Probase: A Probabilistic Taxonomy for Text Understanding

Wentao Wu¹, Hongsong Li², Haixun Wang², Kenny Q. Zhu³

¹University of Wisconsin, Madison, WI, USA
 ²Microsoft Research Asia, Beijing, China
 ³Shanghai Jiao Tong University, Shanghai, China

Outline

- Overview
- Iterative Extraction
- Taxonomy Construction
- Probabilistic Modeling
- Evaluation
- Conclusion

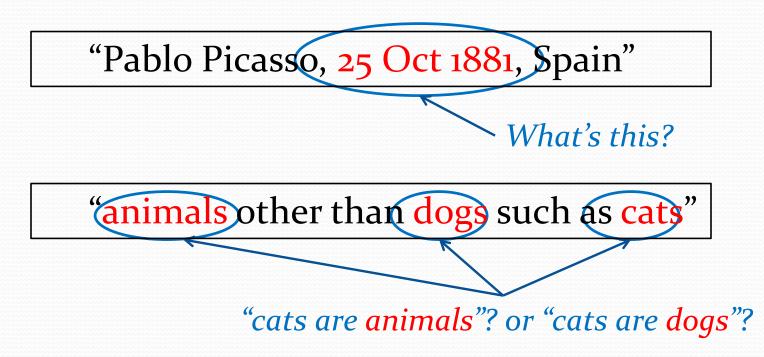
Outline

Overview

- Iterative Extraction
- Taxonomy Construction
- Probabilistic Modeling
- Evaluation
- Conclusion

Text Understanding

• Machines need to *understand* text to unlock the information confined in Web data.

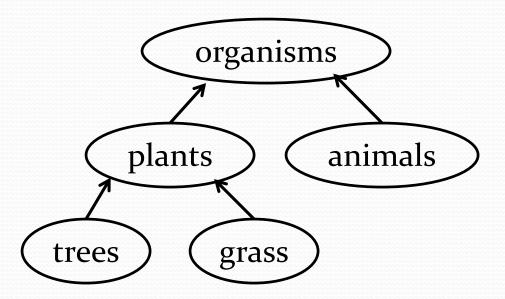


Conceptualization

- A little piece of *knowledge* makes the difference.
 - "Pablo Picasso is a person"
 - "cats are animals"
- Can machines know this?
 - They can't.
 - We need to pass this piece of knowledge to them.

Taxonomies

• A *hierarchical* structure showing the *isA* relationships among concepts.



Limited Size of Concept Space

"How do we compete with the *largest* companies in US?"

Existing Taxonomies	Number of Concepts			
Probase	2,653,872			
YAGO	352,297			
WordNet	25,229			
Freebase	1,450			
DBPedia	259			
NELL	123			

Knowledge is Black and White

"How do we compete with the *largest companies in US*?"

- "Vague" concepts
 - "largest companies in US" => Walmart? Microsoft? P&G?
 - "beautiful cities" => Seattle? Chicago? Shanghai?

There is inherent **uncertainty** inside these concepts!

Probase

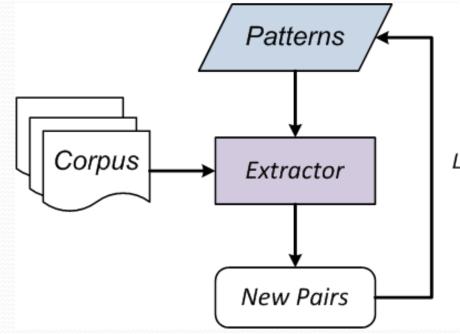
- Automatically constructed from 1.6 billion web pages (with <u>92.4</u>% precision).
- The largest *concept* space so far (2.6 *million*).
- Use *probabilistic* approach to model the uncertainty inside the concepts.

Outline

- Overview
- Iterative Extraction
- Taxonomy Construction
- Probabilistic Modeling
- Evaluation
- Conclusion

Previous Work

• Syntactic Iteration (KnowItAll, TextRunner, NELL)



