
Budget-aware
Index Tuning with

Reinforcement
Learning

• Wentao Wu (Microsoft Research)

• Chi Wang (Microsoft Research)

• Tarique Siddiqui (Microsoft Research)

• Junxiong Wang (Cornell University)

• Vivek Narasayya (Microsoft Research)

• Surajit Chaudhuri (Microsoft Research)

• Philip A. Bernstein (Microsoft Research)

Cost-based
index Tuning

2

What-if Calls are Expensive

• A what-if call is as expensive as
a regular query optimizer call

• What-if calls dominate index
tuning time

• TPC-DS, 99 queries, 20
recommended indexes

3

Existing Work
on Reducing
What-if Calls

4

• The configuration enumeration problem is NP-hard.

• There are exponentially many possible configurations
and thus what-if calls.

• A classic solution is a greedy search approach that
reduces the search space to polynomial size, which
remains huge for large/complex workloads.

Reduce the search space of configuration enumeration.

• Restrict the what-if calls to configurations with certain properties, e.g.,
atomic configurations.

• Effective reuse of cached what-if calls, which requires further
extension/support from the query optimizer.

Other technologies

Budget-aware Index Tuning

• End user of index tuning needs to constrain the tuning time instead of letting it run forever.

• Microsoft’s Database Tuning Advisor (DTA) allows user to specify the maximum tuning time.

• Under constrained tuning time, for large/complex workloads

• The number of what-if calls will go beyond the tuning time allowed, despite the previous
techniques on reducing the number of what-if calls.

• In this work, we study index tuning from a (new) constrained perspective, where

• The number of what-if calls (e.g., based on the tuning time budget) is given as a constraint.

• We focus on configuration enumeration under constrained number of what-if calls.

5

Budget-constrained
Configuration Search • Budget allocation matrix

• Row – configuration

• Column – query

• Cell – “X” if a what-if call is used

• For cells where what-if calls are
not used, we use “derived cost.”

• 𝑑 𝑞, 𝐶 = min𝑆⊆𝐶cost(𝑞, 𝐶)

• Problem formulation
• Input: W, B (and other constraints Γ)

• Output: Best configuration C*

• Budget constraint: The number of
cells marked “X” = B

6

Budget-aware
Variants of
Greedy Search

• Greedy search
• (Base) Find the best singleton.

• (Induction) Find the best configuration
of size k + 1 by extending the best
configuration of size k.

• Budget allocation in greedy search
• First come first serve (FCFS)

• Two-phase

• Atomic configuration

(a) Greedy search

(b) FCFS

(c) Two-phase
(d) Atomic
configuration

7

Budget-aware
Configuration
Search using

Reinforcement
Learning (RL)

• Exploration: New configurations that have not
yet been visited.

• Exploitation: Expand known promising
configurations to include more indexes.

An exploration/exploitation trade-off

• A principled way of dealing with
exploration/exploitation trade-off.

Reinforcement learning

8

Configuration
Search as

Markov
Decision

Process (MDP)

• State 𝑠: Configuration

• Action 𝑎: Index (to be included)

• Transition probability 𝑝:
Deterministic

• Reward 𝑟: Percentage
improvement of the workload 𝑊
over the state/configuration 𝐶

𝜂 𝑊, 𝐶

= 1 −
𝑐𝑜𝑠𝑡 𝑊, 𝐶

𝑐𝑜𝑠𝑡 𝑊, ∅
× 100%

Example MDP with {𝐼1, 𝐼2, 𝐼3}

9

Monte Carlo
Tree Search

10

Action Selection Policy

• UCT

• Pick the action 𝑎 that maximizes the UCB (upper-confidence bound) score:

• ෠𝑄 𝑠, 𝑎 is the estimated action-value function.

• 𝑁 𝑠 is the number of times that 𝑠 is visited.

• 𝑛 𝑠, 𝑎 is the number of times that the action 𝑎 is taken.

• 𝜖-greedy

• Pick the action 𝑎 with respect to the probability:

11

Action Selection Policy (Cont.)

