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" “Background

» Database as a service (DaaS)

User Service Provider
Service Level Database
Agreement (SLA)

How can we predict the execution time of a query before it runs?

* Other applications

e Admission control, query scheduling, progress monitoring,
system sizing, etc.



Motivation
Previous work

» Standalone workloads [ICDFE’og, ICDE’12, VLDB'12, ICDE’13]
e Concurrent but static workloads [EDBT’11, SIGMOD'11]

Real world database workloads

e Dynamic: queries are not known a priori.

Our goal: Workloads that are both concurrent and dynamic!




““Problem Definition

At time t,, predict the (remaining) execution time for each query in the mix.
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PMVIain idea = e

Value

* PostgreSQL’s cost model ¢;: cpu_tuple. cost

C =ngcs +n,.c +necy +nyc; + nycy

c,: seq_page_cost 1.0

c,: rand_page_cost 4.0
0.01

c;: cpu_index_tuple_cost | 0.005

c,: cpu_operator_cost 0.0025

models really unusable? In ICDE, 2013.

Wentao Wu, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Hakan Hacigiimiis,
and Jeffrey F. Naughton, Predicting query execution time: are optimizer cost

® The n's won't change!

e Even if the query is running together with other queries

* Only the c’s will change!




Main Idea (Cont.)

The c’s change at boundaries of phases during execution.
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What should be a phase of a query?

e A phase = an operator?
e Pipelining of operators => interleaved phases!

We define a phase to be a pipeline.



_ Progressive Predictor

The execution of a query mix can then be thought of as
e multiple stages of mixes of pipelines
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8 mixes of pipelines during the execution of the 3 queries

-

We need a predictor for a mix of pipelines!




““Predictors for A Mix of Pipelines

* An approach based on machine learning

* An approach based on analytic models



Machine-Learning Based Approach

CPU and I/O interactions are different
e Separate the modeling of CPU and I/O interactions.

Modeling CPU interactions (m CPU cores, n pipelines)

e If m = n, then c.,, = 7 (same as the standalone case).

n A A A
e I[f m < n, then c.,,, = — - 7, assuming fair sharing.
Pl 8 8

Modeling I/O interactions

e Use machine learning.



““Modeling 1/0 Interactions

Previous work
e Assume that all the queries are known beforehand.
e Run sample mixes and train a regression model.
e Apply to static workloads (e.g., report generation).

[t cannot be directly applied to dynamic workloads.
e We do not know all the queries to be run.
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S

meling 1/0 Interactions (Cont.)

Observation #1. Fixed DBMS => Fixed # scan operators

Observation #2.
Fixed DBMS + Fixed DB schema => Fixed # scan types

scan type = scan operator + table name (e.g., index scan over orders)

We can apply the machine-learning idea to scan
types instead of query templates!

NB: Additional I/O’s (e.g., from hash-joins) => Additional scans
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/Aﬁlytic-Model Based Approach

Problem of the machine-learning based approach

e Infinitely many unknown queries/query mixes

Model the system with a queueing network.

1. Two service centers: Disk, CPU.

_<j_ }_<:; 2. Pipelines are customers.
O O — | 3. The c’s are the residence times

per visit of a customer.

Disk CPU
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Analytic-Model Based Approach (Cont.)

The eftect of the buffer pool

e The buffer pool cannot be modeled as a service center.

We used a model [SIGMETRICS’ 92]
e For the “clock” algorithm used by PostgreSQL



““Experimental Settings

PostgreSQL 9.0.4, Linux 3.2.0-26

TPC-H 10GB database
Multiprogramming Level (MPL): 2 to 5
Dual Intel 1.86GHz CPU, 4GB of memory



Workloads

2 TPC-H workloads & 3 micro-benchmarking workloads
e TPC-H2: 12 templates (Q7, 8, 9 are more expensive)
e MBi1: heavy index scans with different data sharing rate.
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““Baseline Approach

For each query in the mix
e Predict its time by using the single-query predictor.

Multiply it with the MPL as the prediction.

Intuitively, this approach ignores the impact of query
interactions.



U |

““Prediction Accuracy

* On TPC-H2 (with more expensive templates)
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" “Prediction Accuracy (Cont.)

* On MB1 (mixes of heavy index scans)
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G

Both approaches

e need to calibrate the optimizer’s cost model.

The machine-learning based approach

* needs a training stage (usually 2 days)

The analytic-model based approach

 needs to evaluate the analytic models (usually < 120 ms)
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onclusion

To the best of our knowledge, we are the first to

/

e publish a technique to predict query execution times for
workloads that are both concurrent and dynamic;

e present a systematic exploration of its performance.

We use analytic-model based approaches in addition to
machine learning as used by previous work.

We show that our analytic-model based approach can
have competitive and often better prediction accuracy
than a (new) machine-learning based approach.
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/ e )
From A Query Plan to Pipelines

Tables:
Students (sid, sname)
Enroll (sid, cid, grade)

SELECT S.sname, AVG (grade) AS gpa
FROM Students S, Enroll E

WHERE S.sid = E.sid

GROUP BY S.sname

The example query plan
contains 3 pipelines with the
execution order: P,P,P..

Students

/‘-

Enroll
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More Details of Queueing Network

Service

: Queueing
Residence Time Time
Time
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“More Details of Buffer-Pool Model

Recall the “clock” algorithm
e The buffer pages are organized in a circular queue.

e On a buffer miss, the clock pointer scans the pages and
chooses the first page with count o for replacement.

e If a page has a count greater than o, then the count is
decreased by 1.

e On a buffer hit, the counter of the page is reset to its
maximum value.
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More Details of Buffer-Pool Mod
“(Cont.)

Model the “clock” algorithm by using a Markov chain.

P
1
Z Sp1- L | T B =0 (steady-state condition)
p=1 (1 @—p)
mS,

Sp

p
il q ‘ (buffer miss rate)

1 N
Np =551 1= (1 \ Mo v )1p+1 (# pages in the buffer) h, = 2 (buffer hit rate)

expected # accesses toa

page in the partition p
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“Workloads

TPC-H workloads

e TPC-Hai: g light to moderate TPC-H query templates
e TPC-H2: TPC-Hi1 + 3 more expensive templates (Q7, 8, 9)
e Create query mixes with Latin Hypercube Sampling (LHS).
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““Workloads (Cont.)

Micro-benchmarking workloads

e MBi1: mixes of heavy index scans with different data
sharing rate.

e MB2: mixes mingled with both sequential scans and
index scans.

e MB3: similar to MB2, but we replace the scans with real
TPC-H queries that contain the corresponding scans.
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““Prediction Accuracy

On TPC-Ha1 (light to moderate templates)
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" “Prediction Accuracy (Cont.)

* On TPC-H2 (with more expensive templates)
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" “Prediction Accuracy (Cont.)

* On MB1 (mixes of heavy index scans)
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" “Prediction Accuracy (Cont.)

* On MB2 (mixes of sequential scans/index scans)
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“Prediction Accuracy (Cont.)

On MB3 (similar to MB2, but with TPC-H queries)
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