e.g., Hearst Patterns (as seeds): NP such as {NP,}*{(or|and)} NP

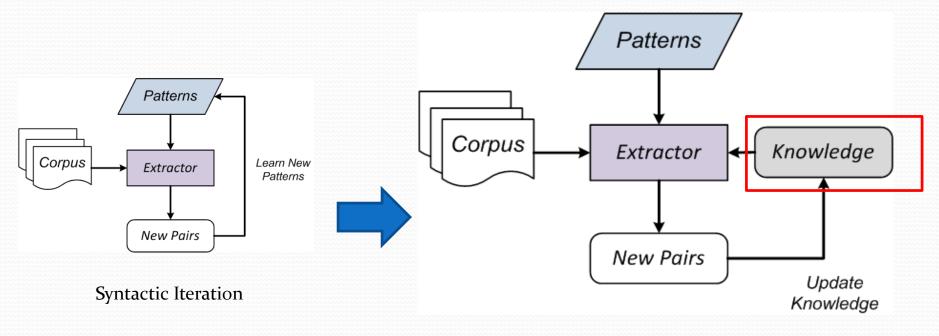
Learn New Patterns

Problems of Syntactic Iteration

- Syntactic patterns have limited extraction power.
 - "... animals other than dogs such as cats ..."
- High quality syntactic patterns are rare.
 - Good patterns: "*x* is a country" => *x* = "China"
 - **Bad** patterns: "war with *x*" => *x* = "planet Earth"
- Recall is sacrificed for precision.
 - E.g., some methods only focus on extracting *proper nouns*.

Our Approach

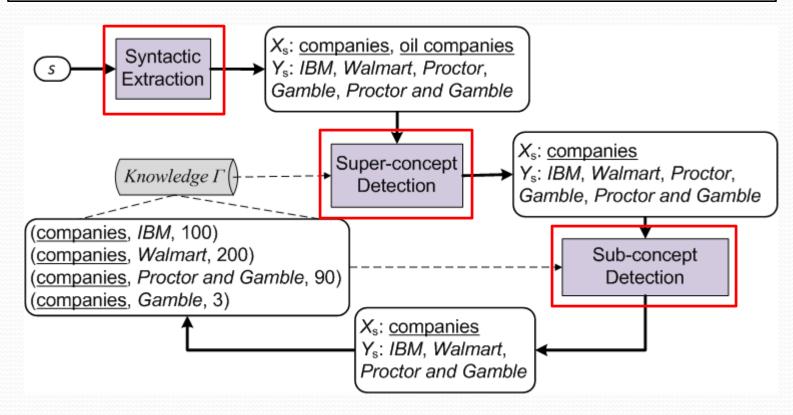
Semantic Iteration



Semantic Iteration

An Example

s: ... <u>companies</u> other than <u>oil companies</u> **such as** *IBM*, *Walmart, Proctor and Gamble*, ...



Outline

- Overview
- Iterative Extraction
- Taxonomy Construction
- Probabilistic Modeling
- Evaluation
- Conclusion

Goal

• Build a taxonomy *graph* from the *edges* ("*isA*" pairs) from the previous data extraction stage.

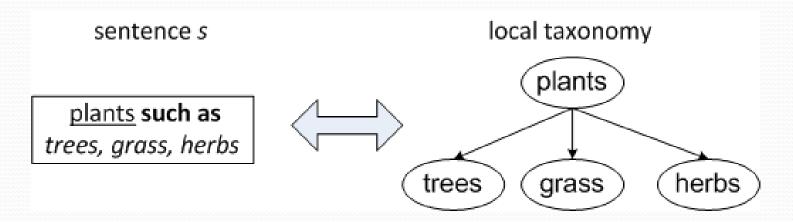


Challenges

- Should we merge the two "apple" here?
 e₁ = (<u>fruit</u>, *apple*), e₂ = (<u>companies</u>, *apple*)
- Should we merge the two "plants" here?
 e₁ = (<u>plants</u>, *tree*), e₂ = (<u>plants</u>, *steam turbines*)
 - Words such as "apple" and "plants" have **multiple** meanings (senses).

Properties & Operations(1)

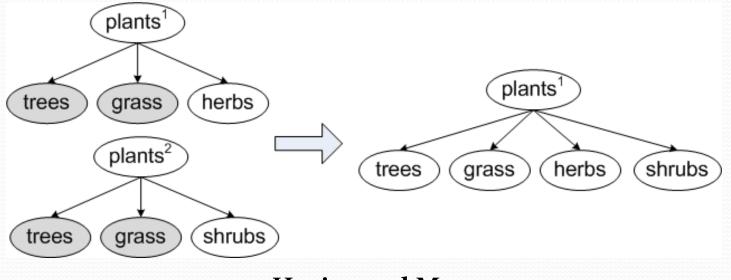
- Example:
 - ... <u>plants</u> **such as** *trees, grass,* **and** *herbs* ...
 - ... <u>plants</u> **such as** steam turbines, pumps, **and** boilers ...



