
Factor Windows: Cost-based
Query Rewriting for Optimizing
Correlated Window Aggregates

Wentao Wu (Microsoft Research)

Philip A. Bernstein (Microsoft Research)

Alex Raizman (Microsoft)

Christina Pavlopoulou (University of California, Riverside)

1

Scenario: Correlated Window Aggregates

An example “window set” query from Azure Stream Analytics:
https://azure.microsoft.com/en-us/services/stream-analytics/

2

https://azure.microsoft.com/en-us/services/stream-analytics/

Overview of Our Solution

3

(a) Default query plan (b) Optimized query plan (c) Optimized query plan
with factor windows

Window Coverage

4

W1 is “covered by” W2

(a) Window coverage

W

W’

(b) Window partitioning

W

W’

Window Coverage Graph (WCG)

5

• We represent a window as 𝑊⟨𝑟, 𝑠⟩, where 𝑟 and 𝑠 represent 𝑊’s “range” and “slide”.

▪ 𝑊 is a “tumbling” window if 𝑟 = 𝑠.

▪ 𝑊 is a “hopping” window if 𝑟 > 𝑠.

• Window coverage graph (WCG)

▪ Vertices represent the windows in the window set.

▪ There is an edge from 𝑊2 to 𝑊1 if 𝑊1 is covered by 𝑊2.

▪ Example: Consider a window set with four tumbling windows

𝑊1⟨10, 10⟩, 𝑊2⟨20, 20⟩, 𝑊3⟨30, 30⟩, 𝑊4⟨40, 40⟩.

▪ WCG is a directed acyclic graph (DAG).

The WCG representation
of the window set

s r

(b) Hopping Window
r = s

(a) Tumbling Window

Cost Modeling

• Assume that the cost of computing an aggregate function 𝑓 is proportional to the number of

events processed.

• The “instance/interval cost” of window 𝑊 𝑟, 𝑠 is 𝜂 ⋅ 𝑟, where 𝜂 is the input event rate.

• If 𝑊1 is covered by 𝑊2, the instance cost of 𝑊1 is reduced from 𝜂 ⋅ 𝑟1 to 𝑀 𝑊1, 𝑊2 = 1 +
𝑟1−𝑟2

𝑠2
.

▪ Intuitively, 𝑀 𝑊1, 𝑊2 represents the number of intervals from 𝑊2 that cover an interval from 𝑊1.

• If 𝑊1 is covered by multiple 𝑊2’s, the instance cost of 𝑊1 is reduced to min𝑊2
 {𝑀 𝑊1, 𝑊2 }.

6

Min-Cost WCG

• Example: Consider a window set with 𝑊1⟨10, 10⟩, 𝑊2⟨20, 20⟩, 𝑊3⟨30, 30⟩, 𝑊4⟨40, 40⟩,.

7

(b) Min-cost WCG, cost = 150(a) Initial WCG, cost = 480

Factor Windows

• Factor window - a window not in the input window set that can help reduce the evaluation cost.

I.e., it’s a window that covers some window(s) in the window set.

• Example: Consider a window set with 𝑊2⟨20, 20⟩, 𝑊3⟨30, 30⟩, 𝑊4⟨40, 40⟩.

(a) Initial WCG (i.e., Min-cost WCG
w/o factor window), Cost = 246

(b) Min-cost WCG with factor window
𝑊1⟨10, 10⟩, Cost = 150

8

Technical Problem: How
to Find the Optimal
Factor Windows?

• NP-hard problem (Steiner tree)

• Our “greedy” solution: Find factor

windows that are “locally” optimal.

(1) Candidate generation

(2) Candidate selection

• Special treatment for “partitioned by”

semantics: See the paper for details.

9

Candidate Generation

• Find eligible slides Sf.

(1) sd = gcd{s1, … , sK}

(2) Sf = {sf: sd mod sf = 0 and sf mod sW = 0}

• Find eligible ranges Rf for each sf ∈ Sf.

(1) rmin = min r1, … , rK

(2) Rf = {rf: rf mod sf = 0 and rf ≤ rmin}

• Construct a candidate factor window Wf = ⟨rf, sf⟩ for each pair rf ∈ Rf, sf .

