
A Brief Overview of 
Query Optimization

1

Wentao Wu

Microsoft Research

2/9/2018



Outline

• Architecture of Query Optimizer

• Cost Modeling

• Dynamic Query Optimization

2



Architecture of Query Optimizer

3



Conceptual View

4

Query (SQL) Parse

Logical 
Optimization

Abstract 
Syntax Tree 
(AST)

Analyze
(Relational) 
Algebraic
Tree 

Physical 
Optimization

(Best) 
Execution 
Plan

Search (Iterating)

Query 
Optimization



Logical Optimization

• Goal: Produce logically equivalent (relational) algebraic trees.

• Common techniques
• Push down selections/projections/aggregations.
• Reorder joins (inner/outer/semi/anti joins).
• Rewrite nested subqueries.

• References
[1] U. Dayal. Of nests and trees: A unified approach to processing queries that contain nested subqueries, 
aggregates, and quantifiers. (VLDB’87)
[2] Weipeng P. Yan, Per-Åke Larson: Eager Aggregation and Lazy Aggregation. (VLDB’95)

5



Physical Optimization

• Goal: Replace logical operators in the algebraic tree with physical operators.
• E.g., join => hash/merge/nested-loop join
• E.g., aggregation => sort-based/hash-based aggregation

• Common techniques
• Rule-based: E.g., pattern matching in SparkSQL.
• Cost-based: Use a cost model to estimate execution cost of a physical plan.

• References
[1] M. Armbrust et al. Spark SQL: Relational Data Processing in Spark. (SIGMOD’15)
[2] Leonard D. Shapiro: Join Processing in Database Systems with Large Main Memories. 
(ACM Trans. Database Syst., 1986)

6



Search Framework

• Goal: Search for the “best” execution plan (i.e., the plan with the lowest cost).

• Common techniques
• Bottom-up: Dynamic programming (System R). Used by Oracle, IBM DB2, PostgreSQL.

• Top-down: Volcano => Cascades. Used by Microsoft SQL Server, Greenplum (Pivotal).

• References
[1] P. Selinger et al.: Access Path Selection in a Relational Database Management System. (SIGMOD’79)

[2] Goetz Graefe: The Cascades Framework for Query Optimization. (IEEE Data Eng. Bull., 1995)

[3] M. A. Soliman et al.: Orca: A Modular Query Optimizer Architecture for Big Data. (SIGMOD’14)

7



Other References

• Surveys
[1] Yannis E. Ioannidis: Query Optimization. (ACM Comput. Surv. 28:1, 1996)
[2] Surajit Chaudhuri: An Overview of Query Optimization in Relational Systems. (PODS’98)

• Search frameworks
[1] Guy M. Lohman: Grammar-like Functional Rules for Representing Query Optimization 
Alternatives. (SIGMOD’88)
[2] Laura M. Haas, Johann Christoph Freytag, Guy M. Lohman, Hamid Pirahesh:
Extensible Query Processing in Starburst. (SIGMOD’89)
[3] Goetz Graefe, William J. McKenna: The Volcano Optimizer Generator: Extensibility and 
Efficient Search. (ICDE’93)
[4] Immanuel Trummer, Christoph Koch: Solving the Join Ordering Problem via Mixed Integer 
Linear Programming. (SIGMOD’17)

8



Is Query Optimization a “Solved” Problem?

• Well, it has been 40 years since the 1979 System-R paper …

9

What are the “right” problems that remain unsolved?



Cost Modeling: The Pain

10



Query Optimizer Needs Good Cost Models

• Unlike the other components in a query optimizer, cost modeling 
lacks a standard procedure and is case-by-case.
• It is based on the “knowledge” from the database system developers about 

the relative execution overheads of different operators.

• Common techniques
• Analytical modeling: Used by most (if not all) major database systems.

• Machine learning: One of the hot research areas in recent years.

11



Analytic Modeling

• Basically develop cost formulas for different operators.
• E.g. Cost = CPU cost + I/O cost + Network communication cost

• Cost models need validation and calibration.