Local Taxonomy Construction

Properties & Operations (2)

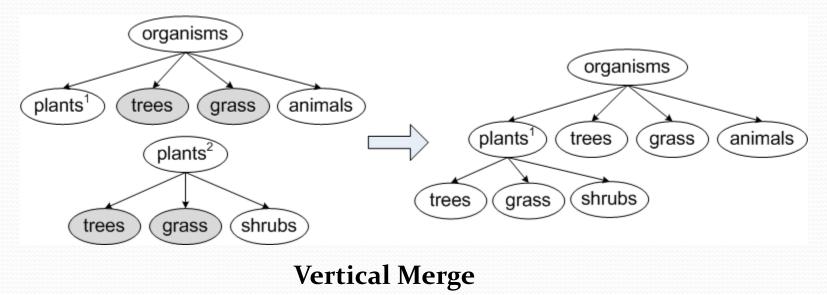
- Example:
 - a) ... <u>plants</u> **such as** *trees, grass,* **and** *herbs* ...
 - b) ... <u>plants</u> **such as** *trees*, *grass*, **and** *shrubs* ...



Horizontal Merge

Properties & Operations (3)

- Example:
 - a) ... <u>organisms</u> **such as** *plants*, *trees*, *grass* **and** *animals* ...
 - b) ... <u>plants</u> **such as** *trees*, *grass*, **and** *shrubs* ...
 - c) ... <u>plants</u> **such as** *steam turbines*, *pumps*, **and** *boilers* ...



Outline

- Overview
- Iterative Extraction
- Taxonomy Construction
- Probabilistic Modeling
- Evaluation
- Conclusion

Plausibility

How likely is that the claim "y is an x" is true?

$$P(x, y) = 1 - p(\overline{E}) = 1 - p(\prod_{i=1}^{n} \overline{s_i}) = 1 - \prod_{i=1}^{n} (1 - p_i)$$

 s_i : evidence (or sentence) that supports (x, y) p_i : the probability that the evidence s_i is true

Typicality

Which one is more typical for the concept "bird"? a robin or ostrich?

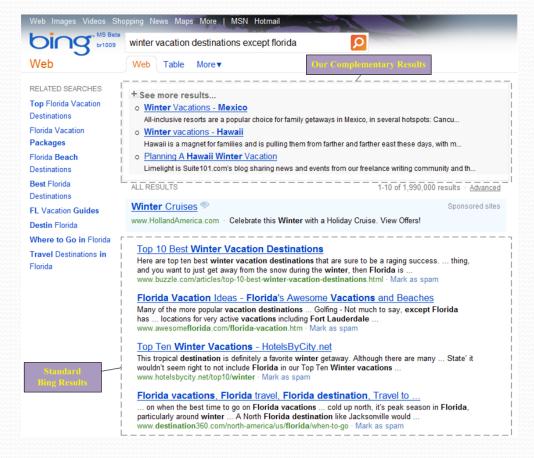
$$T(i \mid x) = \frac{n(x,i) \cdot P(x,i)}{\sum_{i' \in I_x} n(x,i') \cdot P(x,i')}$$

 $T(i \mid x) = \frac{\sum_{y \in D(x)} \widetilde{P}(x, y) \cdot n(y, i) \cdot P(y, i)}{\sum_{i' \in I_x} \sum_{y \in D(x)} \widetilde{P}(x, y) \cdot n(y, i') \cdot P(y, i')}$

 $\tilde{P}(x, y)$ is the *plausibility* that y is a *descendant* concept of x.

Application of Typicality (1)

Semantic Web Search (ER'12)



Application of Typicality (2)

Understanding Web Tables (ER'12)

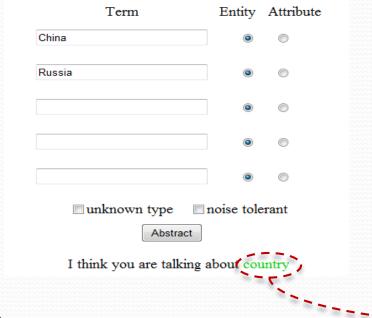
Web Images Videos Shopping News Maps More MSN Hotmail						
bing MS Beta br1009	American politicians birthday					
Web	Web Table More▼					
RELATED SEARCHES List of American Politicians	- Shrink - Shrink table					
African American Women Politicians	Birth order	U.S. Vice President	Birthdate	Century	Order of office	Birthplace
Famous Politicians Timeline of American	39	Richard Nixon	January 9, 1913	20th	36	Yorba Linda , California
Politics African American	28	Theodore Roosevelt	October 27, 1858	19th	25	New York City , New York
History 20th Century	46	Dan Quayle	February 4, 1947	20th	44	Indianapolis , Indiana
Humphrey Hawkins Full Employment Act	38	Hubert Humphrey	May 27, 1911	20th	38	Wallace , South Dakota
United States Political	40	Gerald Ford	July 14, 1913	20th	40	Omaha , Nebraska
Party System	42	George H. W. Bush	June 12, 1924	20th	43	Milton , Massachusetts
United States Two-	44	Dick Cheney	January 30, 1941	20th	46	Lincoln , Nebraska
party System	45	Joseph Biden	November 20, 1942	20th	47	Scranton , Pennsylvania
	9	Martin Van Buren	December 5, 1782	18th	8	Kinderhook , New York

