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Scenario: Correlated Window Aggregates

An example “window set” query from Azure Stream Analytics: 
https://azure.microsoft.com/en-us/services/stream-analytics/
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https://azure.microsoft.com/en-us/services/stream-analytics/


Overview of Our Solution
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(a) Default query plan (b) Optimized query plan (c) Optimized query plan 
with factor windows



Window Coverage
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W1 is “covered by” W2

(a) Window coverage
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(b) Window partitioning
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Window Coverage Graph (WCG) 
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• We represent a window as 𝑊⟨𝑟, 𝑠⟩, where 𝑟 and 𝑠 represent 𝑊’s “range” and “slide”.

▪ 𝑊 is a “tumbling” window if 𝑟 = 𝑠.

▪ 𝑊 is a “hopping” window if 𝑟 > 𝑠.

• Window coverage graph (WCG)

▪ Vertices represent the windows in the window set.

▪ There is an edge from 𝑊2 to 𝑊1 if 𝑊1 is covered by 𝑊2.

▪ Example: Consider a window set with four tumbling windows 

𝑊1⟨10, 10⟩, 𝑊2⟨20, 20⟩, 𝑊3⟨30, 30⟩, 𝑊4⟨40, 40⟩.

▪ WCG is a directed acyclic graph (DAG).

The WCG representation 
of the window set

s r

(b) Hopping Window
r = s

(a) Tumbling Window



Cost Modeling

• Assume that the cost of computing an aggregate function 𝑓 is proportional to the number of 

events processed.

• The “instance/interval cost” of window 𝑊 𝑟, 𝑠  is 𝜂 ⋅ 𝑟, where 𝜂 is the input event rate.

• If 𝑊1 is covered by 𝑊2, the instance cost of 𝑊1 is reduced from 𝜂 ⋅ 𝑟1 to 𝑀 𝑊1, 𝑊2 = 1 +
𝑟1−𝑟2

𝑠2
.

▪ Intuitively, 𝑀 𝑊1, 𝑊2  represents the number of intervals from 𝑊2 that cover an interval from 𝑊1.

• If 𝑊1 is covered by multiple 𝑊2’s, the instance cost of 𝑊1 is reduced to min𝑊2
 {𝑀 𝑊1, 𝑊2 }.
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Min-Cost WCG

• Example: Consider a window set with 𝑊1⟨10, 10⟩, 𝑊2⟨20, 20⟩, 𝑊3⟨30, 30⟩, 𝑊4⟨40, 40⟩,.
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(b) Min-cost WCG, cost = 150(a) Initial WCG, cost = 480 



Factor Windows

• Factor window - a window not in the input window set that can help reduce the evaluation cost.

I.e., it’s a window that covers some window(s) in the window set.

• Example: Consider a window set with 𝑊2⟨20, 20⟩, 𝑊3⟨30, 30⟩, 𝑊4⟨40, 40⟩.

(a) Initial WCG (i.e., Min-cost WCG 
w/o factor window), Cost = 246

(b) Min-cost WCG with factor window 
𝑊1⟨10, 10⟩, Cost = 150
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Technical Problem: How 
to Find the Optimal 
Factor Windows?

• NP-hard problem (Steiner tree)

• Our “greedy” solution: Find factor 

windows that are “locally” optimal.

(1) Candidate generation

(2) Candidate selection

• Special treatment for “partitioned by” 

semantics: See the paper for details.
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Candidate Generation

• Find eligible slides Sf.

(1) sd = gcd{s1, … , sK}

(2) Sf = {sf: sd mod sf = 0 and sf mod sW = 0}

• Find eligible ranges Rf for each sf ∈ Sf.

(1) rmin = min r1, … , rK

(2) Rf = {rf: rf mod sf = 0 and rf ≤ rmin}

• Construct a candidate factor window Wf = ⟨rf, sf⟩ for each pair rf ∈ Rf, sf .
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Candidate Selection 

• Compute the “benefit” 𝛿𝑓 of each candidate factor window 𝑊𝑓.

𝛿𝑓 = ෍
𝑗=1

𝐾

𝑛𝑗 ⋅ (
𝑟𝑗 − 𝑟𝑊

𝑠𝑊
−

𝑟𝑗 − 𝑟𝑓

𝑠𝑓
) − 𝑛𝑓 ⋅ (1 +

𝑟𝑓 − 𝑟𝑊

𝑠𝑊
)

• Select the factor window with the maximum benefit.
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Put Things 

Together

Candidate
Generation

Candidate
Selection
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Experimental Settings

• Experimental Setup

(1) Prototype: C# implementation that produces optimized query plans (with and without factor windows) 
represented by Trill expressions.

(2) Performance metric: We measure the throughput of the original plan and the optimized query plans.

(3) Runtime configuration: Single-core execution with 2.2 GHz Intel CPUs and 128 GB main memory.

• Datasets

(1) Synthetic Datasets: Synthetic-1M (1 million events), Synthetic-10M (10 million events).

(2) Real Dataset: Real-32M (from DEBS 2012 Grand Challenge, with 32 million events).

• Window Sets

(1) RandomGen: Windows with randomly generated slides and ranges.

(2) SequentialGen: Windows whose ranges follow a “sequential” pattern (e.g., 10s, 20s, 30s, 40s, …).
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Throughput with and without Factor Windows

Synthetic10M, Window set size = 5
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Summary of Throughput Results

Synthetic10M
Window set size 
= {5, 10}

Real32M
Window set size 
= {5, 10}
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Scalability w.r.t. Window Set Size

Synthetic10M
Window set size 
= {15, 20}
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Query Optimization Overhead

Vary window set size 
from 5 to 20.
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Comparison with Window Slicing

• Window slicing

▪ Chop the window into smaller chunks (i.e., slices).

▪ Compute the aggregate over the window by aggregating sub-aggregates over the slices.

• Scotty (TODS’21): “General stream slicing”

• We compare our factor-window based optimization against Scotty on top of Apache Flink.

• We use the same data generator developed by Scotty for benchmarking its own performance: 

https://github.com/TU-Berlin-DIMA/scotty-window-processor.
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https://github.com/TU-Berlin-DIMA/scotty-window-processor


Comparison Results

19Window set size = 10



Conclusion: Summary of Contributions

• We proposed the “window coverage graph” (WCG) abstraction that captures the 

overlapping relationships between correlated windows.

• We proposed a cost-based optimization framework on top of the WCG abstraction, to 

minimize the computation cost of multi-window aggregate queries.

• We extended the cost-based framework by considering “factor windows” and developed 

technologies to find beneficial factor windows.

• We evaluated our techniques on both synthetic and real datasets and demonstrated that the 

throughput of optimized plans can outperform the original plans by up to 16.8x.
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Thank you for viewing our presentation! We’d be happy to hear your 
comments and questions: wentao.wu@microsoft.com.
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