𝜂 (𝑊,𝐶) =
(
1 − 𝑐 (𝑊,𝐶)

𝑐 (𝑊, ∅)

)
× 100%, (13)

where 𝑐 (𝑊,𝐶) = ∑
𝑞∈𝑊 𝑐 (𝑞,𝐶). Note that here we use the query optimizer’s what-if cost estimate

𝑐 (𝑞,𝐶) as the gold standard of query execution cost, instead of using the actual query execution time,

to be in line with previous work on evaluating index configuration enumeration algorithms [8, 19].

6.2.1 Two-phase Greedy. Figure 6 presents the evaluation results of Wii for two-phase greedy
when setting the confidence threshold 𝛼 = 0.9 (see Section 6.2.5 for details of the ‘Best’ lines). We

observe that Wii significantly outperforms the baseline (i.e., two-phase greedy without what-if call

interception). For example, when setting 𝐾 = 20 and 𝐵 = 5, 000, Wii improves over the baseline by

increasing the percentage improvement from 50% to 65% on TPC-DS (Figure 6(f)), from 58% to

74% on Real-D (Figure 6(g)), and from 32% to 54% on Real-M (Figure 6(h)); even for the smallest

workload TPC-H, when setting 𝐾 = 20 and 𝐵 = 1, 000, Wii improves over the baseline from 78% to

86% (Figure 6(e)). Note that here Wii has used the optimization for greedy search (Section 4.1).

We also observe that incorporating the coverage-based refinement described in Section 4.2 can

further improve Wii in certain cases. For instance, on TPC-DS when setting 𝐾 = 20 and 𝐵 = 2, 000,

it improves Wii by 13%, i.e., from 49% to 62%, whereas Wii and the baseline perform similarly

(Figure 6(f)); on Real-D when setting 𝐾 = 10 and 𝐵 = 500 (Figure 6(c)), it improves Wii by an
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(b) TPC-DS, 𝐾 = 10
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(c) Real-D, 𝐾 = 10
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(d) Real-M, 𝐾 = 10
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(e) TPC-H, 𝐾 = 20
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(f) TPC-DS, 𝐾 = 20
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(g) Real-D, 𝐾 = 20
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(h) Real-M, 𝐾 = 20

Fig. 6. Results for two-phase greedy with confidence threshold 𝛼 = 0.9 (“Cov.” is shorthand for “Coverage”).
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(c) Real-D, 𝐵 = 5, 000
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(d) Real-M, 𝐵 = 5, 000

Fig. 7. Impact on the performance ofWii with or without the optimization for theMCI upper bounds (𝛼 = 0.9).
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(d) Real-M, 𝐾 = 10
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(e) TPC-H, 𝐾 = 20
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(f) TPC-DS, 𝐾 = 20
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(g) Real-D, 𝐾 = 20
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(h) Real-M, 𝐾 = 20

Fig. 8. Results for MCTS with confidence threshold 𝛼 = 0.9 (“Cov.” is shorthand for “Coverage”).

additional percentage improvement of 17.8% (i.e., from 45.3% to 63.1%), which translates to 32.2%

improvement over the baseline (i.e., from 30.9% to 63.1%).

Impact of Optimization for MCI Upper Bounds. We further study the impact of the optimization

proposed in Section 4.1 for two-phase greedy. In our experiment, we set 𝛼 = 0.9, 𝐵 = 1, 000 for

TPC-H and 𝐵 = 5, 000 for the other workloads. Figure 7 presents the results. We observe that the

optimization for MCI upper bounds offers a differentiable benefit in two-phase greedy on TPC-H,

TPC-DS, and Real-M. Given its negligible computation overhead, this optimization is warranted

to be enabled by default in Wii.

6.2.2 MCTS. Figure 8 presents the results of Wii for MCTS, again by setting the confidence

threshold 𝛼 = 0.9. Unlike the case of two-phase greedy, for MCTS Wii often performs similarly
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Fig. 9. Performance impact when lowering the confidence threshold 𝛼 of Wii for two-phase greedy (𝐾 = 20).

to the baseline (i.e., MCTS without what-if call interception). This is not surprising, given that

MCTS already significantly outperforms two-phase greedy in many (but not all) cases, which can be

verified by comparing the corresponding charts in Figure 6 and Figure 8—further improvement on

top of that is more challenging. However, there are noticeable cases where we do observe significant

improvement as we incorporate the coverage-based refinement into Wii. For instance, on Real-M,

when setting 𝐾 = 10 and 𝐵 = 500 (Figure 8(d)), it improves over the baseline by increasing the

percentage improvement of the final index configuration found byMCTS from 7.8% to 27.1%; similar

observation holds when we increasing 𝐾 to 20 (Figure 8(h)), where we observe an even higher boost

on the percentage improvement (i.e., from 8.5% to 36.9%). In general, we observe that Wii is more

effective on the two larger workloads (TPC-DS and Real-M), which have more complex queries

and thus much larger search spaces (ref. Table 1). In such situations, the number of configurations

that MCTS can explore within the budget constraint is too small compared to the entire search

space. Wii increases the opportunity for MCTS to find a better configuration by skipping spurious

what-if calls. Nevertheless, compared to two-phase greedy, MCTS has its own limitations (e.g., its

inherent usage of randomization) that require more research to pave its way of being adopted

by commercial index tuners [36]. Moreover, MCTS is not suitable for the “unlimited budget” case

(Section 6.8) as it requires a budget constraint as input.

6.2.3 Discussion. Comparing Figures 6 and 8, while the baseline version of two-phase greedy
clearly underperforms that of MCTS, the Wii-enhanced version of two-phase greedy performs

similarly or even better than that ofMCTS. Existing budget allocation policies are largelymacro-level
optimization mechanisms, meaning that they deemwhat-if calls as atomic black-box operations that
are out of their optimization scopes. However, our results here reveal that micro-level optimization

mechanisms like Wii that operate at the granularity of individual what-if calls can interact with

and have profound impact on the performance of those macro-level optimization mechanisms. An

in-depth study and understanding of such macro-/micro-level interactions may lead to invention

of better budget allocation policies.