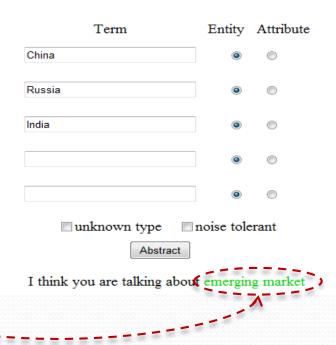
State	Senator	Party	Date of birth	Term	Age (Years/Days)
Illinois	Barack Obama	Democratic	August 4, 1961	2005 - 2008	1961 8 4
New York	Hillary Clinton	Democratic	October 26, 1947	2001 - 2009	1947 10 26
Tennessee	Al Gore	Democratic	March 31, 1948	1985 - 1993	1948 3 31
North Carolina	John Edwards	Democratic	June 10, 1953	1999 - 2005	1953 6 10
Kansas	Bob Dole	Republican	July 22, 1923	1969 - 1996	1923 7 22
Indiana	Dan Quayle	Republican	February 4, 1947	1981 - 1989	1947 2 4

Application of Typicality (3)

Short Text Understanding (IJCAI'11)

UNDERSTANDING 恰&懂



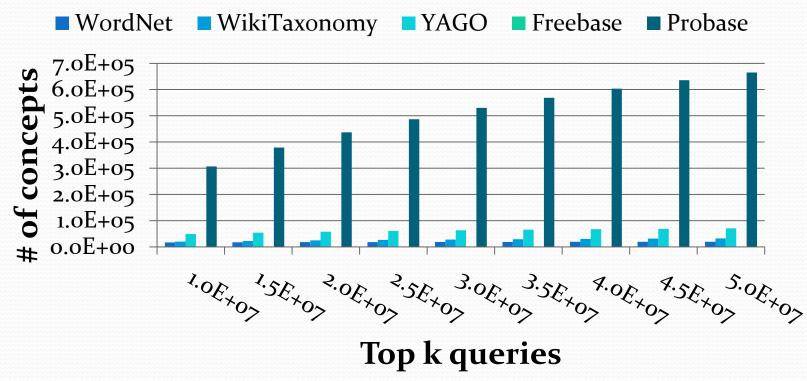


Outline

- Overview
- Iterative Extraction
- Taxonomy Construction
- Probabilistic Modeling
- Evaluation
- Conclusion

Concept Space

• A concept is *relevant* if it appears at least once in the top **50 million** popular queries in Bing's query log.



IsA Relationship Space (1)

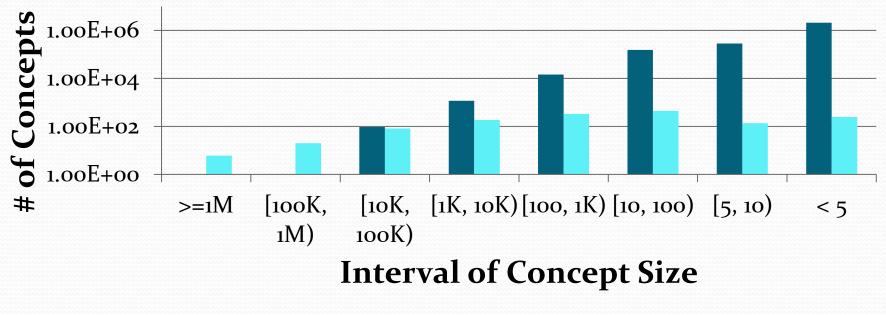
The Concept-Subconcept Relationship Space

	# of <i>isA</i> pairs	Avg # of children	Avg # of parents	\sim	Max level
Probase	4,539,176	7.53	2.33	1.086	7
WordNet	283,070	11.0	2.4	1.265	14
WikiTaxonomy	90,739	3.7	1.4	1.483	15
YAGO	366,450	23.8	1.04	1.063	18
Freebase	0	0	0	1	1

IsA Relationship Space (2)

