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Text Understanding
 Machines need to understand text to unlock the 

information confined in Web data.
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What’s this?

“cats are animals”? or “cats are dogs”?

“Pablo Picasso, 25 Oct 1881, Spain”

“animals other than dogs such as cats”



Conceptualization
 A little piece of knowledge makes the difference.

 “Pablo Picasso is a person”

 “cats are animals”

 Can machines know this?

 They can’t.

 We need to pass this piece of knowledge to them.
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Taxonomies
 A hierarchical structure showing the isA relationships 

among concepts.
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organisms

plants animals

trees grass



Limited Size of Concept Space

Existing Taxonomies Number of Concepts

Probase 2,653,872

YAGO 352,297

WordNet 25,229

Freebase 1,450

DBPedia 259

NELL 123
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“How do we compete with the largest 
companies in US?”



Knowledge is Black and White

 “Vague” concepts

 “largest companies in US” => Walmart? Microsoft? P&G?

 “beautiful cities” => Seattle? Chicago? Shanghai?

“How do we compete with the largest 
companies in US?”
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There is inherent uncertainty inside these concepts!



Probase
 Automatically constructed from 1.6 billion web pages 

(with 92.4% precision).

 The largest concept space so far (2.6 million).

 Use probabilistic approach to model the uncertainty 
inside the concepts.
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Previous Work
 Syntactic Iteration (KnowItAll, TextRunner, NELL)

e.g., Hearst Patterns (as seeds): 
NP such as {NP,}*{(or|and)} NP
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Problems of Syntactic Iteration
 Syntactic patterns have limited extraction power.

 “… animals other than dogs such as cats …”

 High quality syntactic patterns are rare.
 Good patterns: “x is a country” => x = “China”

 Bad patterns: “war with x” => x = “planet Earth”

 Recall is sacrificed for precision.
 E.g., some methods only focus on extracting proper 

nouns.
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Our Approach
 Semantic Iteration
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Syntactic Iteration

Semantic Iteration



An Example
s: … companies other than oil companies such as IBM, 
Walmart, Proctor and Gamble, …
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Goal
 Build a taxonomy graph from the edges (“isA” pairs) 

from the previous data extraction stage.

(organisms, animals)
(organisms, plants)
(plants, trees)
(plants, grass)

organisms

plants animals

trees grass

5/13/2019 16



Challenges
 Should we merge the two “apple” here?

 e1 = (fruit, apple), e2 = (companies, apple)

 Should we merge the two “plants” here?

 e1 = (plants, tree), e2 = (plants, steam turbines)

Words such as “apple” and “plants” have 
multiple meanings (senses).
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Properties & Operations(1)
 Example:

 … plants such as trees, grass, and herbs ...

 … plants such as steam turbines, pumps, and boilers …
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Local Taxonomy Construction



Properties & Operations (2)
 Example:

a) … plants such as trees, grass, and herbs ...

b) … plants such as trees, grass, and shrubs ...
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Horizontal Merge



Properties & Operations (3)
 Example:

a) … organisms such as plants, trees, grass and animals …

b) … plants such as trees, grass, and shrubs …

c) … plants such as steam turbines, pumps, and boilers …
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Vertical Merge
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Plausibility

How likely is that the claim “y is an x” is true?
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si: evidence (or sentence) that supports (x, y)
pi: the probability that the evidence si is true

5/13/2019 22



Typicality
 Which one is more typical for the concept “bird”? a robin or 

ostrich?
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An instance of “big company” is 
also  an instance of “company”.

is the plausibility that y is a descendant concept of x.
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Application of Typicality (1)
 Semantic Web Search (ER’12)
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Application of Typicality (2)
 Understanding Web Tables (ER’12)
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Application of Typicality (3)
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 Short Text Understanding (IJCAI’11)
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Concept Space
 A concept is relevant if it appears at least once in the top 

50 million popular queries in Bing’s query log.
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IsA Relationship Space (1)
 The Concept-Subconcept Relationship Space

# of isA
pairs

Avg # of 
children

Avg # of 
parents

Avg
level

Max 
level

Probase 4,539,176 7.53 2.33 1.086 7

WordNet 283,070 11.0 2.4 1.265 14

WikiTaxonomy 90,739 3.7 1.4 1.483 15

YAGO 366,450 23.8 1.04 1.063 18

Freebase 0 0 0 1 1
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IsA Relationship Space (2)
 The Concept-Instance Relationship Space

Concept Size Distribution in Probase v.s. Freebase
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Precision of the Extracted Pairs
 92.4% precision in average over the 40 benchmark 

concepts.
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Conclusion
 We present a novel iterative extraction framework to 

extract the isA relationships from text.

