Budget-aware
Index Tuning with
Reinforcement

Learning

Wentao Wu (Microsoft Research)

Chi Wang (Microsoft Research)

Tarique Siddiqui (Microsoft Research)
Junxiong Wang (Cornell University)
Vivek Narasayya (Microsoft Research)
Surajit Chaudhuri (Microsoft Research)
Philip A. Bernstein (Microsoft Research)

/ Index Tuner \ /" Database)

Workload Server
Parsing/Analysis .

Lhwr

Cost-based

Candidate Index
index Tuni Ng Generation
- W.L{}} Query
What-If Calls P

. Optimizer

Best € < {/}} Configuration (q:, C) (Extended)
w.rt. W, T .
Enumeration

< I cost(q;, C)

What-if Calls are Expensive

* A what-if call is as expensive as
a regular query optimizer call

Time spent on what-if calls ===
Other time spent on index tuning

100 : . - ; . e What-if calls dominate index
sl — o | tuning time
g « TPC-DS, 99 queries, 20
< 60 — 7 recommended indexes
5 40}
E
[20 | H

0

1000 2000 3000 4000 5000
of what—if calls

e The configuration enumeration problem is NP-hard.

e There are exponentially many possible configurations
and thus what-if calls.

EX | Stl N g WO rk e A classic solution is a greedy search approach that
. reduces the search space to polynomial size, which
on Re d Uucin g remains huge for large/complex workloads.

What-if Calls

e Restrict the what-if calls to configurations with certain properties, e.g.,
atomic configurations.

o Effective reuse of cached what-if calls, which requires further
extension/support from the query optimizer.

Budget-aware Index Tuning

* End user of index tuning needs to constrain the tuning time instead of letting it run forever.
* Microsoft’s Database Tuning Advisor (DTA) allows user to specify the maximum tuning time.

* Under constrained tuning time, for large/complex workloads

* The number of what-if calls will go beyond the tuning time allowed, despite the previous
techniques on reducing the number of what-if calls.

* In this work, we study index tuning from a (new) constrained perspective, where
 The number of what-if calls (e.g., based on the tuning time budget) is given as a constraint.
* We focus on configuration enumeration under constrained number of what-if calls.

Budget-constrained
Configuration Search e ot

e Column —query
e Cell-“X" if a what-if call is used

C/q * For cells where what-if calls are
not used, we use “derived cost.”

{1} + d(g,C) = mingeccost(q, C)

{12}
{I3} X * Problem formulation
* |Input: W, B (and other constraints I')

Ul! 12} e Output: Best configuration C*

{lh, 13} X « Budget constraint: The number of

cells marked “X” =B

{12113}
{h, 15,13}

Budget-aware
Variants of
Greedy Search

Greedy search
* (Base) Find the best singleton.

* (Induction) Find the best configuration
of size k + 1 by extending the best
configuration of size k.

Budget allocation in greedy search
* First come first serve (FCFS)
* Two-phase
e Atomic configuration

\

' I
Greedy
Step 2
S

N~

\

-

Greedy
Step 1
S

Existing
configuration

(a) Greedy search

] Atomic
Configurations

Non-atomic
Configurations

(d) Atomic
configuration

(o
~
L~

{1, 5}

{I1, 1z}

{1, I3}
{Il’ IZ' 13}

(c) Two-phase

| e
by P

W e

o | |

— e o o = ——

Budget-aware
Configuration
Search using
Reinforcement

Learning (RL)

e Exploration: New configurations that have not
yet been visited.

e Exploitation: Expand known promising
configurations to include more indexes.

e A principled way of dealing with
exploration/exploitation trade-off.

Configuration
Search as
Markov
Decision

Process (MDP)

State s: Configuration
Action a: Index (to be included)

Transition probability p:
Deterministic

Reward r: Percentage
improvement of the workload W
over the state/configuration C

n(w,C)
(1 cost(W, C)
B cost(W,®)

) X 100%

Example MDP with {I;, I,, I3}

Repeat when budget allows

q;i:n —— Expansion ———— Simulation

Monte Carlo

Tree Search

10

Action Selection Policy

 UCT
* Pick the action a that maximizes the UCB (upper-confidence bound) score:

argmax [Q(s, a)+ A - lnN(s)]

n(s,a)

« O(s,a) is the estimated action-value function.

* N(s) is the number of times that s is visited.

* n(s,a) is the number of times that the action a is taken.
* e-greedy

 Pick the action a with respect to the probability: Pr(als) = (s, a)

Yhea(s) Qs b)

11

Action Selection Policy (Cont.)

« Address sparsity in the estimated action-value function Q (s, a).
« Choose a “prior distribution” for Q (s, a).
* Refine the “prior distribution” after observing rewards.