The Concept-Instance Relationship Space

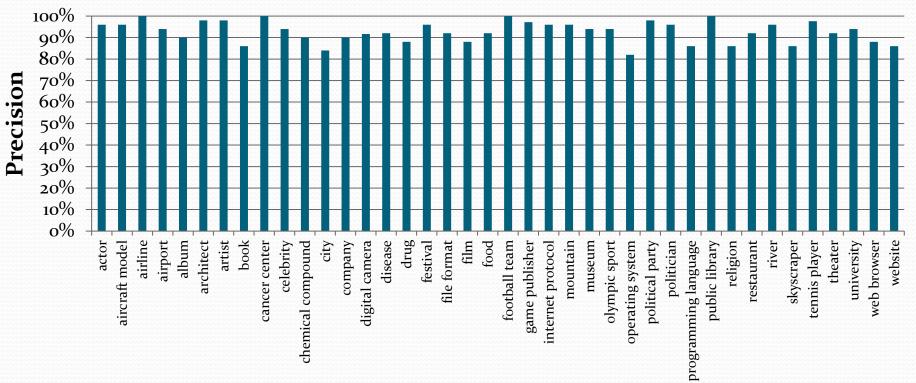
Probase Freebase



Concept Size Distribution in Probase v.s. Freebase

Precision of the Extracted Pairs

• 92.4% precision in average over the 40 benchmark concepts.



Outline

- Overview
- Iterative Extraction
- Taxonomy Construction
- Probabilistic Modeling
- Evaluation
- Conclusion

Conclusion

- We present a novel iterative extraction framework to extract the isA relationships from text.
- We present a novel taxonomy construction framework based on merging concepts by their senses.
- We use the above techniques to build Probase, which is currently the largest taxonomy in terms of concepts.
- We present a novel probabilistic approach to model the plausibility and typicality of the facts in Probase, and demonstrate its effectiveness in important text understanding applications.

Q & A

Thank you 🕲

Please visit our website: http://research.microsoft.com/probase/ for more information about Probase!

Backup Slides

Algorithm Outline (Extraction)

- **Input**: *S*, the set of sentences matching Hearst Patterns
- Output: Γ, the set of isA pairs

```
Repeat
      foreach s in S do
          X_s, Y_s \leftarrow SyntacticExtraction(s);
          if |X_s| > 1: X_s \leftarrow SuperConceptDetection(X_s, Y_s, \Gamma);
          if |X_s| = 1: Y_s \leftarrow SubConceptDetection(X_s, Y_s, \Gamma);
                       add valid isA pairs to Γ;
      end
Until no new pairs added into \Gamma;
Return \Gamma;
```

Syntactic Extraction

- Challenges
 - ... animals other than <u>dogs</u> such as *cats* ...
 - ... <u>classic movies</u> **such as** *Gone with the Wind* ...
 - ... <u>companies</u> **such as** *IBM*, *Nokia*, *Proctor* **and** *Gamble* ...
- Strategy
 - Use "," as the delimiter to obtain the candidates.
 - For the *last* element, also use "and" and "or" to break it down.

Super-Concept Detection

• Find the most likely super-concept among the candidates.

$$r(x_1, x_2) = \frac{p(x_1 \mid Y_s)}{p(x_2 \mid Y_s)} = \frac{p(Y_s \mid x_1) p(x_1)}{p(Y_s \mid x_2) p(x_2)}$$

Pick x_1 if $r(x_1, x_2) > \varepsilon$

$$r(x_1, x_2) = \frac{p(x_1) \prod_{i=1}^n p(y_i \mid x_1)}{p(x_2) \prod_{i=1}^n p(y_i \mid x_2)}$$

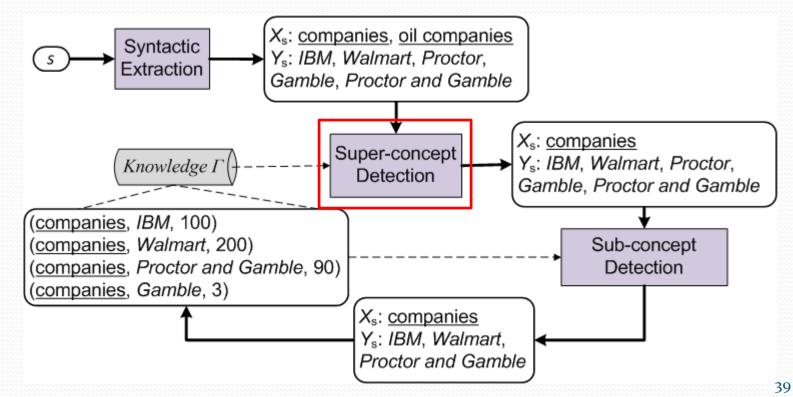
1) Y_s is the set of sub-concepts of the sentence s. 2) $p(y_i | x_i) = p(x_i, y_i) / p(x_i) = n(x_i, y_i) / n(x_i)$. We maintain a count n(x, y) for each (x, y) in Γ .