Moreover, based on our evaluation results, the coverage-based refinement does not always

improve Wii’s performance. A natural question is then how users would choose whether or not to

use it. Are there some simple tests that can indicate whether or not it will be beneficial? Since the

motivation of the coverage-based refinement is to make Wii work more effectively in the presence

of unknown singleton-configuration what-if costs, one idea could be to measure the fraction of

such singleton-configurations and enable the coverage-based refinement only when this fraction

is high. However, this measurement can only be monitored “during” index tuning and there are

further questions if index tuning is budget-constrained (e.g., how much budget should be allocated

for monitoring this measurement). Thus, there seems to be no simple answer and we leave its

investigation for future work.

6.2.4 Evaluation of Confidence-based What-if Call Skipping. We start by investigating the impact

of the confidence threshold 𝛼 on Wii. For this set of experiments, we use the budget 𝐵 = 1, 000 for

TPC-H and use 𝐵 = 5, 000 for the other workloads, and we vary 𝛼 ∈ {0.8, 0.9, 0.95}. Figures 10
and 11 present the evaluation results. We observe that Wii is not sensitive to the threshold 𝛼
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Fig. 10. Impact of the confidence threshold for two-phase greedy (“Cov.” is shorthand for “Wii-Coverage”).
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Fig. 11. Impact of the confidence threshold for MCTS (“Cov.” is shorthand for “Wii-Coverage”).
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Fig. 12. Performance impact when lowering the confidence threshold 𝛼 used by Wii for MCTS (𝐾 = 20).
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Fig. 13. Confidence-based skipping vs. randomized skipping of what-if calls (𝑝 = 𝛼 = 0.9, 𝐾 = 20).

within the range that we tested, for both two-phase greedy and MCTS. On the other hand, coverage-

based refinement is more sensitive to 𝛼 . For instance, for two-phase greeedy on Real-M with

cardinality constraint 𝐾 = 10 (ref. Figure 10(d)), the end-to-end percentage improvement of the final

configuration found increases from 35.6% to 53.3% when raising 𝛼 from 0.8 to 0.95. This suggests

both opportunities and risks of using the coverage-based refinement for Wii, as one needs to choose

the confidence threshold 𝛼 more carefully. A more formal analysis can be found in [41].

Low Confidence Threshold. An interesting question is the performance impact of using a relatively

lower confidence threshold compared to the ones used in the previous evaluations. To investigate

this question, we further conduct experiments by setting the confidence threshold 𝛼 = 0.5. Figures 9

and 12 present results for two-phase greedy and MCTS with the cardinality constraint 𝐾 = 20.

We have the following observations. First, the performance of Wii often becomes much worse

compared to using a high confidence threshold like the 𝛼 = 0.9 in the charts—it is sometimes even

worse than the baseline, e.g., in the case of MCTS on Real-D, as shown in Figure 12(c). Second,

coverage-based refinement seems more sensitive to the use of a low confidence threshold, due to

its inherent uncertainty of estimating singleton-configuration what-if costs.

Necessity of Confidence-based Mechanism. Since the confidence-based skipping mechanism comes

with additional overhead of computing the lower and upper bounds of what-if cost (Section 6.4), it
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Fig. 14. Amount of what-if calls skipped by Wii for two-phase greedy (“Cov.” is shorthand for “Wii-Coverage”).
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Fig. 15. Amount of what-if calls skipped by Wii forMCTS (“Cov.” is shorthand for “Wii-Coverage”).
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Fig. 16. Average computation time (in milliseconds) of the lower bound on the what-if cost (𝐾 = 20, 𝛼 = 0.9).

is natural to ask whether such complexity is necessary. To justify this, we compare the confidence-

based mechanism with a simple randomized mechanism that skips what-if calls randomly w.r.t. a

given skipping probability threshold 𝑝 . Figure 13 presents the results when setting 𝑝 = 𝛼 = 0.9—

we use the same confidence threshold for a fair comparison. We observe that the randomized

mechanism performs similarly to the baseline but often much worse than Wii.

6.2.5 Best Possible Improvement. It is difficult to know the best possible improvement without

making a what-if call for every QCP enumerated during configuration search, which is infeasible in

practice. We provide an approximate assessment by using a much larger budget 𝐵 in two-phase
greedy. Specifically, we use 𝐵 = 5, 000 for TPC-H and 𝐵 = 20, 000 for the other workloads. For each

workload, we run both two-phase greedy without and with Wii, and we take the best improvement

observed in these two runs. The ‘Best’ line in Figures 6 and 8 presents this result.

6.3 Efficacy of What-If Call Interception
We measure the relative amount of what-if calls skipped by Wii, namely, the ratio between the

number of what-if calls skipped and the budget allowed. Figures 14 and 15 present the results for

two-phase greedy and MCTS when varying 𝛼 ∈ {0.8, 0.9, 0.95}.
We have several observations. First, in general, Wii is more effective at skipping spurious what-if

calls for two-phase greedy than MCTS. For example, when setting 𝐾 = 20 and 𝛼 = 0.9, Wii is able to

skip 3.6𝐵 (i.e., 3.6×5, 000 = 18, 000) what-if calls for two-phase greedy whereas only 0.57𝐵 (i.e., 2,850)

what-if calls for MCTS. This is correlated with the observation that Wii exhibits more significant

end-to-end improvement in terms of the final index configuration found for two-phase greedy than

