
UNCERTAINTY-AWARE QUERY

EXECUTION TIME PREDICTION

Wentao Wu1,2, Xi Wu2, Hakan Hacigumus3, Jeff Naughton2

1Microsoft Research
2University of Wisconsin-Madison

3Google

1

Query Execution Time Estimation
2

 Problem Definition

Given a query, estimate its running time before it runs.

 Focus on OLAP style, long-running queries.

 Applications

 Traditionally, cost-based query optimization.

 Recently, database as a service (DaaS): admission

control, query scheduling, system sizing, …

Previous Work
3

 Single-Query Workload

 [Ganapathi ICDE’09], [Xiong SoCC’11], [Akdere

ICDE’12], [Li VLDB’12], [Wu ICDE’13]

 Multi-Query Workload

 [Ahmad EDBT’11], [Duggan SIGMOD’11], [Wu

VLDB’13]

None of them is perfect, but none of them tried to quantify

the uncertainty in the estimated query execution time.

Motivation
4

 Estimates are more useful with confidence intervals.

Measure Uncertainty: point estimate => distribution

Caveat
5

 What do we mean by “distribution of likely query

execution times”?

Interpretation 1: If we run the query 100 times, what

will be the distribution of its running times?

Interpretation 2: If we run the query now, what is the

likelihood that it can finish between 100s and 200s?

Applications
6

 Query optimization

 Least-Expected-Cost query optimization [Chu PODS’99]

 Robust Query Optimization [Babcock SIGMOD’05]

 Query progress monitoring

 Provide error bars for the “remaining” query running time.

 Database as a service

 Distribution-based query scheduling [Chi VLDB’13].

Our Idea
7

 PostgreSQL’s cost model

 c’s: cost units

 n’s: functions of cardinality estimates

Cost Unit Value

cs: seq_page_cost 1.0

cr: rand_page_cost 4.0

ct: cpu_tuple_cost 0.01

ci: cpu_index_tuple_cost 0.005

co: cpu_operator_cost 0.0025

𝐶 = 𝑛𝑠𝑐𝑠 + 𝑛𝑟𝑐𝑟 + 𝑛𝑡𝑐𝑡 + 𝑛𝑖𝑐𝑖 + 𝑛𝑜𝑐𝑜

In our previous work [Wu ICDE’13], we proposed a

framework that calibrates the c’s and refines the n’s to get

better query execution time estimates.

Our Idea (Cont.)
8

Pr (c)

Pr (n)

t = n · c

Pr (t)

View the c’s and the n’s as random variables rather than constants!

𝑡 = 𝑛𝑠𝑐𝑠 + 𝑛𝑟𝑐𝑟 + 𝑛𝑡𝑐𝑡 + 𝑛𝑖𝑐𝑖 + 𝑛𝑜𝑐𝑜

Outlines
9

 The calibration framework

 Distributions of the c’s

 Distributions of the n’s

 Summary

The Calibration Framework
10

Sampling is used

only once for the

final chosen plan!

 Calibrate the c’s: use calibration queries.

 Refine the n’s: refine cardinality estimates.

Outlines
11

 The calibration framework

 Distributions of the c’s

 Distributions of the n’s

 Summary

Calibrate The c’s
12

 Basic idea (an example)

 Want to know the true values of

ct and co via calibration queries.

 General case

 k cost units (i.e., k unknowns) => k queries (i.e., k equations)

 k = 5 in the case of PostgreSQL

Cost Unit

cs: seq_page_cost

cr: rand_page_cost

ct: cpu_tuple_cost

ci: cpu_index_tuple_cost

co: cpu_operator_cost

q1: select * from R
q2: select count(*)

from R

R in memory
𝑡1 = 𝑐𝑡 ∙ 𝑛𝑡

𝑡2 = 𝑐𝑡 ∙ 𝑛𝑡 + 𝑐𝑜 ∙ 𝑛𝑜

Calibration Queries For PostgreSQL
13

Isolate the unknowns and solve them one per equation!

For each c, use multiple queries and take the average.