* For each action/index a, estimate its percentage improvement.
* Independent of the state s.
* Needs to be done in a budget-aware manner.

* For each budget what-if call, first select a query, and then select one of its index a
(see the paper for details).

12

Rollout Policy

* General rollout policy in MCTS
e Expand the visited configuration s by randomly inserting [indexes.

* If UCT is used as the action selection policy
* Insert [indexes uniformly randomly.

* If e-greedy is used as the action selection policy
* Insert [indexes based on their “prior distribution.”

13

Extraction of the Best Configuration

e Return the best configuration found
during MCTS.

e This includes both the configurations
explored by MCTS and the
configurations generated by rollout.

e Use a greedy strategy to traverse the
search tree.

e There are various options for the
greedy strategy.

e Our current implementation

" Run the greedy search algorithm
again and return the configuration
with the minimum derived cost.

e Datasets and workloads

Name Size # # Avg. # | Avg. # | Avg. #
Queries| Tables | Joins Filters | Scans
JOB 9.2GB | 33 21 7.9 2.5 8.9
TPC-H | sf=10 | 22 8 2.8 0.3 3.7
TPC-DS | sf=10 | 99 24 7.7 0.5 8.8
" Real-D | 587GB | 32 7,912 15.6 0.2 17
E X p erime nt Real-M | 26GB | 317 474 20.2 1.5 21.7
Settings |
g e Baselines

e Budget-aware variants of greedy search
* Existing RL approaches to index tuning

15

Budget-aware
Variants of
Greedy
Search

Vanilla greedy

e Standard greedy + FCFS (first come
first serve)

Two-phase greedy

e Two-phase search + FCFS

Auto-admin greedy

e Two-phase greedy + atomic
configuration

Improvement (%)

Improvement (%)

Comparison with Budget-aware Greedy (Benchmark Workloads)

70

Vanilla Greedy E=ZZX=
Two-phase Greedy E

Auto-Admin Greedy C—
MCTS Greedy

50

Vanilla Greedy E==Z=x)
Two-phase Greedy E

100 200 500 1000

Budget on the # of ‘what if’ calls
(a) K=5

Auto-Admin Greedy C——
MCTS Greedy

1000

1%
]
ke
%
<)

%

5000

2000 3000 4000
Budget on the # of 'what if’ calls
() K=5

Improvement (%)

Improvement (%)

70

Vanilla Greedy EEEZZ1 Auto-Admin Greedy C—
Two-phase Greedy : MCTS Greedy

50 100 200 500 1000

Budget on the # of 'what if’ calls
(b) K =10

Results on TPC-H

Vanilla Greedy = Auto-Admin Greedy ———1

MCTS Greedy s

1000 2000
Budget on the # of 'what if’ calls

() K = 10

Results on TPC-DS

3000 4000 5000

Improvement (%)

Improvement (%)

70

Vanilla Greedy E=Z=1 Auto-Admin Greedy C—
Two-phase Greedy ¢ MCTS Greedy

50 100 200 500 1000
Budget on the # of 'what if’ calls
(c) K =20

Vanilla Greedy EExz=1 Auto-Admin Greedy C——
Two-phase Greedy MCTS Greedy

1000 2000 3000
Budget on the # of 'what if calls

(© K =20

4000 5000

17

Comparison with Budget-aware Greedy (Real Workloads

Vanilla Greedy xx=x0 Auto-Admin Greedy —— Vanilla Greedy ==z=x=x1 Auto-Admin Greedy —— Vanilla Greedy xx=0 Auto-Admin Greedy ——
Two-phase Greedy =R MCTS Greedy Two-phase Greedy E=zER MCTS Greedy s Two-phase Greedy Ez==ER MCTS Greedy
80 ; T T - T 80 T : r T T 80 - ; T T r
. 70 b . 70 - . 70 b
i 60 — :.i.-’ 60 — i 60 — .
E [0 EE—— g 50 fo E 50 b
E 40 b g 40 f- E 40 b
§ 30 § 30 § 30
o L [=5 L a L 4
£ 20 £ 20 £ 20
10 10 | 10 1
0 0 0
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Budget on the # of 'what if’ calls Budget on the # of 'what if' calls Budget on the # of 'what if’ calls
(a) K=5 (b) K =10 (c) K=20
Vanilla Greedy ZZZ0 Auto-Admin Greedy T2 Vanilla Greedy EXZxd Auto-Admin Greedy Vanilla Greedy XXX Auto-Admin Greedy C—
Two-phase Greedy Ez=zER MCTS Greedy Two-phase Greedy EzEzR MCTS Greedy Two-phase Greedy E=mE=m MCTS Greedy
50 r T T T T 50 T T T T T 50 T T T T T
€ = €
@ [@
E E E
5] [} 5]
] 3]
8 g 8
E E E
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Budget on the # of 'what if’ calls Budget on the # of 'what i’ calls Budget on the # of 'what if’ calls
() K=5 (b) K = 10 (c) K =20

Results on Real-M

18

s L N \/ | "t

Existing RL * Model index selection as a “contextual

Approaches bandit” problem.
to Index e Customized to make it budget-aware.