Super-Concept Detection (Ex)

 $r(x_1, x_2) = \frac{p(x_1 \mid Y_s)}{p(x_2 \mid Y_s)} = \frac{p(Y_s \mid x_1) p(x_1)}{p(Y_s \mid x_2) p(x_2)}$

- r (companies, oil companies)

 $p(y_i | x_i) = p(x_i, y_i) / p(x_i) = n(x_i, y_i) / n(x_i)$



Sub-Concept Detection (1)

• Find the valid sub-concepts among the candidates.

Observation 1. The *closer* a candidate sub-concept is to the **pattern keywords**, the more likely it is a valid sub-concept.

Observation 2. If we are certain a candidate sub-concept at the *k*-th position from the **pattern keywords** is valid, then most likely candidate sub-concepts from position 1 to position *k*-1 are also valid.

E.g., ... representatives in North America, Europe, the Middle East, *Australia*, *Mexico*, *Brazil*, *Japan*, *China*, **and other** <u>countries</u>.

Sub-Concept Detection (2)

Strategy

- Find the largest scope wherein sub-concepts are all valid: find the maximum k s.t. $p(y_k | x) > \epsilon'$
- Address the ambiguity issues inside the scope y₁, ..., y_k:

$$r(c_1, c_2) = \frac{p(c_1 \mid x, y_1, \Lambda, y_{j-1})}{p(c_2 \mid x, y_1, \Lambda, y_{j-1})}$$

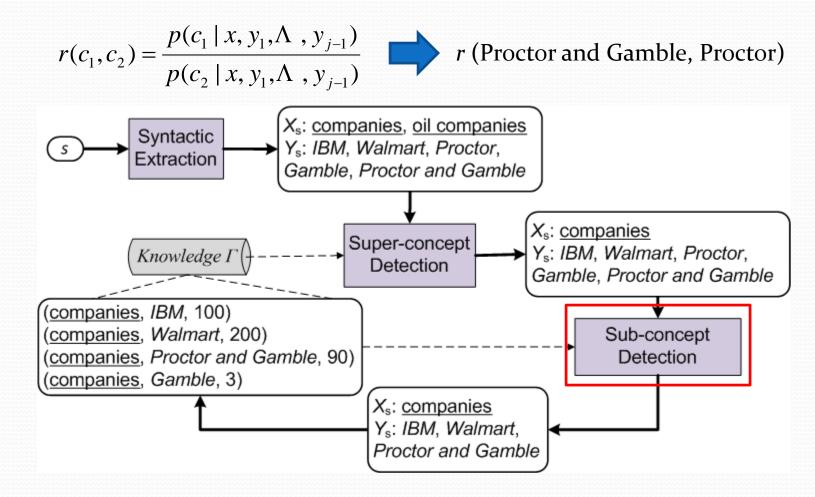
Suppose that y_j is ambiguous with two candidates c_1 and c_2 .

Assuming independence of y_i 's

$$r(c_1, c_2) = \frac{p(c_1 \mid x) \prod_{i=1}^{j-1} p(y_i \mid c_1, x)}{p(c_2 \mid x) \prod_{i=1}^{j-1} p(y_i \mid c_2, x)}$$

Pick
$$c_1$$
 if $r(c_1, c_2) > \varepsilon$ "

Sub-Concept Detection (Ex)



Properties of "Such As" (1)

Property 1. Let $s = \{(x, y_1), ..., (x, y_n)\}$ be the *isA* pairs derived from a sentence . Then, all the *x*'s in *s* have a unique sense, that is, there exists a unique *i* such that $(x, y_j) \mid = (x^i, y_j)$ holds for all $1 \le j \le n$.

- Example:
 - ... <u>plants</u> **such as** *trees* **and** *grass* ...
 - ... <u>plants</u> **such as** *steam turbines, pumps,* **and** *boilers* ...

But sentences like "... <u>plants</u> **such as** *trees* **and** *boilers* ..." are extremely rare.

Properties of "Such As" (2)

Property 2. Let $\{(x^i, y_1), ..., (x^i, y_m)\}$ denote pairs from one sentence, and $\{(x^j, z_1), ..., (x^j, z_n)\}$ from another sentence. If $\{y_1, ..., y_m\}$ and $\{z_1, ..., z_n\}$ are similar, then it is highly likely that x^i and x^j are equivalent, that is, i = j.