MCTS, as we highlighted in Section 6.2. Second, the coverage-based refinement often enables Wii

to skip more what-if calls. For instance, for MCTS on Real-M when setting 𝐾 = 20 and 𝛼 = 0.8,

Wii is able to skip only 1.48𝐵 (i.e., 7,400) what-if calls, which leads to no observable end-to-end
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Wii (Wii-Cov.) two-phase greedy MCTS

TPC-H (𝐵 = 1, 000) 0.199% (0.273%) 0.064% (0.106%)

TPC-DS (𝐵 = 5, 000) 0.016% (0.345%) 0.015% (0.164%)

Real-D (𝐵 = 5, 000) 0.087% (2.354%) 0.029% (3.165%)

Real-M (𝐵 = 5, 000) 0.055% (2.861%) 0.003% (2.544%)

Table 2. Additional overhead of Wii and Wii-Coverage, measured as percentage of the execution time of the
baseline configuration search algorithm (𝐾 = 20, 𝛼 = 0.9).

improvement over the baseline; with the coverage-based refinement enabled, however, the number

of what-if calls that Wii can skip rises to 42.7𝐵 (i.e., 213,500), which results in nearly 10% boost on

the end-to-end improvement (ref. Figure 11(d)). Third, while one would expect that the amount of

what-if calls skipped decreases when we increase the confidence threshold 𝛼 , this is sometimes not

the case, especially for two-phase greedy. As shown in Figures 14(a), 14(b), and 14(c), the number of

skipped calls can actually increase when raising 𝛼 . The reason for this unexpected phenomenon is

the special structure of the two-phase greedy algorithm: lowering 𝛼 allows for more what-if calls to

be skipped in the first phase where the goal is to find good candidate indexes for each individual

query. Skipping more what-if calls in the first phase therefore can result in fewer candidate indexes

being selected because, without what-if calls, the derived costs for the candidate indexes will have

the same value (as the what-if cost with the existing index configuration, i.e., 𝑐 (𝑞, ∅)) and thus exit

early in Algorithm 3 (line 14). As a result, it eventually leads to a smaller search space for the second
phase and therefore fewer opportunities for what-if call interception.

6.4 Computation Overhead
We measure the average computation time of the lower bound of the what-if cost. For comparison,

we also report the average time of cost derivation as well as making a what-if call. Figure 16

summarizes the results when running two-phase greedy and MCTS with 𝐾 = 20 and 𝛼 = 0.9.

We have the following observations. First, the computation time of the lower bound is similar

to cost derivation, both of which are orders of magnitude less than the time of making a what-if

call—the 𝑦-axis of Figure 16 is in logarithmic scale. Second, the coverage-based refinement increases

the computation time of the lower-bound, but it remains negligible compared to a what-if call.

Table 2 further presents the additional overhead of Wii w.r.t. the baseline configuration search

algorithm without Wii, measured as a percentage of the baseline execution time. We observe

that Wii’s additional overhead, with or without the coverage-based refinement, is around 3% at

maximum, while the typical additional overhead is less than 0.5%.

6.5 Storage Constraints
As mentioned earlier, one may have other constraints in practical index tuning in addition to the

cardinality constraint. One common constraint is the storage constraint (SC) that limits themaximum

amount of storage taken by the recommended indexes [19]. To demonstrate the robustness of Wii

w.r.t. other constraints, we evaluate its efficacy by varying the SC as well. In our evaluation, we fix

𝐾 = 20, 𝛼 = 0.9, 𝐵 = 1, 000 for TPC-H and 𝐵 = 5, 000 for the other workloads, while varying the

allowed storage size as 2× and 3× of the database (3× is the default setting of DTA [1]).

Figures 17 and 18 present the evaluation results for two-phase greedy and MCTS. Overall, we
observe similar patterns in the presence of SC. That is, Wii, with or without the coverage-based

refinement, often significantly outperforms the baseline approaches, especially for two-phase greedy.

6.6 Beyond Derived Cost
When Wii decides to skip a what-if call, it returns the derived cost (i.e., the upper bound) as an

approximation of the what-if cost. This is not mandatory, and there are other options. For example,
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Fig. 17. Evaluation results of Wii for two-phase greedy with varying storage constraints (𝐾 = 20, 𝛼 = 0.9).
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Fig. 18. Evaluation results of Wii for MCTS with varying storage constraints (𝐾 = 20, 𝛼 = 0.9).
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Fig. 19. Using derived cost vs. the average of lower and upper bounds for two-phase greedy (𝐾 = 20).
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Fig. 20. Using derived cost vs. the average of lower and upper bounds forMCTS (𝐾 = 20).

one can instead return the average of the lower and upper bounds. We further evaluate this idea

below. Figures 19 and 20 present the results. While both options perform similarly most of the

time, we observe that they perform quite differently in a few cases; moreover, one may outperform

the other in these cases. For example, with the coverage-based refinement enabled in Wii, when

setting 𝛼 = 0.5, on TPC-H returning the average significantly outperforms returning the upper

bound (74.7% vs. 59.7%); however, on Real-M returning the average loses 10.5% in percentage

improvement compared to returning the upper bound (11.8% vs. 22.3%). As a result, the question of

having a better cost approximation than the upper bound (i.e., the derived cost) remains open, and

we leave it for future exploration.