• Address sparsity in the estimated action-value function ෠𝑄 𝑠, 𝑎 .

• Choose a “prior distribution” for ෠𝑄 𝑠, 𝑎 .

• Refine the “prior distribution” after observing rewards.

• For each action/index 𝑎, estimate its percentage improvement.

• Independent of the state 𝑠.

• Needs to be done in a budget-aware manner.

• For each budget what-if call, first select a query, and then select one of its index 𝑎
(see the paper for details).

12

Rollout Policy

• General rollout policy in MCTS

• Expand the visited configuration 𝑠 by randomly inserting 𝑙 indexes.

• If UCT is used as the action selection policy

• Insert 𝑙 indexes uniformly randomly.

• If 𝜖-greedy is used as the action selection policy

• Insert 𝑙 indexes based on their “prior distribution.”

13

Extraction of the Best Configuration

Best configuration explored (BCE)

• Return the best configuration found
during MCTS.

• This includes both the configurations
explored by MCTS and the
configurations generated by rollout.

Best greedy (BG)

• Use a greedy strategy to traverse the
search tree.

• There are various options for the
greedy strategy.

• Our current implementation

▪ Run the greedy search algorithm
again and return the configuration
with the minimum derived cost.

14

Experiment
Settings

• Datasets and workloads

• Baselines

• Budget-aware variants of greedy search

• Existing RL approaches to index tuning

15

Budget-aware
Variants of

Greedy
Search

Vanilla greedy

• Standard greedy + FCFS (first come
first serve)

Two-phase greedy

• Two-phase search + FCFS

Auto-admin greedy

• Two-phase greedy + atomic
configuration

16

Comparison with Budget-aware Greedy (Benchmark Workloads)

Results on TPC-H

Results on TPC-DS

17

Comparison with Budget-aware Greedy (Real Workloads)

Results on Real-D

Results on Real-M

18

Existing RL
Approaches

to Index
Tuning

• Model index selection as a “contextual
bandit” problem.

• Customized to make it budget-aware.

DBA bandits (ICDE 2021)

• Solve the index selection problem
using deep RL (e.g., deep Q-learning).

• Customized to make it budget-aware.

No DBA (arXiv 2018)

19

Comparison with Existing RL (Benchmark Workloads)

Results on TPC-DS

Results on TPC-H

20

Comparison with Existing RL (Real Workloads)

Results on Real-D

Results on Real-M

21

Summary of
Contributions

• We proposed a problem formulation of budget-aware
configuration search.

• We proposed a MCTS-based framework for budget-aware
configuration search.

• We demonstrated that our MCTS-based framework
outperforms both budget-aware variants of greedy search
and existing RL techniques for index tuning, on both
industrial benchmarks and real workloads.

22

	Slide 1: Budget-aware Index Tuning with Reinforcement Learning
	Slide 2: Cost-based index Tuning
	Slide 3: What-if Calls are Expensive
	Slide 4: Existing Work on Reducing What-if Calls
	Slide 5: Budget-aware Index Tuning
	Slide 6: Budget-constrained Configuration Search
	Slide 7: Budget-aware Variants of Greedy Search
	Slide 8: Budget-aware Configuration Search using Reinforcement Learning (RL)
	Slide 9: Configuration Search as Markov Decision Process (MDP)
	Slide 10: Monte Carlo Tree Search
	Slide 11: Action Selection Policy
	Slide 12: Action Selection Policy (Cont.)
	Slide 13: Rollout Policy
	Slide 14: Extraction of the Best Configuration
	Slide 15: Experiment Settings
	Slide 16: Budget-aware Variants of Greedy Search
	Slide 17: Comparison with Budget-aware Greedy (Benchmark Workloads)
	Slide 18: Comparison with Budget-aware Greedy (Real Workloads)
	Slide 19: Existing RL Approaches to Index Tuning
	Slide 20: Comparison with Existing RL (Benchmark Workloads)
	Slide 21: Comparison with Existing RL (Real Workloads)
	Slide 22: Summary of Contributions

