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Background

0 Query optimization remains challenging despite of
decades of efforts and progresses.
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APRIL 10 2014 Is Query Optimization a "solved”™ problem? If not, are we attacking the
’ "right” problems? How should we identify the "right” problems to solve?

0 Cardinality estimation is the key challenge.
0 Selectivity of join predicates
o Correlation of columns



Histogram vs. Sampling
S

0 Single-column histograms cannot capture data
correlations between columns.

O Use the attribute-value-independence (AVI) assumption.

0 Sampling is better than histograms on capturing
data correlations.

0 We run query over exact rather than summarized data.



But Why are Histograms Dominant?
N

0 The overhead is much smaller, compared with other
cardinality estimation approaches.

0 Sampling incurs additional overhead and should be
used conservatively.

O A naive idea: use sampling for all plans considered by
the optimizer.



Cost-Based Query Optimization
=

Pick the best plan from N candidates:

N could be large!
(102 or even 103)

For large N, sampling is not affordable to be used for every plan.
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0 Use sampling as a post-processing validation step.

o Detect cardinality estimation errors for the final plan
returned by the optimizer.

00 Re-optimize the query if cardinality estimation errors
are detected.

Catch big mistakes of the optimizer before the plan runs!




The Re-optimization Algorithm
—
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The Re-optimization Algorithm (Cont.)
o

0 Example: g =Ax B x C (Final Plan)
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Efficiency of Re-optimization
B

0 The wors’r-cqse expected number of iterations:

k | N is the number of join
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Quality of Re-optimized Plans
Lo [

0 If sampling-based cost estimates are consistent with
the actual costs, that is,

cost_est(P1) < cost_est(P2) => cost_act(P1) < cost_act(P2),

then the final re-optimized plan is locally optimal:

cost_act(P.. ) <= cost_act(P), for any P in re-optimization.

0 However, cost models are imperfect, and cardinality
estimates based on sampling are imperfect, too.

O See experimental results.



Experimental Evaluation
I

1 We implemented the re-optimization procedure in
PostgreSQL 9.0.4.

0 We have two goals:
0 Test the approach for “common” cases.

0 Test the approach for “corner” cases.



Experimental Evaluation (Cont.)
N

0 “Common” cases
o 10GB TPC-H benchmark

0 “Corner” cases

0 (Homegrown) Optimizer “Torture Test” (OTT)

$

Specially designed database and queries with high data

correlation that can challenge query optimizers.




Experimental Evaluation (Cont.)
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Experimental Evaluation (Cont.)
N

0 Results of the “torture test” (5-join queries, log-scale)
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Details of OTT

= 000
0 More details about OTT:
oK tables R, ..., Ry, with R (A,, B,)
0 Each R, is generated independently, with B, = A,.
0 A, (and thus B,) is uniformly distributed.

o The queries look like:

Op =cA-Ng=CxABy=ByA--ABx_,=Bx (K1 XX Rg)

Property: These queries are not empty if and only if A, = ... = A/l




Details of OTT (Cont.)

0 An instance of OTT used in our experiments:
0 Use 6 TPC-H tables (excluding “nation” and “region”).

0 Use a set of empty queries with non-empty sub-queries.
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Summary

q Query Sampling-based |:> Plan Pq
Optimizer Validation

Improved Query Plan
Feedback

Sampling as post-processing: efficiency /effectiveness tradeoff!




Q& A

o 4
0 Thank you®©



Cardinality Estimation Methods
N

0 Histograms
O Single-column histograms (dominant in current DBMS)

0 Multi-column histograms

0 Other methods
o Offline approaches: sampling, sketch, graphical models

o0 Online approaches: dynamic query plans, parametric
query optimization, query feedback, mid-query re-
optimization, plan bouquets



A Sampling-Based Estimator

0 Estimate the selectivity p, of a join query q = R; x R,.
[Haas et al., J. Comput. Syst. Sci. 1996]

Do a “cross product” over the samples: p(i,j) = 0 or 1.
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The estimator g, is unbiased and strongly consistent.




Other Sampling-Based Methods

0 Sampling-Based Estimation of the Number of Distinct
Values of an Attribute, VLDB'95

0 Towards Estimation Error Guarantees for Distinct Values,

PODS’00

0 End-biased Samples for Join Cardinality Estimation,

ICDE’06

0 Join Size Estimation Subject to Filter Conditions,
VLDB’15



Convergence of Re-optimization

Convergence Condition of Re-optimization

Theorem: The re-optimization procedure terminates when
all the joins in the returned query plan have been

observed in previous rounds of iteration.
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For example, re-optimization will terminate after T, is returned.




Convergence of Re-optimization (Cont.)
o

0 The previous convergence condition is sufficient but
not necessary.

Re-optimization could terminate even before it meets the
previous condition.
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To understand re-optimization better, we need the notion
of local /global transformations.



Local /Global Transformations
e

0 Local transformation of query plans
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Local transformations are those plans that share the same joins.

They only differ in choices of specific physical operators.




Characterization of Re-optimization
s

0 The three possible cases in re-optimization:

(1) It terminates in two steps with P2 = P1.

(2) It terminates in n + 1 steps (n > 1) where all plan
transitions are global transformations.

(3) It terminates in n + 1 steps (n > 1) where only the last
transition is a local transformation: the others are all global
transformations.



Characterization of Re-optimization (Cont.)
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0 An illustration of Case (2) and (3):
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The number of iterations thus depends on the number of

global transformations!




Analysis of Efficiency

0 A probabilistic model for analysis of expected
number of steps in re-optimization:

0 We have N balls in a queue, initially unmarked.
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* The probability that the ball will be inserted at any position
in the queue is uniformly 1 /N.



Analysis of Efficiency (Cont.)
B

0 The expec’red number of steps of the previous procedure is:
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0 How is it relq’red to query optimizations?
O Think of query plans (or, globally different join trees) as balls!

0 The uniform distribution employed in the model may be
invalid in practice.
0 We have more analysis for situations where underestimation or

overestimation is dominant. (And more analysis could be done in
the future.)