6.7 Impact of Submodularity Assumption
Although our validation results show that submodularity holds with probability between 0.75 and

0.89 on the workloads tested [41], it remains an interesting question to understand the impact on

Wii when submodularity does not hold. As we mentioned in Section 3.2.2, submodularity does

not hold often due to index interaction [31]. For example, the query optimizer may choose an

index-intersection plan with two indexes available at the same time but utilizing neither if only one

of them is present. In this example, submodularity does not hold, because the MCI of either index

will increase after the other index is selected. As a result, Equation 8 is no longer an MCI upper-

bound—it will be smaller than the actual MCI upper-bound. Consequently, the 𝐿(𝑞,𝐶) computed
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Workload Average Median 95
th Percentile

TPC-H 0.209 0.001 1.498

TPC-DS 2.203 0.001 10.532

Real-D 7.658 0.010 38.197

Real-M 4.125 0.001 31.358

Table 3. Magnitude of violation (of submodularity).

by Equation 4 will be larger than the actual lower-bound of the what-if cost, which implies an

overconfident situation for Wii where the confidence is computed by Equation 10. The degree of
overconfidence depends on the magnitude of violation of the submodularity assumption, which we

further measured in our evaluation (see [41] for details).

Table 3 summarizes the key statistics of the magnitude of violation measured. Among the four

workloads, we observe that Real-D and Real-M have relatively higher magnitude of violation,

which implies that Wii tends to be more overconfident on these two workloads. As a result, Wii is

more likely to skip what-if calls that should not have been skipped, especially when the confidence

threshold 𝛼 is relatively low. Correspondingly, we observe more sensitive behavior of Wii on

Real-D and Real-M when increasing 𝛼 from 0.5 to 0.9 (ref. Figures 9 and 12).

6.8 The Case of Unlimited Budget
As we noted in the introduction, Wii can also be used in a special situation where one does not

enforce a budget on the index tuner, namely, the tuner can make unlimited number of what-if

calls. This situation may make sense if one has a relatively small workload. Although Wii cannot

improve the quality of the final configuration found, by skipping unnecessary what-if calls it can

significantly reduce the overall index tuning time.

To demonstrate this, we tune the two relatively small workloads, namely TPC-H with 22 queries

and Real-D with 32 queries, using two-phase greedy without enforcing a budget constraint on the

number of what-if calls. We do not use MCTS as it explicitly leverages the budget constraint by

design and cannot work without the budget information. We set 𝐾 = 20 for TPC-H and 𝐾 = 5

for Real-D in our experiments to put the total execution time under control. We also vary the

confidence threshold 𝛼 ∈ {0.8, 0.9} for Wii. Table 4 summarizes the evaluation results.

We observe significant reduction of index tuning time by using Wii. For instance, on TPC-H
when setting the confidence threshold 𝛼 = 0.9, the final configurations returned by two-phase
greedy, with or without Wii, achieve (the same) 85.2% improvement over the existing configuration.

However, the tuning time is reduced from 8.2 minutes to 1.9 minutes (i.e., 4.3× speedup) when Wii

is used. As another example, on Real-D when setting 𝛼 = 0.9, the final configurations returned,

with or without Wii, achieve similar improvements over the existing configuration (64% vs. 62.3%).

However, the tuning time is reduced from 380.6 minutes to 120 minutes (i.e., 3.2× speedup) by

using Wii. The index tuning time on Real-D is considerably longer than that on TPC-H, since the

Real-D queries are much more complex.

7 RELATEDWORK
Index Tuning. Index tuning has been studied extensively by previous work (e.g., [4, 5, 7, 8, 12, 17,

20, 30, 35, 37, 40, 42, 46]). The recent work by Kossmann et al. [19] conducted a survey as well as a

benchmark study of existing index tuning technologies. Their evaluation results show that DTA
with the two-phase greedy search algorithm [7, 8] can yield the state-of-the-art performance, which

has been the focus of our study in this paper as well.

Budget-aware Configuration Enumeration. Configuration enumeration is one core problem of

index tuning. The problem is NP-hard and hard to approximate [6, 11]. Although two-phase greedy is
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TPC-H, 𝐾 = 20

Method Time
(𝛼 = 0.8)

Impr.
(𝛼 = 0.8)

Time
(𝛼 = 0.9)

Impr.
(𝛼 = 0.9)

Baseline 8.22 min 85.22% 8.22 min 85.22%

Wii 1.62 min 84.74% 1.95 min 85.26%

Wii-Cov. 0.94 min 83.95% 1.67 min 85.02%

Real-D, 𝐾 = 5

Method Time
(𝛼 = 0.8)

Impr.
(𝛼 = 0.8)

Time
(𝛼 = 0.9)

Impr.
(𝛼 = 0.9)

Baseline 380.63 min 62.32% 380.63 min 62.32%

Wii 118.95 min 64.10% 119.99 min 64.10%

Wii-Cov. 31.42 min 62.90% 53.38 min 59.63%

Table 4. Index tuning time with unlimited budget.

the current state-of-the-art [19], it remains inefficient on large and/or complex workloads, due to the

large amount of what-if calls made to the query optimizer during configuration enumeration [19,

26, 33, 37]. Motivated by this, [46] studies a constrained configuration enumeration problem,

called budget-aware configuration enumeration, that limits the number of what-if calls allowed in

configuration enumeration. Budget-aware configuration enumeration introduces a new budget
allocation problem, regarding which query-configuration pairs (QCP’s) deserve what-if calls.

Application of Data-driven ML Technologies. There has been a flurry of recent work on applying

data-driven machine learning (ML) technologies to various aspects of index tuning [36], such as

reducing the chance of performance regression on the recommended indexes [13, 48], configuration

search algorithms based on deep learning and reinforcement learning [21, 28, 29, 32], using learned

cost models to replace what-if calls [33, 37], and so on. While we do not use ML technologies in

this work, it remains interesting future work to consider using ML-based technologies, for example,

to improve the accuracy of the estimated coverage.

Cost Approximation and Modeling. From an API point of view, Wii returns an approximation (i.e.,

derived cost) of the what-if cost whenever a what-if call is saved. There have been various other

technologies on cost approximation and modeling, focusing on replacing query optimizer’s cost

estimate by actual prediction of query execution time (e.g., [2, 14, 16, 23–25, 27, 34, 38, 43–45, 47]).