Tuning

e Solve the index selection problem
using deep RL (e.g., deep Q-learning).
e Customized to make it budget-aware.

19

Comparison with Existing RL (Benchmark Workloads

Improvement (%)

Improvement (%)

90
80
70
60
50
40
30
20
10

70
60
50
40
30
20
10

DBA Bandits ——=m

No DBA e===3 MCTS s

DBA Bandits —

100 200 500 1000
Budget on the # of 'what if calls
(a) K=5
No DBA MCTS oo

T

T T T T

1000

2000 3000 4000
Budget on the # of 'what if calls
(a) K=5

Improvement (%)

Improvement (%)

80
80
70
60
50
40
30
20
10

70
60

DBA Bandits c— No DBA

Budget on the # of 'what if’ calls

(b) K =10
Results on TPC-H

DBA Bandits —— No DBA MCTS

T T T T

s

3000

1000 2000 4000
Budget on the # of 'what if’ calls
(b) K = 10

Results on TPC-DS

Improvement (%)

Improvement (%)

90
80
70
60
50
40
30
20
10

70
60
50
40
30
20
10

DBA Bandits c——

No DBA

DBA Bandits /=

500

100 200
Budget on the # of 'what if’ calls
(c) K =20

No DBA

1000

5
2000 3000 4000 5000
Budget on the # of 'what if calls
(c) K =20

20

Comparison with Existing RL (Real Workloads

DBA Bandits —— No DBA MCTS o DBA Bandits —/—= MCTS
80 T T r " T 80 T r T
70 R — 7’0 b . P — .
é § <71 [E————— -4 § [([EE———— .
E 7 E 50 [1 g 50 | ‘g .
E .'gf} EJ a0 Foo | . 5 40 b E{ﬁ .
] :.}-g B 30 [g.,- 4 S 30 [E‘;{i i
(=% fd Q 2 o ot
% 10 | %ﬁ“ . 10 | E’t&?ﬁ £ 1
1000 2000 3000 4000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Budget on the # of ‘what if calls Budget on the # of ‘what if' calls Budget on the # of 'what if’ calls
() K=5 (b) K =10 (c) K =20
DBA Bandits —— No DBA 1 MCTS mmm DBA Bandits c———= No DBA MCTS o DBA Bandits c——= MCTS
50 T T T T T 50 T 4 T T 50 T T T T -
g 40 . g 40 1 g 40 s
E 30 b . E 30 E 30
£ £ . E
g o1 [EE— § 2 [l] REE—— -] 2 20]
2 z |] 2 L i 1]
E w0} ; E 10} i : E w0} @ | !
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Budget on the # of "what if calls Budget on the # of 'what if’ calls Budget on the # of 'what if’ calls
(a) K=5 (b) K =10 (¢) K =20

Results on Real-M

21

* We proposed a problem formulation of budget-aware
configuration search.

* We proposed a MCTS-based framework for budget-aware
S ummsd ry Of configuration search.

Contributions

* We demonstrated that our MCTS-based framework
outperforms both budget-aware variants of greedy search
and existing RL techniques for index tuning, on both
industrial benchmarks and real workloads.

22

	Slide 1: Budget-aware Index Tuning with Reinforcement Learning
	Slide 2: Cost-based index Tuning
	Slide 3: What-if Calls are Expensive
	Slide 4: Existing Work on Reducing What-if Calls
	Slide 5: Budget-aware Index Tuning
	Slide 6: Budget-constrained Configuration Search
	Slide 7: Budget-aware Variants of Greedy Search
	Slide 8: Budget-aware Configuration Search using Reinforcement Learning (RL)
	Slide 9: Configuration Search as Markov Decision Process (MDP)
	Slide 10: Monte Carlo Tree Search
	Slide 11: Action Selection Policy
	Slide 12: Action Selection Policy (Cont.)
	Slide 13: Rollout Policy
	Slide 14: Extraction of the Best Configuration
	Slide 15: Experiment Settings
	Slide 16: Budget-aware Variants of Greedy Search
	Slide 17: Comparison with Budget-aware Greedy (Benchmark Workloads)
	Slide 18: Comparison with Budget-aware Greedy (Real Workloads)
	Slide 19: Existing RL Approaches to Index Tuning
	Slide 20: Comparison with Existing RL (Benchmark Workloads)
	Slide 21: Comparison with Existing RL (Real Workloads)
	Slide 22: Summary of Contributions