 We present a novel taxonomy construction framework 
based on merging concepts by their senses.

 We use the above techniques to build Probase, which is 
currently the largest taxonomy in terms of concepts.

 We present a novel probabilistic approach to model the 
plausibility and typicality of the facts in Probase, and 
demonstrate its effectiveness in important text 
understanding applications.
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Q & A

Thank you 

Please visit our website: 
http://research.microsoft.com/probase/ 
for more information about Probase!
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Backup Slides

5/13/2019 35



Algorithm Outline (Extraction)
 Input: S, the set of sentences matching Hearst Patterns

 Output: Γ, the set of isA pairs

Repeat

foreach s in S do

Xs, Ys ← SyntacticExtraction(s);

if |Xs|>1: Xs ← SuperConceptDetection(Xs, Ys, Γ);

if |Xs|=1: Ys ← SubConceptDetection(Xs, Ys, Γ);

add valid isA pairs to Γ;

end

Until no new pairs added into Γ;

Return Γ;
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Syntactic Extraction
 Challenges

 … animals other than dogs such as cats …

 … classic movies such as Gone with the Wind …

 … companies such as IBM, Nokia, Proctor and
Gamble …

 Strategy

 Use “,” as the delimiter to obtain the candidates.

 For the last element, also use “and” and “or” to break it 
down.
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Super-Concept Detection
 Find the most likely super-concept among the 

candidates.

1) Ys is the set of sub-concepts of the sentence s.
2) p (yi | x1) = p(x1, yi) / p(x1) = n(x1, yi) / n(x1).

Pick x1 if r (x1, x2) > ε

Assuming independence of yi’s

We maintain a count 
n(x, y) for each (x, y) 
in Γ.

)()|(

)()|(

)|(

)|(
),(

22

11

2

1
21

xpxYp

xpxYp

Yxp

Yxp
xxr

s

s

s

s 

)|()(

)|()(
),(

212

111
21

xypxp

xypxp
xxr

i

n

i

i

n

i










5/13/2019 38



Super-Concept Detection (Ex)
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p (yi | x1) = p(x1, yi) / p(x1) = n(x1, yi) / n(x1)



Sub-Concept Detection (1)
 Find the valid sub-concepts among the candidates. 

E.g., … representatives in North America, Europe, the Middle 
East, Australia, Mexico, Brazil, Japan, China, and other
countries.

Observation 1. The closer a candidate sub-concept is to the 
pattern keywords, the more likely it is a valid sub-concept.

Observation 2. If we are certain a candidate sub-concept at 
the k-th position from the pattern keywords  is valid, then 
most likely candidate sub-concepts from position 1 to position 
k-1 are also valid.
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Sub-Concept Detection (2)
 Strategy

 Find the largest scope wherein sub-concepts are all valid:

find the maximum k s.t.  p (yk | x) > ε’

 Address the ambiguity issues inside the scope y1, …, yk :

Assuming independence of yi’s

Pick c1 if r (c1, c2) > ε’’

Suppose that yj is 
ambiguous with two 
candidates c1 and c2.

),,,|(

),,,|(
),(

112

111

21






j

j

yyxcp

yyxcp
ccr





),|()|(

),|()|(
),(

2

1

12

1

1

11
21

xcypxcp

xcypxcp
ccr

i

j

i

i

j

i














5/13/2019 41



Sub-Concept Detection (Ex)
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Properties of “Such As” (1)

 Example:

 … plants such as trees and grass ...

 … plants such as steam turbines, pumps, and boilers …

But sentences like “… plants such as trees and
boilers …” are extremely rare.