• References
[1] Lothar F. Mackert, Guy M. Lohman: R* Optimizer Validation and Performance Evaluation for Local 
Queries. (SIGMOD’86)
[2] Lothar F. Mackert, Guy M. Lohman: R* Optimizer Validation and Performance Evaluation for 
Distributed Queries. (VLDB’86)
[3] W. Du, R. Krishnamurthy, and M.-C. Shan. Query optimization in a heterogeneous dbms. (VLDB’92)
[4] S. Mangegold et al., Generic database cost models for hierarchical memory systems. (VLDB’02)

12



Machine Learning

• Don’t trust the cost formulas made by optimizer developers.
• Learn cost functions based on query execution data.

• References
[1] A. Ganapathi et al., Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine 
Learning. (ICDE’09)
[2] M. Akdere et al., Learning-based Query Performance Modeling and Prediction. (ICDE’12)
[3] J. Li et al., Robust Estimation of Resource Consumption for SQL Queries using Statistical Techniques. 
(PVLDB 5:11, 2012)
[4] W. Wu et al., Predicting Query Execution Time: Are Optimizer Cost Models Really Unusable? (ICDE’13)

([3] and [4] combine analytic modeling with machine learning.)

13



Cardinality Estimation: The Hardest Part

• No matter you use analytic modeling or machine learning, you need 
cardinality information (i.e., sizes of intermediate results produced by 
operators in query execution plans).

• Recent work shows that cardinality estimation may be the most (and 
often the only) important thing in cost modeling.

[1] V. Leis et al., How Good Are Query Optimizers, Really? (PVLDB 9: 3, 2015)

• Common techniques
• Use histograms: equi-width, equi-depth, multi-dimensional.
• Use samples, sketches, statistical models, execution feedback, etc.

14



Single-column Histograms

• Histograms for a single column
• Equi-width, equi-depth, V-optimal, …
• Attribute-Value-Independence (AVI) assumption: Assume the independence between 

histograms (i.e., distributions) when estimate selectivity/cardinality for predicates involving 
more than one columns (e.g., X > 3 and Y < 8).

• The estimation error can be exponential under AVI.

• References
[1] M. Muralikrishna and David J Dewitt., Equi-depth histograms for estimating selectivity factors for 
multidimensional queries. (SIGMOD’88)
[2] Yannis E. Ioannidis, Stavros Christodoulakis: On the Propagation of Errors in the Size of Join Results. 
(SIGMOD’91)
[3] V. Poosala et al., Improved histograms for selectivity estimation of range predicates. (SIGMOD’96)
[4] Yannis E. Ioannidis: The History of Histograms (abridged). (VLDB’03)

15



Multi-column Histograms

• Motivation: Overcome the AVI assumption.
• Use histograms to capture the joint distribution across multiple columns.

• Drawback: The size increases exponentially w.r.t. the # of columns.
• Workload-driven approaches: Only construct multi-column histograms for columns 

that appear in workload queries.

• References
[1] V. Poosala, Y. E. Ioannidis: Selectivity Estimation Without the Attribute Value Independence 
Assumption. (VLDB’97)
[2] N. Bruno et al., STHoles: A Multidimensional Workload-Aware Histogram. (SIGMOD’01)
[3] I. F. Ilyas et al., CORDS: Automatic Discovery of Correlations and Soft Functional 
Dependencies. (SIGMOD’04)

16



Other Approaches
• Sampling/Sketches (References)

[1] R. Lipton et al., Practical Selectivity Estimation through Adaptive Sampling. (SIGMOD’90)
[2] P. J. Haas et al., Selectivity and cost estimation for joins based on random sampling. (J. Comput. Syst. Sci., 52:3, 1996)
[3] S. Acharya et al., Join Synopses for Approximate Query Answering. (SIGMOD’99)
[4] Phillip B. Gibbons: Distinct Sampling for Highly-Accurate Answers to Distinct Values Queries and Event Reports. 
(VLDB’01)
[5] D. Vengerov et al., Join size estimation subject to filter conditions. (PVLDB 8:12, 2015)
[6] Yu Chen, Ke Yi: Two-Level Sampling for Join Size Estimation. (SIGMOD’17)

