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Cost-based 
index Tuning
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What-if Calls are Expensive

• A what-if call is as expensive as 
a regular query optimizer call

• What-if calls dominate index 
tuning time

• TPC-DS, 99 queries, 20 
recommended indexes
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Existing Work 
on Reducing 
What-if Calls
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• The configuration enumeration problem is NP-hard.

• There are exponentially many possible configurations 
and thus what-if calls.

• A classic solution is a greedy search approach that 
reduces the search space to polynomial size, which 
remains huge for large/complex workloads.

Reduce the search space of configuration enumeration.

• Restrict the what-if calls to configurations with certain properties, e.g., 
atomic configurations.

• Effective reuse of cached what-if calls, which requires further 
extension/support from the query optimizer.

Other technologies



Budget-aware Index Tuning

• End user of index tuning needs to constrain the tuning time instead of letting it run forever.

• Microsoft’s Database Tuning Advisor (DTA) allows user to specify the maximum tuning time.

• Under constrained tuning time, for large/complex workloads

• The number of what-if calls will go beyond the tuning time allowed, despite the previous 
techniques on reducing the number of what-if calls.

• In this work, we study index tuning from a (new) constrained perspective, where

• The number of what-if calls (e.g., based on the tuning time budget) is given as a constraint.

• We focus on configuration enumeration under constrained number of what-if calls.
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Budget-constrained 
Configuration Search • Budget allocation matrix

• Row – configuration

• Column – query

• Cell – “X” if a what-if call is used

• For cells where what-if calls are 
not used, we use “derived cost.”

• 𝑑 𝑞, 𝐶 = min𝑆⊆𝐶cost(𝑞, 𝐶)

• Problem formulation
• Input: W, B (and other constraints Γ)

• Output: Best configuration C*

• Budget constraint: The number of 
cells marked “X” = B
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Budget-aware 
Variants of 
Greedy Search

• Greedy search
• (Base) Find the best singleton.

• (Induction) Find the best configuration 
of size k + 1 by extending the best 
configuration of size k.

• Budget allocation in greedy search
• First come first serve (FCFS)

• Two-phase

• Atomic configuration

(a) Greedy search

(b) FCFS

(c) Two-phase
(d) Atomic 
configuration
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Budget-aware 
Configuration 
Search using 

Reinforcement 
Learning (RL)

• Exploration: New configurations that have not 
yet been visited.

• Exploitation: Expand known promising 
configurations to include more indexes.

An exploration/exploitation trade-off

• A principled way of dealing with 
exploration/exploitation trade-off.

Reinforcement learning
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Configuration 
Search as 

Markov 
Decision 

Process (MDP)

• State 𝑠: Configuration

• Action 𝑎: Index (to be included)

• Transition probability 𝑝: 
Deterministic

• Reward 𝑟: Percentage 
improvement of the workload 𝑊 
over the state/configuration 𝐶

𝜂 𝑊, 𝐶

= 1 −
𝑐𝑜𝑠𝑡 𝑊, 𝐶

𝑐𝑜𝑠𝑡 𝑊, ∅
× 100%

Example MDP with {𝐼1, 𝐼2, 𝐼3}
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Monte Carlo 
Tree Search
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Action Selection Policy

• UCT

• Pick the action 𝑎 that maximizes the UCB (upper-confidence bound) score:

• ෠𝑄 𝑠, 𝑎  is the estimated action-value function.

• 𝑁 𝑠  is the number of times that 𝑠 is visited.

• 𝑛 𝑠, 𝑎  is the number of times that the action 𝑎 is taken.

• 𝜖-greedy

• Pick the action 𝑎 with respect to the probability:
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Action Selection Policy (Cont.)

• Address sparsity in the estimated action-value function ෠𝑄 𝑠, 𝑎 .

• Choose a “prior distribution” for ෠𝑄 𝑠, 𝑎 .

• Refine the “prior distribution” after observing rewards.

• For each action/index 𝑎, estimate its percentage improvement.

• Independent of the state 𝑠.

• Needs to be done in a budget-aware manner.

• For each budget what-if call, first select a query, and then select one of its index 𝑎 
(see the paper for details).
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Rollout Policy

• General rollout policy in MCTS

• Expand the visited configuration 𝑠 by randomly inserting 𝑙 indexes.

• If UCT is used as the action selection policy

• Insert 𝑙 indexes uniformly randomly.

• If 𝜖-greedy is used as the action selection policy

• Insert 𝑙 indexes based on their “prior distribution.”
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Extraction of the Best Configuration

Best configuration explored (BCE)

• Return the best configuration found 
during MCTS.

• This includes both the configurations 
explored by MCTS and the 
configurations generated by rollout.

Best greedy (BG)

• Use a greedy strategy to traverse the 
search tree.

• There are various options for the 
greedy strategy.

• Our current implementation

▪ Run the greedy search algorithm 
again and return the configuration 
with the minimum derived cost.
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Experiment 
Settings

• Datasets and workloads

• Baselines

• Budget-aware variants of greedy search

• Existing RL approaches to index tuning
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Budget-aware 
Variants of 

Greedy 
Search

Vanilla greedy 

• Standard greedy + FCFS (first come 
first serve)

Two-phase greedy 

• Two-phase search + FCFS

Auto-admin greedy

• Two-phase greedy + atomic 
configuration

16



Comparison with Budget-aware Greedy (Benchmark Workloads)

Results on TPC-H

Results on TPC-DS
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Comparison with Budget-aware Greedy (Real Workloads)

Results on Real-D

Results on Real-M
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Existing RL 
Approaches 

to Index 
Tuning

• Model index selection as a “contextual 
bandit” problem.

• Customized to make it budget-aware.

DBA bandits (ICDE 2021)

• Solve the index selection problem 
using deep RL (e.g., deep Q-learning).

• Customized to make it budget-aware.

No DBA (arXiv 2018)
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Comparison with Existing RL (Benchmark Workloads)

Results on TPC-DS

Results on TPC-H
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Comparison with Existing RL (Real Workloads)

Results on Real-D

Results on Real-M
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Summary of 
Contributions

• We proposed a problem formulation of budget-aware 
configuration search.

• We proposed a MCTS-based framework for budget-aware 
configuration search.

• We demonstrated that our MCTS-based framework 
outperforms both budget-aware variants of greedy search 
and existing RL techniques for index tuning, on both 
industrial benchmarks and real workloads.
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