This line of effort is orthogonal to our work, which uses optimizer’s cost estimate as the gold

standard of query execution cost, to be in line with previous work on evaluating index configuration

enumeration algorithms [8, 19].

8 CONCLUSION
In this paper, we proposed Wii that can be seamlessly integrated into existing configuration

enumeration algorithms to improve budget allocation and ultimately quality of the final index

configuration found. Wii develops and leverages lower and upper bounds of the what-if cost to

skip unnecessary what-if calls during configuration enumeration. Our evaluation results on both

industrial benchmarks and real workloads demonstrate the effectiveness of Wii.
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A PROOFS
A.1 Proof of Lemma 1

Proof. By Assumption 2, we have 𝛿 (𝑞, 𝑧,𝐶) ≤ 𝛿 (𝑞, 𝑧, ∅), since ∅ ⊆ 𝐶 . On the other hand, by the

definition of 𝛿 (𝑞, 𝑧, ∅) we have

𝛿 (𝑞, 𝑧, ∅) = 𝑐 (𝑞, ∅) − 𝑐 (𝑞, ∅ ∪ {𝑧}) = 𝑐 (𝑞, ∅) − 𝑐 (𝑞, {𝑧}) = Δ(𝑞, {𝑧}).

This completes the proof. □

A.2 Proof of Theorem 1
Proof. We use 𝑢 (𝑘 ) (𝑞, 𝑧) to represent the 𝑢 (𝑞, 𝑧) after the greedy step 𝑘 . We prove by induction

on the greedy step 𝑘 (1 ≤ 𝑘 ≤ 𝐾 ):
• (Base)When 𝑘 = 0, by the update step (1) in Procedure 1,

𝑢 (0) (𝑞, 𝑧) = min{𝑐 (𝑞, ∅),Δ(𝑞,Ω)}

is clearly an MCI upper-bound.

• (Induction) Suppose that 𝑢 (𝑘 ) (𝑞, 𝑧) remains an MCI upper-bound. Consider 𝑢 (𝑘+1) (𝑞, 𝑧). There
are two cases. First, if either 𝑐 (𝑞,𝐶𝑘 ) or 𝑐 (𝑞,𝐶𝑘 ∪ {𝑧}) is unavailable, then there is no update to

𝑢 (𝑞, 𝑧) and therefore 𝑢 (𝑘+1) (𝑞, 𝑧) = 𝑢 (𝑘 ) (𝑞, 𝑧). Otherwise, by the update step (2) in Procedure 1,

𝑢 (𝑘+1) (𝑞, 𝑧) = 𝑐 (𝑞,𝐶𝑘 ) − 𝑐 (𝑞,𝐶𝑘 ∪ {𝑧}) = 𝛿 (𝑞, 𝑧,𝐶𝑘 ).

Due to the nature of the greedy search procedure, we can restrict the configuration 𝐶 in the MCI

𝛿 (𝑞, 𝑧,𝐶) to those configurations selected by each greedy step. Here, it means that we only need

to consider 𝛿 (𝑞, 𝑧,𝐶 𝑗 ) where 𝑗 > 𝑘 . By definition of 𝛿 (𝑞, 𝑧,𝐶 𝑗 ),

𝛿 (𝑞, 𝑧,𝐶 𝑗 ) = 𝑐 (𝑞,𝐶 𝑗 ) − 𝑐 (𝑞,𝐶 𝑗 ∪ {𝑧}) .

By Assumption 2, we have

𝛿 (𝑞, 𝑧,𝐶 𝑗 ) ≤ 𝛿 (𝑞, 𝑧,𝐶𝑘 ) = 𝑢 (𝑘+1) (𝑞, 𝑧).

As a result, 𝑢 (𝑘+1) (𝑞, 𝑧) remains an MCI upper-bound.

This completes the proof. □

A.3 Proof of Theorem 2
Proof. By Equation 5, we have

𝐿(𝑞,𝐶𝑧) = max

𝑆⊂𝐶𝑧

(
𝑐 (𝑞, 𝑆) −

∑︁
𝑥∈𝐶𝑧−𝑆

𝑢 (𝑞, 𝑥)
)
.

Since 𝐶𝑧 = 𝐶
∗ ∪ {𝑧}, there are two cases for 𝑆 ⊂ 𝐶𝑧 : (1) 𝑆 ⊆ 𝐶∗ and (2) 𝑆 = 𝑆∗ ∪ {𝑧} where 𝑆∗ ⊂ 𝐶∗.

In either case, we need to show

𝑐 (𝑞, 𝑆) −
∑︁

𝑥∈𝐶𝑧−𝑆
𝑢 (𝑞, 𝑥) ≤ 𝑐 (𝑞,𝐶∗) − 𝑢 (𝑞, 𝑧),

or equivalently,

𝑐 (𝑞, 𝑆) − 𝑐 (𝑞,𝐶∗) ≤
∑︁

𝑥∈𝐶𝑧−𝑆
𝑢 (𝑞, 𝑥) − 𝑢 (𝑞, 𝑧).

