
Wentao Wu1,2, Yun Chi2, Hakan Hacigumus2, Jeffrey Naughton1

1Dept of Computer Sciences, University of Wisconsin-Madison
2NEC Laboratories America

1

Background
 Database as a service (DaaS)

 Other applications

 Admission control, query scheduling, progress monitoring,
system sizing, etc.

2

User

Database

Service Provider

Service Level
Agreement (SLA)

How can we predict the execution time of a query before it runs?

Motivation
 Previous work

 Standalone workloads [ICDE’09, ICDE’12, VLDB’12, ICDE’13]

 Concurrent but static workloads [EDBT’11, SIGMOD’11]

 Real world database workloads

 Dynamic: queries are not known a priori.

3

Our goal: Workloads that are both concurrent and dynamic!

Problem Definition

4

At time ti, predict the (remaining) execution time for each query in the mix.

(a) At time t1 (b) At time t2

(c) At time t3

Main Idea

5

 PostgreSQL’s cost model

 The n’s won’t change!
 Even if the query is running together with other queries

 Only the c’s will change!

Cost Unit Value

cs: seq_page_cost 1.0

cr: rand_page_cost 4.0

ct: cpu_tuple_cost 0.01

ci: cpu_index_tuple_cost 0.005

co: cpu_operator_cost 0.0025
𝐶 = 𝑛𝑠𝑐𝑠 + 𝑛𝑟𝑐𝑟 + 𝑛𝑡𝑐𝑡 + 𝑛𝑖𝑐𝑖 + 𝑛𝑜𝑐𝑜

Wentao Wu, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Hakan Hacigümüs,
and Jeffrey F. Naughton, Predicting query execution time: are optimizer cost
models really unusable? In ICDE, 2013.

Main Idea (Cont.)
 The c’s change at boundaries of phases during execution.

 What should be a phase of a query?
 A phase = an operator?

 Pipelining of operators => interleaved phases!

 We define a phase to be a pipeline.

6

Time

Scan B

Scan A Scan Bq1

q2

t1 t2 t3 t4 t5

Progressive Predictor

7

We need a predictor for a mix of pipelines!

8 mixes of pipelines during the execution of the 3 queries

 The execution of a query mix can then be thought of as

 multiple stages of mixes of pipelines

Time

P31 P32

P21 P22 P23

P11 P12 P13

s0 f21 f11 f22 f12 f31 f23 f32 f13

q1

q2

q3

Predictors for A Mix of Pipelines

 An approach based on machine learning

 An approach based on analytic models

8

Machine-Learning Based Approach
 CPU and I/O interactions are different

 Separate the modeling of CPU and I/O interactions.

 Modeling CPU interactions (m CPU cores, n pipelines)

 If 𝑚 ≥ 𝑛, then 𝑐𝑐𝑝𝑢 = 𝜏 (same as the standalone case).

 If 𝑚 < 𝑛, then 𝑐𝑐𝑝𝑢 =
𝑛

𝑚
⋅ 𝜏, assuming fair sharing.

 Modeling I/O interactions

 Use machine learning.

9

Modeling I/O Interactions
 Previous work

 Assume that all the queries are known beforehand.

 Run sample mixes and train a regression model.

 Apply to static workloads (e.g., report generation).

 It cannot be directly applied to dynamic workloads.

 We do not know all the queries to be run.

10

Modeling I/O Interactions (Cont.)

Observation #1. Fixed DBMS => Fixed # scan operators

We can apply the machine-learning idea to scan
types instead of query templates!

Observation #2.
Fixed DBMS + Fixed DB schema => Fixed # scan types

scan type = scan operator + table name (e.g., index scan over orders)

11

NB: Additional I/O’s (e.g., from hash-joins) => Additional scans

Analytic-Model Based Approach
 Problem of the machine-learning based approach

 Infinitely many unknown queries/query mixes

 Model the system with a queueing network.

12

1. Two service centers: Disk, CPU.

2. Pipelines are customers.

3. The c’s are the residence times
per visit of a customer.

Analytic-Model Based Approach (Cont.)

 The effect of the buffer pool

 The buffer pool cannot be modeled as a service center.

 We used a model [SIGMETRICS’92]

 For the “clock” algorithm used by PostgreSQL

13

Experimental Settings

 PostgreSQL 9.0.4, Linux 3.2.0-26

 TPC-H 10GB database

 Multiprogramming Level (MPL): 2 to 5

 Dual Intel 1.86GHz CPU, 4GB of memory

14

Workloads
 2 TPC-H workloads & 3 micro-benchmarking workloads

 TPC-H2: 12 templates (Q7, 8, 9 are more expensive)

 MB1: heavy index scans with different data sharing rate.

15

Baseline Approach

 For each query in the mix

 Predict its time by using the single-query predictor.

 Multiply it with the MPL as the prediction.