𝑡5 = 𝑐𝑠 ∙ 𝑛𝑠5 + 𝑐𝑟 ∙ 𝑛𝑟5

+𝑐𝑡 ∙ 𝑛𝑡5 + 𝑐𝑖 ∙ 𝑛𝑖5 + 𝑐𝑜 ∙ 𝑛𝑜5

q1: select * from R
R in memory

q2: select count(*) from R
R in memory

q3: select * from R where R.A
< a (R.A with an Index)

R in memory

q4: select * from R
R on disk

q5: select * from R where R.B
< b (R.B unclustered Index)

R on disk

𝑡1 = 𝑐𝑡 ∙ 𝑛𝑡1

𝑡2 = 𝑐𝑡 ∙ 𝑛𝑡2 + 𝑐𝑜 ∙ 𝑛𝑜2

𝑡3 = 𝑐𝑡 ∙ 𝑛𝑡3 + 𝑐𝑖 ∙ 𝑛𝑖3 + 𝑐𝑜 ∙ 𝑛𝑜3

𝑡4 = 𝑐𝑠 ∙ 𝑛𝑠4 + 𝑐𝑡 ∙ 𝑛𝑡4

Distributions of the c’s
14

 Assumption: c ~ N(μ, σ2)

(μm , σm
2)

m calibration

queries for each c

Outlines
15

 The calibration framework

 Distributions of the c’s

 Distributions of the n’s

 Summary

Refine The n’s
16

 The n’s are functions of N’s (i.e., input cardinalities).

Example 1 (In-Memory Sort)
𝑠𝑐 = [2 ∙ 𝑁𝑡 ∙ log 𝑁𝑡] ∙ 𝑐𝑜 + 𝑡𝑐 𝑜𝑓 𝑐ℎ𝑖𝑙𝑑

𝑟𝑐 = 𝑐𝑡 ⋅ 𝑁𝑡

no

Example 2 (Nested-Loop Join)
𝑠𝑐 = 𝑠𝑐 𝑜𝑓 𝑜𝑢𝑡𝑒𝑟 𝑐ℎ𝑖𝑙𝑑 + 𝑠𝑐 𝑜𝑓 𝑖𝑛𝑛𝑒𝑟 𝑐ℎ𝑖𝑙𝑑

𝑟𝑐 = 𝑐𝑡 ⋅ 𝑁𝑡
𝑜 ⋅ 𝑁𝑡

𝑖 + 𝑁𝑡
𝑜 ⋅ 𝑟𝑐 𝑜𝑓 𝑖𝑛𝑛𝑒𝑟 𝑐ℎ𝑖𝑙𝑑

nt

sc: start-cost rc: run-cost tc: total-cost Nt: # of input tuples

Distributions of the n’s
17

 We need to model two quantities:

 The selectivities;

 The cost functions for different physical operators.

 Using mathematics we get distributions of the n’s.

A Sampling-Based Selectivity Estimator
18

 Estimate the selectivity 𝜌𝑞 of a join query 𝑞 = 𝑅1 ⋈ 𝑅2.
[Haas et al., J. Comput. Syst. Sci. 1996]

𝑟11

𝑟12

……

𝑟1𝑁1

𝑟21

𝑟22

……

𝑟2𝑁2

Rs
2Rs

1

The 𝜌’s are not independent, but the estimator ො𝜌𝑞 is still
unbiased and strongly consistent.

Do a “cross product” over the samples: 𝜌 𝑖, 𝑗 = 0 𝑜𝑟 1.

𝑟11 𝑟21

……

𝑟2𝑁
2

𝑟11

𝑟1𝑁
1

𝑟21

……

𝑟2𝑁
2

𝑟1𝑁
1

…

…

⋈

⋈

⋈

⋈

𝜌(1, 1)

𝜌(1, 𝑁2)

𝜌(𝑁1, 1)

𝜌(𝑁1, 𝑁2)

ො𝜌𝑞 =
σ𝑖,𝑗 𝜌(𝑖, 𝑗)

𝑁1𝑁2

|𝑅𝑠
1 ⋈ 𝑅𝑠

2|

|𝑅𝑠
1| × |𝑅𝑠

2|

(μn , S
2
n)

Distributions of Selectivities
19

 Selectivity ~ N(μn, S
2

n): by the Central Limit Theorem.

𝑆2
𝑛 = ෍

𝑘=1

𝐾
1

𝑛 − 1
෍

𝑗=1

𝑛

(𝑄𝑘,𝑗,𝑛 / 𝑛𝐾−1−𝜇𝑛)2

Modeling Cost Functions
20

(Different Implementations)

Nested-Loop Join

Nl and Nr are the left and right input cardinality of the operator.