Without loss of generality, let 𝐶∗ = 𝐶𝑘 = {𝑥1, ..., 𝑥𝑘 }, where 𝑥𝑖 is the index selected in the 𝑖-th step

of greedy search. We now discuss each of these two cases below:
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• (Case 1) If 𝑆 ⊆ 𝐶∗, then let |𝑆 | = 𝑙 for some 𝑙 < 𝑘 and denote 𝐶∗ − 𝑆 = {𝑥𝑖1 , ..., 𝑥𝑖𝑘−𝑙 }. We have

𝑐 (𝑞, 𝑆) − 𝑐 (𝑞,𝐶∗) = 𝑐 (𝑞,𝐶𝑙 ) − 𝑐 (𝑞,𝐶𝑘 )

=
∑︁𝑘−1

𝑗=𝑙

(
𝑐 (𝑞,𝐶 𝑗 ) − 𝑐 (𝑞,𝐶 𝑗+1)

)
=

∑︁𝑘−1
𝑗=𝑙

(
𝑐 (𝑞,𝐶 𝑗 ) − 𝑐 (𝑞,𝐶 𝑗 ∪ {𝑥𝑖 𝑗−𝑙+1 })

)
=

∑︁𝑘−1
𝑗=𝑙

𝛿 (𝑞, 𝑥𝑖 𝑗−𝑙+1 ,𝐶 𝑗 )

≤
∑︁𝑘−1

𝑗=𝑙
𝑢 (𝑞, 𝑥𝑖 𝑗−𝑙+1 )

≤
∑︁

𝑥∈𝐶∗−𝑆
𝑢 (𝑞, 𝑥)

=
∑︁

𝑥∈𝐶𝑧−𝑆
𝑢 (𝑞, 𝑥) − 𝑢 (𝑞, 𝑧).

The last step holds because

𝐶𝑧 − 𝑆 = (𝐶∗ ∪ {𝑧}) − 𝑆 = (𝐶∗ − 𝑆) ∪ {𝑧} = {𝑥𝑖1 , ..., 𝑥𝑖𝑘−𝑙 , 𝑧}.

• (Case 2) If 𝑆 = 𝑆∗ ∪ {𝑧} where 𝑆∗ ⊂ 𝐶∗, then it follows that

𝑐 (𝑞, 𝑆) − 𝑐 (𝑞,𝐶∗) = 𝑐 (𝑞, 𝑆∗ ∪ {𝑧}) − 𝑐 (𝑞,𝐶∗) =
(
𝑐 (𝑞, 𝑆∗ ∪ {𝑧}) − 𝑐 (𝑞, 𝑆∗)

)
+
(
𝑐 (𝑞, 𝑆∗) − 𝑐 (𝑞,𝐶∗)

)
.

On one hand, we have

𝑐 (𝑞, 𝑆∗ ∪ {𝑧}) − 𝑐 (𝑞, 𝑆∗) = −
(
𝑐 (𝑞, 𝑆∗) − 𝑐 (𝑞, 𝑆∗ ∪ {𝑧})

)
= −𝛿 (𝑞, 𝑧, 𝑆∗).

On the other hand, let |𝑆∗ | = 𝑙 for some 𝑙 < 𝑘 and denote 𝐶∗ − 𝑆∗ = {𝑥𝑖1 , ..., 𝑥𝑖𝑘−𝑙 }, following the
proof of Case 1 we have

𝑐 (𝑞, 𝑆∗) − 𝑐 (𝑞,𝐶∗) = 𝑐 (𝑞,𝐶𝑙 ) − 𝑐 (𝑞,𝐶𝑘 )

=
∑︁𝑘−1

𝑗=𝑙
𝛿 (𝑞, 𝑥𝑖 𝑗−𝑙+1 ,𝐶 𝑗 )

≤
∑︁𝑘−1

𝑗=𝑙
𝑢 (𝑞, 𝑥𝑖 𝑗−𝑙+1 )

=
∑︁

𝑥∈𝐶∗−𝑆∗
𝑢 (𝑞, 𝑥)

=
∑︁

𝑥∈𝐶𝑧−𝑆
𝑢 (𝑞, 𝑥).

The last step holds by noticing

𝐶𝑧 − 𝑆 = (𝐶∗ ∪ {𝑧}) − (𝑆∗ ∪ {𝑧}) = 𝐶∗ − 𝑆∗ .

As a result, it follows that

𝑐 (𝑞, 𝑆) − 𝑐 (𝑞,𝐶∗) ≤
∑︁

𝑥∈𝐶𝑧−𝑆
𝑢 (𝑞, 𝑥) − 𝛿 (𝑞, 𝑧, 𝑆∗).

Moreover, notice that 𝛿 (𝑞, 𝑧, 𝑆∗) ≥ 𝑢 (𝑞, 𝑧), due to the update step (2) in Procedure 1. Specifically,

here 𝑆∗ cannot be just a subset of 𝐶∗; rather, it must be some “prefix” of 𝐶∗. To see this, since 𝑧

has not been selected by greedy search yet, it must have been considered with any prefix of 𝐶∗

but nothing else. That is, we only have what-if costs for configurations that contain 𝑧 and some

prefix of 𝐶∗—we do not have what-if cost for any other configuration that contains 𝑧. Note that

this does not need to hold for the 𝑆 in Case 1, namely, 𝑆 is not necessarily a prefix of 𝐶∗ there.
However, the 𝑆 in Case 1 must also contain some prefix of 𝐶∗—in fact, 𝑆 must be either a prefix
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Fig. 21. Error distributions of estimated coverage.

of 𝐶∗ or a prefix of 𝐶∗ plus one additional index from 𝐶∗, due to the structure of greedy search

(ref. Figure 3). To summarize, we conclude

𝑐 (𝑞, 𝑆) − 𝑐 (𝑞,𝐶∗) ≤
∑︁

𝑥∈𝐶𝑧−𝑆
𝑢 (𝑞, 𝑥) − 𝑢 (𝑞, 𝑧).