 Intuitively, this approach ignores the impact of query
interactions.

16

Prediction Accuracy

 On TPC-H2 (with more expensive templates)

17

Prediction Accuracy (Cont.)

 On MB1 (mixes of heavy index scans)

18

Overhead

 Both approaches

 need to calibrate the optimizer’s cost model.

 The machine-learning based approach

 needs a training stage (usually 2 days)

 The analytic-model based approach

 needs to evaluate the analytic models (usually < 120 ms)

19

Conclusion
 To the best of our knowledge, we are the first to

 publish a technique to predict query execution times for
workloads that are both concurrent and dynamic;

 present a systematic exploration of its performance.

 We use analytic-model based approaches in addition to
machine learning as used by previous work.

 We show that our analytic-model based approach can
have competitive and often better prediction accuracy
than a (new) machine-learning based approach.

20

Q & A

 Thank you

21

Backup Slides

22

From A Query Plan to Pipelines

23

The example query plan
contains 3 pipelines with the
execution order: P1P2P3.

Tables:
Students (sid, sname)
Enroll (sid, cid, grade)

SELECT S.sname, AVG (grade) AS gpa
FROM Students S, Enroll E
WHERE S.sid = E.sid
GROUP BY S.sname

GroupAgg

MergeJoin

Sort Sort

SeqScan SeqScan

Students Enroll

P1 P2

P3

More Details of Queueing Network

𝑅𝑘,𝑚 = 𝜏𝑘 + 𝑌𝑘𝜏𝑘 ෍

𝑗≠𝑚

𝑄𝑘,𝑗

Residence
Time

Service
Time

Queueing
Time

𝑄𝑘,𝑗 =
𝑉𝑘,𝑗𝑅𝑘,𝑗

σ𝑖=1
𝐾 𝑉𝑖,𝑗𝑅𝑖,𝑗

𝑌𝑘 =
1

𝐶𝑘
𝜌4.464(𝐶𝑘

0.676−1)

𝜌𝑘 =
𝜏𝑘
𝐶𝑘
෍

𝑗=1

𝑀
𝑉𝑘,𝑗

σ𝑖=1
𝐾 𝑉𝑖,𝑗𝑅𝑖,𝑗

(Queue Length)

(Correction Factor, Yk = 1 if Ck = 1)

(Utility)

24

More Details of Buffer-Pool Model
 Recall the “clock” algorithm

 The buffer pages are organized in a circular queue.

 On a buffer miss, the clock pointer scans the pages and
chooses the first page with count 0 for replacement.

 If a page has a count greater than 0, then the count is
decreased by 1.

 On a buffer hit, the counter of the page is reset to its
maximum value.

25

More Details of Buffer-Pool Model
(Cont.)

෍

𝑝=1

𝑃

𝑆𝑝 1 −
1

1 +
𝑛0
𝑚
𝑟𝑝
𝑆𝑝

𝐼𝑝+1
− 𝐵 = 0

Model the “clock” algorithm by using a Markov chain.

(steady-state condition)

𝑁𝑝 = 𝑆𝑝 1 −
1

1 +
𝑛0
𝑚
𝑟𝑝
𝑆𝑝

𝐼𝑝+1 ℎ𝑝 =
𝑁𝑝
𝑆𝑝

(# pages in the buffer) (buffer hit rate)

𝑚𝑝 = 1 − ℎ𝑝 = 1 +
𝑛0
𝑚

𝑟𝑝
𝑆𝑝

𝐼𝑝+1
−1

(buffer miss rate)

expected # accesses to a
page in the partition p

26

Workloads
 TPC-H workloads

 TPC-H1: 9 light to moderate TPC-H query templates

 TPC-H2: TPC-H1 + 3 more expensive templates (Q7, 8, 9)

 Create query mixes with Latin Hypercube Sampling (LHS).

27

Workloads (Cont.)

 Micro-benchmarking workloads

 MB1: mixes of heavy index scans with different data
sharing rate.

 MB2: mixes mingled with both sequential scans and
index scans.

 MB3: similar to MB2, but we replace the scans with real
TPC-H queries that contain the corresponding scans.

28

Prediction Accuracy

 On TPC-H1 (light to moderate templates)

29

Prediction Accuracy (Cont.)

 On TPC-H2 (with more expensive templates)

30

Prediction Accuracy (Cont.)
 On MB1 (mixes of heavy index scans)

31

Prediction Accuracy (Cont.)

 On MB2 (mixes of sequential scans/index scans)

32

Prediction Accuracy (Cont.)

 On MB3 (similar to MB2, but with TPC-H queries)

33

Sensitivity to Errors in Cardinality
Estimates

 On TPC-H1, with biased errors

34

Sensitivity to Errors in Cardinality
Estimates (Cont.)

 On TPC-H1, with unbiased errors

35

Additional Overhead (Analytic-Model
Based Approach)

36