10

Candidate Selection

• Compute the “benefit” 𝛿𝑓 of each candidate factor window 𝑊𝑓.

𝛿𝑓 = ෍
𝑗=1

𝐾

𝑛𝑗 ⋅ (
𝑟𝑗 − 𝑟𝑊

𝑠𝑊
−

𝑟𝑗 − 𝑟𝑓

𝑠𝑓
) − 𝑛𝑓 ⋅ (1 +

𝑟𝑓 − 𝑟𝑊

𝑠𝑊
)

• Select the factor window with the maximum benefit.

11

Put Things

Together

Candidate
Generation

Candidate
Selection

12

Experimental Settings

• Experimental Setup

(1) Prototype: C# implementation that produces optimized query plans (with and without factor windows)
represented by Trill expressions.

(2) Performance metric: We measure the throughput of the original plan and the optimized query plans.

(3) Runtime configuration: Single-core execution with 2.2 GHz Intel CPUs and 128 GB main memory.

• Datasets

(1) Synthetic Datasets: Synthetic-1M (1 million events), Synthetic-10M (10 million events).

(2) Real Dataset: Real-32M (from DEBS 2012 Grand Challenge, with 32 million events).

• Window Sets

(1) RandomGen: Windows with randomly generated slides and ranges.

(2) SequentialGen: Windows whose ranges follow a “sequential” pattern (e.g., 10s, 20s, 30s, 40s, …).

13

Throughput with and without Factor Windows

Synthetic10M, Window set size = 5

14

Summary of Throughput Results

Synthetic10M
Window set size
= {5, 10}

Real32M
Window set size
= {5, 10}

15

Scalability w.r.t. Window Set Size

Synthetic10M
Window set size
= {15, 20}

16

Query Optimization Overhead

Vary window set size
from 5 to 20.

17

Comparison with Window Slicing

• Window slicing

▪ Chop the window into smaller chunks (i.e., slices).

▪ Compute the aggregate over the window by aggregating sub-aggregates over the slices.

• Scotty (TODS’21): “General stream slicing”

• We compare our factor-window based optimization against Scotty on top of Apache Flink.

• We use the same data generator developed by Scotty for benchmarking its own performance:

https://github.com/TU-Berlin-DIMA/scotty-window-processor.

18

https://github.com/TU-Berlin-DIMA/scotty-window-processor

Comparison Results

19Window set size = 10

Conclusion: Summary of Contributions

• We proposed the “window coverage graph” (WCG) abstraction that captures the

overlapping relationships between correlated windows.

• We proposed a cost-based optimization framework on top of the WCG abstraction, to

minimize the computation cost of multi-window aggregate queries.

• We extended the cost-based framework by considering “factor windows” and developed

technologies to find beneficial factor windows.

• We evaluated our techniques on both synthetic and real datasets and demonstrated that the

throughput of optimized plans can outperform the original plans by up to 16.8x.

20

Thank you for viewing our presentation! We’d be happy to hear your
comments and questions: wentao.wu@microsoft.com.

	Slide 1: Factor Windows: Cost-based Query Rewriting for Optimizing Correlated Window Aggregates
	Slide 2: Scenario: Correlated Window Aggregates
	Slide 3: Overview of Our Solution
	Slide 4: Window Coverage
	Slide 5: Window Coverage Graph (WCG)
	Slide 6: Cost Modeling
	Slide 7: Min-Cost WCG
	Slide 8: Factor Windows
	Slide 9: Technical Problem: How to Find the Optimal Factor Windows?
	Slide 10: Candidate Generation
	Slide 11: Candidate Selection
	Slide 12: Put Things Together
	Slide 13: Experimental Settings
	Slide 14: Throughput with and without Factor Windows
	Slide 15: Summary of Throughput Results
	Slide 16: Scalability w.r.t. Window Set Size
	Slide 17: Query Optimization Overhead
	Slide 18: Comparison with Window Slicing
	Slide 19: Comparison Results
	Slide 20: Conclusion: Summary of Contributions