This completes the proof of the theorem. □

B MORE EVALUATION RESULTS
B.1 Accuracy of Estimated Coverage
One critical factor for the efficacy of the coverage-based refinement is the accuracy of estimated

coverage. We test this by measuring the absolute error of the estimated coverage in terms of the

ground truth. Specifically, let 𝜌 be the estimated coverage using Equation 12 and let 𝜌 be the ground-

truth coverage defined by Equation 11. The absolute error 𝜖 (𝜌, 𝜌) is defined as 𝜖 (𝜌, 𝜌) = |𝜌 − 𝜌 |.
Note that 0 ≤ 𝜖 (𝜌, 𝜌) ≤ 1 and a smaller 𝜖 (𝜌, 𝜌) means that the estimated coverage is more

accurate. We collect data points for this investigation as follows. For each query 𝑞 in a workload,

we collect all of its candidate indexes and treat each of them as a singleton configuration {𝑧}. We

then make a what-if call for each such query-index pair (𝑞, {𝑧}) to the query optimizer and obtain

its what-if cost 𝑐 (𝑞, {𝑧}). We compute 𝜌 and 𝜌 for each pair (𝑞, {𝑧}) based on Equations 12 and 11.

Figure 21 presents the probability distributions (both the probability density and the cumulative
distribution function, i.e., CDF) for absolute errors on the workloads that we tested. We observe

that, for 66%, 87%, 85%, and 97% of the query-index pairs collected on TPC-H, TPC-DS, Real-D,
and Real-M, their absolute errors of the estimated coverage are below 0.3. The mean absolute
errors observed on these workloads are 0.21, 0.16, 0.10, and 0.04, respectively. Based on Equation 4,

since we further sum up the MCI’s to compute the lower bound, the aggregated error contributed

to the lower bound when incorporating coverage-based refinement can be even smaller due to

cancellation of the estimation errors made on individual MCI’s.

B.2 Cost Function Properties
We validate the monotonicity and submodularity assumptions of query optimizer cost functions.

For each workload, we collect data points using Algorithm 6. It runs vanilla greedy for each query

𝑞 (by viewing 𝑞 as a singleton workload) without a budget on the number of what-if calls. As a result,

the actual what-if cost is used for every query-configuration pair. Since this step is costly, we limit

the cardinality constraint to 𝐾 = 2 (line 2). After vanilla greedy finishes, Algorithm 6 iterates over

each candidate index 𝑧 of the query𝑞 to collect corresponding data points for checking monotonicity

and submodularity (lines 3 to 8). For a given candidate index 𝑧 (i.e., a singleton configuration {𝑧}),
it looks for all of its parent configurations 𝑃𝑧 , which contain 𝑧 and one additional candidate index

𝑥 . At this point, we know 𝑐 (𝑞, 𝑃𝑧), 𝑐 (𝑞, {𝑧}), 𝑐 (𝑞, {𝑥}), and 𝑐 (𝑞, ∅):
• For monotonicity validation, we check if (1) 𝑐 (𝑞, ∅) ≥ 𝑐 (𝑞, {𝑧}), (2) 𝑐 (𝑞, ∅) ≥ 𝑐 (𝑞, {𝑥, 𝑧}), and (3)

𝑐 (𝑞, {𝑧}) ≥ 𝑐 (𝑞, {𝑥, 𝑧}) (line 6). Note that we do not need to check whether 𝑐 (𝑞, ∅) ≥ 𝑐 (𝑞, {𝑥})
and 𝑐 (𝑞, {𝑥}) ≥ 𝑐 (𝑞, {𝑥, 𝑧}) here, since 𝑥 will also be visited by the iteration at sometime.
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Algorithm 6:Collect data points for validation of cost function properties (i.e., monotonicity

and submodularity).

Input:𝑊 , the workload.

Output: 𝐷𝑚 , data points for monotonicity validation; 𝐷𝑠 , data points for submodularity validation.

1 foreach query 𝑞 ∈𝑊 do
2 Run vanilla greedy on {𝑞} with 𝐾 = 2 and 𝐵 = ∞;
3 foreach candidate index 𝑧 of 𝑞 do
4 Collect all parent configurations 𝑃𝑧 = {𝑥, 𝑧} of 𝑧 with known what-if costs;

5 foreach parent configuration 𝑃𝑧 do
6 Add three tuples [𝑐 (𝑞, ∅), 𝑐 (𝑞, {𝑧})], [𝑐 (𝑞, ∅), 𝑐 (𝑞, 𝑃𝑧)], and [𝑐 (𝑞, {𝑧}), 𝑐 (𝑞, 𝑃𝑧)] into 𝐷𝑚

for monotonicity check;

7 Add one tuple [𝑐 (𝑞, ∅), 𝑐 (𝑞, {𝑧}), 𝑐 (𝑞, {𝑥}), 𝑐 (𝑞, 𝑃𝑧)] into 𝐷𝑠 for submodularity check;

8 return 𝐷𝑚 and 𝐷𝑠 ;

Workload # Total # Yes # No % Yes % No
TPC-H 1,132 1,121 11 99.0% 1.0%

TPC-DS 7,893 7,802 91 98.9% 1.1%

Real-D 7,808 7,668 140 98.2% 1.8%

Real-M 120,732 115,222 5,510 95.4% 4.6%

Table 5. Validation Results of Monotonicity Assumption.

Workload # Total # Yes # No % Yes % No
TPC-H 444 389 55 87.6% 12.4%

TPC-DS 3,120 2,349 771 75.3% 24.7%

Real-D 3,282 2,896 386 88.2% 11.8%

Real-M 48,166 40,976 7,190 85.1% 14.9%

Table 6. Validation Results of Submodularity Assumption.
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Fig. 22. Histograms of 𝛿 when 𝛿 > 0.