- Example:
 - a) ... <u>plants</u> such as trees and grass ...
 - b) ... <u>plants</u> **such as** *trees*, *grass* **and** *herbs* ...

The "plants" in a) and b) are highly likely to have the same sense.

Properties of "Such As" (3)

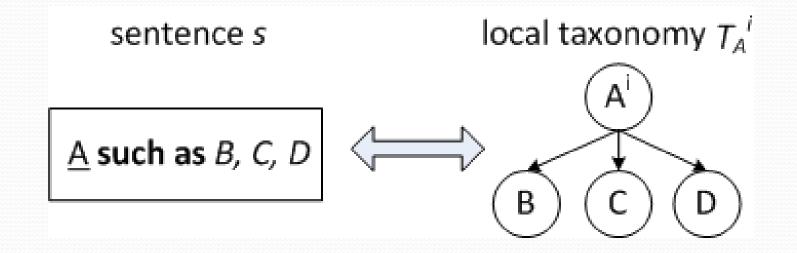
Property 3. Let $\{(x^i, y), (x^i, u_1), ..., (x^i, u_m)\}$ denote pairs obtained from one sentence, and $\{(y^k, v_1), ..., (y^k, v_n)\}$ from another sentence. If $\{u_1, u_2, ..., u_m\}$ and $\{v_1, v_2, ..., v_n\}$ are similar, then it is highly likely that $(x^i, y) \models (x^i, y^k)$.

- Example:
 - a) ... <u>organisms</u> **such as** *plants*, *trees*, *grass* **and** *animals* ...
 - b) ... <u>plants</u> **such as** *trees*, *grass*, **and** *shrubs* ...
 - c) ... <u>plants</u> **such as** *steam turbines*, *pumps*, **and** *boilers* ...

The "plants" in a) and b) are highly likely to have the same sense, but not the "plants" in a) and c).

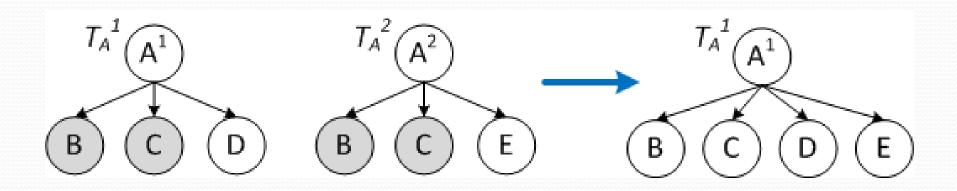
Local Taxonomy

Based on Property 1



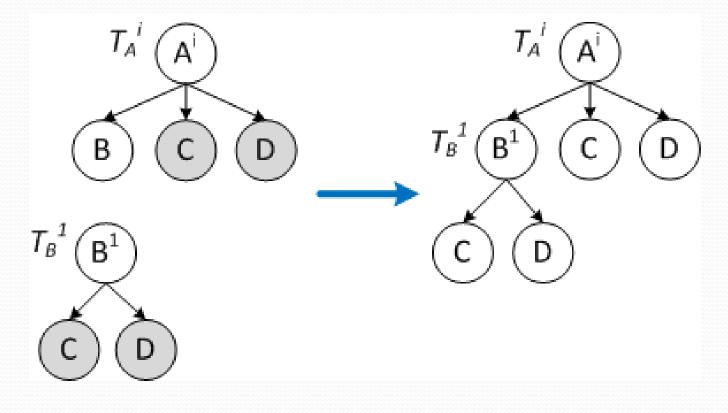
Horizontal Merge

Based on Property 2



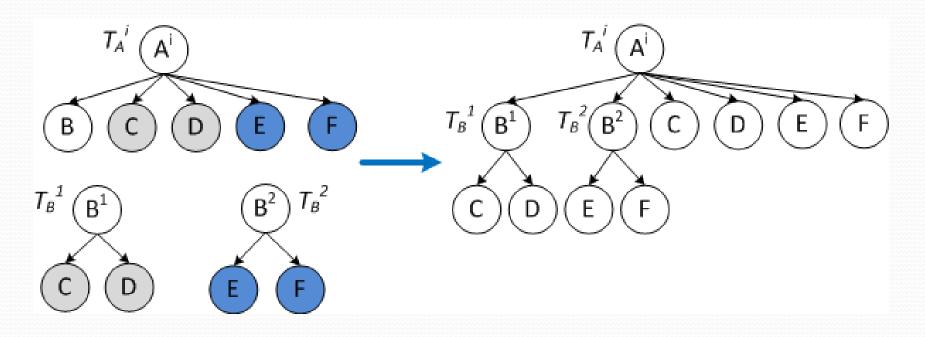
Vertical Merge (1)