Theoretical results:
[1] S. Chaudhuri et al., On Random Sampling over Joins. (SIGMOD’99)
[2] M. Charikar et al., Towards Estimation Error Guarantees for Distinct Values. (PODS’00)
[3] M. Riondato et al., The VC-Dimension of SQL Queries and Selectivity Estimation through Sampling. (ECML/PKDD’11)

• Statistical models/Feedback (References)
[1] L. Getoor et al., Selectivity Estimation using Probabilistic Models. (SIGMOD’01)
[2] M. Stillger et al., LEO - DB2's LEarning Optimizer. (VLDB’01)
[3] L. Tzoumas et al., Lightweight Graphical Models for Selectivity Estimation Without Independence Assumptions. 
(PVLDB 4:11, 2011)

17



Dynamic Query Optimization

18



Motivation

• So far, we have been talking about “static query optimization”.
• We assume that a query plan is ready and won’t be changed during execution.
• The performance of the query plan is subject to cost modeling, which depends 

on the accuracy of cardinality estimation, an inherently hard problem.

• However, why should we stick with one single query plan?
• We shouldn’t!

• Dynamic query optimization (a.k.a., interleave query optimization with 
query execution/processing)
• Let’s prepare multiple plans and decide at runtime which one(s) to use.

19



Two Key Problems

• How to generate multiple query plans?

• When to switch to a different query plan?

• Common techniques
• Parametric query optimization

• Adaptive/robust query processing

• Mid-query re-optimization

20



Parametric Query Optimization

• Mainly used for stored procedures (query templates).
• Rather than use one plan for all parameter values, use different plans for different 

parameter values.

• Multiple plans are generate during query compilation/optimization.

• Pick one plan before execution depending on the parameter value observed.

• References
[1] Y. E. Ioannidis et al., Parametric Query Optimization. (VLDB’92)

[2] A. Hulgeri, S. Sudarshan, Parametric query optimization for linear and piecewise linear cost 
functions. (VLDB’02)

[3] N. Reddy, J. R. Haritsa: Analyzing Plan Diagrams of Database Query Optimizers. (VLDB’05)

[4] J. R. Haritsa, Query optimizer plan diagrams: Production, reduction and applications. (ICDE’11)

21



Adaptive/Robust Query Processing

• Generate multiple plans during query compilation.
• Similar to parametric query optimization (PQO).

• Dynamically switch plans based on feedback from execution.
• This is different from PQO, which does not switch after execution starts.

• References
[1] G. Graefe, K. Ward: Dynamic Query Evaluation Plans. (SIGMOD’89)
[2] G. Antoshenkov: Dynamic Query Optimization in Rdb/VMS. (ICDE’93)
[3] R. L. Cole, G. Graefe: Optimization of Dynamic Query Evaluation Plans. (SIGMOD’94)
[4] R. Avnur, J. M. Hellerstein: Eddies: Continuously Adaptive Query Processing. (SIGMOD’00)
[5] A. Dutt, J. R. Haritsa: Plan bouquets: query processing without selectivity estimation. (SIGMOD’14)

22



Mid-Query Re-Optimization

• Start from the plan generated by the optimizer.
• So there is only one plan after query compilation/optimization stage. (This is different from 

PQO and adaptive/robust query optimization.)

• At runtime, keep monitor feedback from query execution.
• If there is evidence that the current plan is sub-optimal (e.g., significant cardinality 

estimation error), stop execution and ask the optimizer to re-optimize the remaining part of 
the query based on execution feedback.

• References
[1] N. Kabra, D. J. DeWitt: Efficient Mid-Query Re-Optimization of Sub-Optimal Query Execution 
Plans. (SIGMOD’98)
[2] V. Markl et al., Robust Query Processing through Progressive Optimization. (SIGMOD’04)
[3] S. Babu et al., Proactive Re-optimization. (SIGMOD’05)
[4] W. Wu et al., Sampling-based query re-optimization. (SIGMOD’16)

23



Thank you!

24



The Optimizer of Microsoft SQL Server

• Reference for the example below:
[1] Florian Waas, César A. Galindo-Legaria: Counting, Enumerating, and Sampling of Execution 
Plans in a Cost-Based Query Optimizer. (SIGMOD’00)

25



The Optimizer of Microsoft SQL Server (Cont.)

26