• For submodularity validation, we check if 𝑐 (𝑞, ∅) − 𝑐 (𝑞, {𝑧}) ≥ 𝑐 (𝑞, {𝑥}) − 𝑐 (𝑞, {𝑥, 𝑧}) (line 7).
Tables 5 and 6 present validation results of the monotonicity and submodularity assumptions,

respectively. We report the number of data points collected by Algorithm 6 for each validation test (#
Total), the number (resp. percentage) of data points wheremonotonicity/submodularity holds (# Yes
resp. % Yes), and the number (resp. percentage) of data points where monotonicity/submodularity

does not hold (#No resp.%No). We observe that the probability for monotonicity and submodularity

to hold is high on all the workloads that we tested, whereas monotonicity holds with a higher

probability (≥95.4%) than submodularity (≥75.3%).
We further looked into the cases where submodularity does not hold, by measuring the difference

𝛿 between 𝛿 (𝑞, 𝑧, ∅) = 𝑐 (𝑞, ∅) − 𝑐 (𝑞, {𝑧}) and 𝛿 (𝑞, 𝑧, {𝑥}) = 𝑐 (𝑞, {𝑥}) − 𝑐 (𝑞, {𝑥, 𝑧}). That is, 𝛿 =

𝛿 (𝑞, 𝑧, {𝑥}) − 𝛿 (𝑞, 𝑧, ∅) . Intuitively, a violation of submodularity means 𝛿 > 0, and we call 𝛿 the
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magnitude of violation. Figure 22 presents the histograms for the data points collected on the

workloads with 𝛿 > 0. We observe the same pattern for all the workloads tested: the distribution of

𝛿 (when 𝛿 > 0) is highly skewed, concentrating on regions where 𝛿 is small.

C IMPACT OF COVERAGE ON THE CONFIDENCE
When we consider using “coverage” to estimate the what-if cost 𝑐 (𝑞, 𝑧) for a singleton configuration

{𝑧} and thus the corresponding MCI upper-bound 𝑢 (𝑞, 𝑧), the lower bound 𝐿(𝑞,𝐶) becomes an

estimated value as well. In the following, we use 𝑐 (𝑞, 𝑧), 𝑢 (𝑞, 𝑧), and �̂�(𝑞,𝐶) to denote the estimated

values based on the estimated coverage 𝜌 (𝑞, 𝑧). We present a quantitative analysis regarding the

impact of using these estimated values in the confidence-based what-if call skipping mechanism.

By the definition of coverage, we have

𝑐 (𝑞, {𝑧}) = 𝑐 (𝑞, ∅) − 𝜌 (𝑞, 𝑧) ·
(
𝑐 (𝑞, ∅) − 𝑐 (𝑞,Ω𝑞)

)
=

(
1 − 𝜌 (𝑞, 𝑧)

)
· 𝑐 (𝑞, ∅) + 𝜌 (𝑞, 𝑧) · 𝑐 (𝑞,Ω𝑞).

As a result, it follows that

𝑐 (𝑞, {𝑧}) = 𝑐 (𝑞, ∅) − 𝜌 (𝑞, 𝑧) ·
(
𝑐 (𝑞, ∅) − 𝑐 (𝑞,Ω𝑞)

)
=

(
1 − 𝜌 (𝑞, 𝑧)

)
· 𝑐 (𝑞, ∅) + 𝜌 (𝑞, 𝑧) · 𝑐 (𝑞,Ω𝑞).

Now, assuming 𝑢 (𝑞, 𝑧) = 𝑐 (𝑞, ∅) − 𝑐 (𝑞, {𝑧}), the estimated lower bound becomes

�̂�(𝑞,𝐶) = 𝑐 (𝑞, ∅) −
∑︁

𝑧∈𝐶
𝑢 (𝑞, 𝑧)

= 𝑐 (𝑞, ∅) −
∑︁

𝑧∈𝐶

(
𝑐 (𝑞, ∅) − 𝑐 (𝑞, {𝑧})

)
= 𝑐 (𝑞, ∅) −

∑︁
𝑧∈𝐶

𝜌 (𝑞, 𝑧) ·
(
𝑐 (𝑞, ∅) − 𝑐 (𝑞,Ω𝑞)

)
= 𝑐 (𝑞, ∅) − Δ(𝑞,Ω𝑞) ·

∑︁
𝑧∈𝐶

𝜌 (𝑞, 𝑧).
It then follows that the confidence with coverage-based singleton cost estimates is

𝛼 (𝑞,𝐶) = �̂�(𝑞,𝐶)
𝑈 (𝑞,𝐶) =

𝑐 (𝑞, ∅) − Δ(𝑞,Ω𝑞) ·
∑
𝑧∈𝐶 𝜌 (𝑞, 𝑧)

𝑈 (𝑞,𝐶) .

On the other hand, by the definition of confidence we have

𝛼 (𝑞,𝐶) = 𝐿(𝑞,𝐶)
𝑈 (𝑞,𝐶) =

𝑐 (𝑞, ∅) − Δ(𝑞,Ω𝑞) ·
∑
𝑧∈𝐶 𝜌 (𝑞, 𝑧)

𝑈 (𝑞,𝐶) .

Combining the above two equations yields

𝑈 (𝑞,𝐶) ·
(
𝛼 (𝑞,𝐶) − 𝛼 (𝑞,𝐶)

)
= Δ(𝑞,Ω𝑞) ·

∑︁
𝑧∈𝐶

(
𝜌 (𝑞, 𝑧) − 𝜌 (𝑞, 𝑧)

)
.

Or equivalently,

𝛼 (𝑞,𝐶) = 𝛼 (𝑞,𝐶) −
Δ(𝑞,Ω𝑞)
𝑈 (𝑞,𝐶) ·

∑︁
𝑧∈𝐶

(
𝜌 (𝑞, 𝑧) − 𝜌 (𝑞, 𝑧)

)
= 𝛼 (𝑞,𝐶) +

Δ(𝑞,Ω𝑞)
𝑈 (𝑞,𝐶) ·

∑︁
𝑧∈𝐶

(
𝜌 (𝑞, 𝑧) − 𝜌 (𝑞, 𝑧)

)
.

This implies that the degree of error in the confidence computation using estimated coverage

depends on the sum of the errors made in estimating coverage for individual indexes (i.e., singleton

configurations) within the configuration 𝐶 .
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