• Single Sense Alignment (Based on Property 3)



Vertical Merge (2)

Multiple Sense Alignment (Based on Property 3)



Similarity Function

- We favor the similarity *f*(*A*, *B*) to be measured by the *absolute* overlap of the two sets *A* and *B*.
 - Similarity based on *relative* overlap such as Jaccard similarity will raise weird results (see the paper for an example).
- More generally, the similarity function is desired to have the following *closure* property:

Property 4. If *A*, *A*', *B*, and *B*' are any sets s. $t.A \subseteq A'$ and $B \subseteq B'$, then Sim(A, B) => Sim(A', B').

Algorithm Outline (Construction)

- **Input**: *S*, the set of sentences with extracted *isA* pairs
- **Output**: *T*, the taxonomy graph

Stage 1: For each *s* in *S*, construct a *local taxonomy*.

Stage 2: Perform all possible *horizontal* merges.

Stage 3: Perform all possible *vertical* merges.

Return the graph *T* after the 3 stages

Theoretical Results

Theorem 1. Let *T* be a set of local taxonomies. Let \mathbf{O}^{α} and \mathbf{O}^{β} be any two sequences of horizontal and vertical merge operations on *T*. Assume no further operations can be performed on *T* after \mathbf{O}^{α} or \mathbf{O}^{β} . Then, the final graph after performing \mathbf{O}^{α} and the final graph after performing \mathbf{O}^{α} and the

Theorem 2. Let *O* be the set of all possible sequences of operations, and let $M = \min\{|\mathbf{O}| : \mathbf{O} \in O\}$. Suppose \mathbf{O}^{σ} is the sequence that performs all possible horizontal merges first and all possible vertical merges next, then $|\mathbf{O}^{\sigma}| = M$.

Applications of Typicality (1)

Semantic Web Search

<u>ACM fellows working on semantic web</u>

database conferences in asian cities

Are you interested in the **text** or **instances** of "<u>ACM</u> <u>fellows</u>", "<u>database conferences</u>" and "<u>asian cities</u>"?

Applications of Typicality (2)

- Short Text Understanding (Y. Song et al. *IJCAI'11*)
 - Conceptualize from a set of words by performing Bayesian analysis based on the (inverse) typicality *T*(*x*|*i*).

Example:India => country / regionIndia, China => Asian country / developing countryIndia, China, Brazil => BRIC / emerging market

• Cluster Twitter messages based on conceptualization signals of words.

Concept Space (1)

- Probase contains more then 2.6 million concepts. Are they useful?
- Evaluate this using the top 50 million popular queries in Bing's query log from a 2-year period.
- Metrics in the evaluation
 - Relevance
 - Taxonomy Coverage
 - Concept Coverage

Concept Space (2)

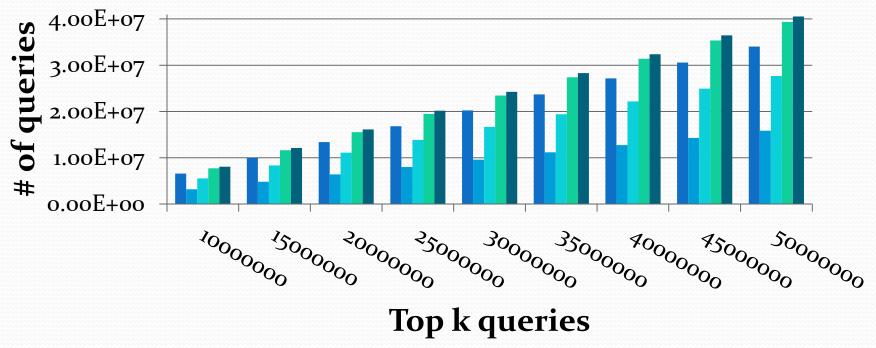
• Relevance: A concept is relevant if it appears at least once.

WordNet WikiTaxonomy ■ YAGO ■ Freebase Probase 7.00E+05 of concepts 6.00E+05 5.00E+05 4.00E+05 3.00E+05 2.00E+05 1.00E+05 # 0.00E+00 30000000 35000000 20000000 40000000 50000000 10000000 25000000 15000000 45000000 Top k queries

Concept Space (3)

• Taxonomy Coverage: A query is covered if it contains at least one concept **or** instance in the taxonomy.

■ WordNet ■ WikiTaxonomy ■ YAGO ■ Freebase ■ Probase



Concept Space (4)

• Concept Coverage: A query is covered if it contains at least one concept in the taxonomy.