Generic Cost Function: 𝑓 = 𝑎0𝑁𝑙𝑁𝑟 + 𝑎1𝑁𝑙 + 𝑎2𝑁𝑟 + 𝑎3

Distributions of the n’s and t
21

 The n’s are asymptotically Gaussian.

 More samples => more close to Gaussian

 The running time t is also asymptotically Gaussian.

Example: Nested Loop Join

𝑡 = 𝑛𝑟𝑐𝑟 + 𝑛𝑡𝑐𝑡 𝑡 ∼ 𝑁(𝐸 𝑡 , 𝑉𝑎𝑟 𝑡)

nr and nt are not independent!ቊ
𝑛𝑟 = 𝑎0𝑁𝑙𝑁𝑟 + 𝑎1𝑁𝑙 + 𝑎2𝑁𝑟 + 𝑎3

𝑛𝑡 = 𝑏0𝑁𝑙𝑁𝑟 + 𝑏1𝑁𝑙 + 𝑏2𝑁𝑟 + 𝑏3

Should consider covariances when computing Var[t]!

Outlines
22

 The calibration framework

 Distributions of the c’s

 Distributions of the n’s

 Summary

Put It Together (Review)
23

Pr (selectivity)

(Gaussian)

Generic Cost

Functions

Pr(n)

(Asymptotically Gaussian)

Convergence Theorems

Pr (c)

(Gaussian)
Cost Model

(t = c · n)

Convergence

Theorems Pr(t)

(Asymptotically

Gaussian)

Experimental Evaluation
24

 The idea: larger variances => larger estimation errors

We observed strong correlations (i.e., correlation coefficient > 0.7)

on almost all the queries tested in our experiments.

We thus measure the correlation between the two.

Q & A
25

 Thank you

The Cardinality Refinement Algorithm (Example)

26

𝑅2

𝑅3

𝑅1

⋈

⋈

agg

Plan of q:

For agg, use PostgreSQL’s estimates based on
the refined input estimates from J2.

Run ෞ𝜌𝐽1
=

|𝑅1
𝑠 ⋈ 𝑅2

𝑠|

|𝑅1
𝑠| × |𝑅2

𝑠|

ෞ𝜌𝐽2
=

|𝑅1
𝑠 ⋈ 𝑅2

𝑠 ⋈ 𝑅3
𝑠|

|𝑅1
𝑠| × |𝑅2

𝑠| × |𝑅3
𝑠|

Reuse 𝑅2
𝑠

𝑅3
𝑠

𝑅1
𝑠

⋈

⋈

agg

Rewrite

𝑅1
𝑠, 𝑅2

𝑠, 𝑅3
𝑠 are samples (as tables) of 𝑅1, 𝑅2, 𝑅3.

J1

J2

𝐽1 = 𝑅1 ⋈ 𝑅2

𝐽2 = 𝑅1 ⋈ 𝑅2 ⋈ 𝑅3

Distributions of Selectivities (Cont.)
27

 Implementation of S2
n in PostgreSQL

𝑆2
𝑛 = ෍

𝑘=1

𝐾
1

𝑛 − 1
෍

𝑗=1

𝑛

(𝑄𝑘,𝑗,𝑛 / 𝑛𝐾−1−𝜇𝑛)2

Example: K = 2 (i.e., 𝑅1 ⋈ 𝑅2)

ቐ
𝑄1,𝑗,𝑛 = |{𝑟1𝑗} ⋈ 𝑅𝑠

2 |

𝑄2,𝑗,𝑛 = |𝑅𝑠
1 ⋈ {𝑟2𝑗}|

r1j and r2j are the j-th

row of Rs
1 and Rs

2.

𝑟11

𝑟12

……

𝑟1𝑛

𝑟21

𝑟22

……

𝑟2𝑛

Rs
2Rs

1

⋈

2n joins here!

𝑟11

𝑟12

……

𝑟1𝑛

𝑟21

𝑟22

……

𝑟2𝑛

⋈

Rs
2Rs

1

Only 1 join!

If: r11 ⋈ r21 ∊ R s1 ⋈ R s2

Then: ++Q1, 1, n

++Q2, 1, n

