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What-if Calls are Expensive

* A what-if call is as expensive as
a regular query optimizer call

Time spent on what-if calls ===
Other time spent on index tuning
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e The configuration enumeration problem is NP-hard.

e There are exponentially many possible configurations
and thus what-if calls.

EX | Stl N g WO rk e A classic solution is a greedy search approach that
. reduces the search space to polynomial size, which
on Re d Uucin g remains huge for large/complex workloads.

What-if Calls

e Restrict the what-if calls to configurations with certain properties, e.g.,
atomic configurations.

o Effective reuse of cached what-if calls, which requires further
extension/support from the query optimizer.




Budget-aware Index Tuning

* End user of index tuning needs to constrain the tuning time instead of letting it run forever.
* Microsoft’s Database Tuning Advisor (DTA) allows user to specify the maximum tuning time.

* Under constrained tuning time, for large/complex workloads

* The number of what-if calls will go beyond the tuning time allowed, despite the previous
techniques on reducing the number of what-if calls.

* In this work, we study index tuning from a (new) constrained perspective, where
 The number of what-if calls (e.g., based on the tuning time budget) is given as a constraint.
* We focus on configuration enumeration under constrained number of what-if calls.



Budget-constrained
Configuration Search e ot

e Column —query
e Cell-“X" if a what-if call is used

C/q * For cells where what-if calls are
not used, we use “derived cost.”

{1} + d(g,C) = mingeccost(q, C)

{12}
{I3} X * Problem formulation
* |Input: W, B (and other constraints I')

Ul! 12} e Output: Best configuration C*

{lh, 13} X « Budget constraint: The number of

cells marked “X” =B

{12113}
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Budget-aware
Variants of
Greedy Search

Greedy search
* (Base) Find the best singleton.

* (Induction) Find the best configuration
of size k + 1 by extending the best
configuration of size k.

Budget allocation in greedy search
* First come first serve (FCFS)
* Two-phase
e Atomic configuration
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Budget-aware
Configuration
Search using
Reinforcement

Learning (RL)

e Exploration: New configurations that have not
yet been visited.

e Exploitation: Expand known promising
configurations to include more indexes.

e A principled way of dealing with
exploration/exploitation trade-off.




Configuration
Search as
Markov
Decision

Process (MDP)

State s: Configuration
Action a: Index (to be included)

Transition probability p:
Deterministic

Reward r: Percentage
improvement of the workload W
over the state/configuration C

n(w,C)
_(1_ cost(W, C)
B cost(W,®)

) X 100%

Example MDP with {I;, I,, I3}




Repeat when budget allows

q;i:n —— Expansion ———— Simulation

Monte Carlo

Tree Search
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Action Selection Policy

 UCT
* Pick the action a that maximizes the UCB (upper-confidence bound) score:

argmax [Q(s, a)+ A - lnN(s)]

n(s,a)

« O(s,a) is the estimated action-value function.

* N(s) is the number of times that s is visited.

* n(s,a) is the number of times that the action a is taken.
* e-greedy

 Pick the action a with respect to the probability: Pr(als) = (s, a)

Yhea(s) Qs b)
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Action Selection Policy (Cont.)

« Address sparsity in the estimated action-value function Q (s, a).
« Choose a “prior distribution” for Q (s, a).
* Refine the “prior distribution” after observing rewards.

* For each action/index a, estimate its percentage improvement.
* Independent of the state s.
* Needs to be done in a budget-aware manner.

* For each budget what-if call, first select a query, and then select one of its index a
(see the paper for details).
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Rollout Policy

* General rollout policy in MCTS
e Expand the visited configuration s by randomly inserting [ indexes.

* If UCT is used as the action selection policy
* Insert [ indexes uniformly randomly.

* If e-greedy is used as the action selection policy
* Insert [ indexes based on their “prior distribution.”
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Extraction of the Best Configuration

e Return the best configuration found
during MCTS.

e This includes both the configurations
explored by MCTS and the
configurations generated by rollout.

e Use a greedy strategy to traverse the
search tree.

e There are various options for the
greedy strategy.

e Our current implementation

" Run the greedy search algorithm
again and return the configuration
with the minimum derived cost.



e Datasets and workloads

Name Size # # Avg. # | Avg. # | Avg. #
Queries| Tables | Joins Filters | Scans
JOB 9.2GB | 33 21 7.9 2.5 8.9
TPC-H | sf=10 | 22 8 2.8 0.3 3.7
TPC-DS | sf=10 | 99 24 7.7 0.5 8.8
" Real-D | 587GB | 32 7,912 15.6 0.2 17
E X p erime nt Real-M | 26GB | 317 474 20.2 1.5 21.7
Settings |
g e Baselines

e Budget-aware variants of greedy search
* Existing RL approaches to index tuning
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Budget-aware
Variants of
Greedy
Search

Vanilla greedy

e Standard greedy + FCFS (first come
first serve)

Two-phase greedy

e Two-phase search + FCFS

Auto-admin greedy

e Two-phase greedy + atomic
configuration
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Improvement (%)

Comparison with Budget-aware Greedy (Benchmark Workloads)
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Comparison with Budget-aware Greedy (Real Workloads
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Existing RL * Model index selection as a “contextual

Approaches bandit” problem.
to Index e Customized to make it budget-aware.

Tuning

e Solve the index selection problem
using deep RL (e.g., deep Q-learning).
e Customized to make it budget-aware.
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Comparison with Existing RL (Benchmark Workloads
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Comparison with Existing RL (Real Workloads
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* We proposed a problem formulation of budget-aware
configuration search.

* We proposed a MCTS-based framework for budget-aware
S ummsd ry Of configuration search.

Contributions

* We demonstrated that our MCTS-based framework
outperforms both budget-aware variants of greedy search
and existing RL techniques for index tuning, on both
industrial benchmarks and real workloads.
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