Property 1. Let s = {(x, y1), …, (x, yn)} be the isA pairs
derived from a sentence . Then, all the x’s in s have a
unique sense, that is, there exists a unique i such that
(x, yj) |= (xi, yj) holds for all 1 ≤ j ≤ n.

5/13/2019 43



Properties of “Such As” (2)

 Example:

a) … plants such as trees and grass ...

b) … plants such as trees, grass and herbs ...

The “plants” in a) and b) are highly likely 
to have the same sense.

Property 2. Let {(xi, y1), …, (xi, ym)} denote pairs from 
one sentence, and {(xj, z1), …, (xj, zn)} from another 
sentence. If {y1, …, ym} and {z1, …, zn} are similar, then it 
is highly likely that xi and xj are equivalent, that is, i = j.
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Properties of “Such As” (3)

 Example:

a) … organisms such as plants, trees, grass and animals …

b) … plants such as trees, grass, and shrubs …

c) … plants such as steam turbines, pumps, and boilers …

The “plants” in a) and b) are highly likely to have the 
same sense, but not the “plants” in a) and c).

Property 3. Let {(xi, y), (xi, u1), …, (xi, um)} denote pairs 
obtained from one sentence, and {(yk, v1), …, (yk, vn)} from 
another sentence. If {u1, u2, …, um} and {v1, v2, …, vn} are 
similar, then it is highly likely that (xi, y) |= (xi, yk).
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Local Taxonomy
 Based on Property 1
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Horizontal Merge
 Based on Property 2
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Vertical Merge (1)
 Single Sense Alignment (Based on Property 3)
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Vertical Merge (2)
 Multiple Sense Alignment (Based on Property 3)
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Similarity Function
 We favor the similarity f (A, B) to be measured by the 

absolute overlap of the two sets A and B.

 Similarity based on relative overlap such as Jaccard
similarity will raise weird results (see the paper for an 
example).

 More generally, the similarity function is desired to 
have the following closure property:

Property 4. If A, A’, B, and B’ are any sets s. t. 
and         , then Sim(A, B) => Sim(A’, B’).

AA 

BB 
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Algorithm Outline (Construction)
 Input: S, the set of sentences with extracted isA pairs

 Output: T, the taxonomy graph

Stage 1: For each s in S, construct a local taxonomy.

Stage 2: Perform all possible horizontal merges.

Stage 3: Perform all possible vertical merges.

Return the graph T after the 3 stages
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Theoretical Results
Theorem 1. Let T be a set of local taxonomies. Let Oα and Oβ be 
any two sequences of horizontal and vertical merge operations 
on T. Assume no further operations can be performed on T after 
Oα or Oβ . Then, the final graph after performing Oα and the 
final graph after performing Oβ are identical.

Theorem 2. Let O be the set of all possible sequences of 
operations, and let M = min{|O| : O O}. Suppose Oσ is the 
sequence that performs all possible horizontal merges first and 
all possible vertical merges next, then |Oσ| = M.
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Applications of Typicality (1)
 Semantic Web Search

ACM fellows working on semantic web

database conferences in asian cities

Are you interested in the text or instances of “ACM 
fellows”, “database conferences” and “asian cities”?
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Applications of Typicality (2)
 Short Text Understanding (Y. Song et al. IJCAI’11)

 Conceptualize from a set of words by performing Bayesian 
analysis based on the (inverse) typicality T(x|i).

 Cluster Twitter messages based on conceptualization 
signals of words.

Example:            India => country / region
India, China => Asian country / developing country

India, China, Brazil => BRIC / emerging market
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Concept Space (1)
 Probase contains more then 2.6 million concepts. Are 

they useful?

 Evaluate this using the top 50 million popular queries in 
Bing’s query log from a 2-year period.

 Metrics in the evaluation
 Relevance

 Taxonomy Coverage

 Concept Coverage
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Concept Space (2)
 Relevance: A concept is relevant if it appears at least once.
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Concept Space (3)
 Taxonomy Coverage: A query is covered if it contains 

at least one concept or instance in the taxonomy.
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Concept Space (4)
 Concept Coverage: A query is covered if it contains at 

least one concept in the taxonomy.
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