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Query Execution Time Estimation
N

0 Problem Definition
o Given a query, estimate its running time before it runs.

0 Focus on OLAP style, long-running queries.

0 Applications
o Traditionally, cost-based query optimization.

o Recently, database as a service (DaaS): admission
control, query scheduling, system sizing, ...



Previous Work
B

0 Single-Query Workload

0 [Ganapathi ICDE'09], [Xiong SoCC’11], [Akdere
ICDE’12], [Li VLDB’12], [Wu ICDE’1 3]

0 Multi-Query Workload

o [Ahmad EDBT’11], [Duggan SIGMOD’11], [Wu
VLDB’1 3]

None of them is perfect, but none of them tried to quantify
the uncertainty in the estimated query execution time.




Motivation
B

1 Estimates are more useful with confidence intervals.
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Caveat
.

0 What do we mean by “distribution of likely query
execution times”?

Interpretation 1: If we run the query 100 times, what
will be the distribution of its running times?

Interpretation 2: If we run the query now, what is the
likelihood that it can finish between 100s and 200s?
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Applications
N

0 Query optimization
0 Least-Expected-Cost query optimization [Chu PODS’99]
0 Robust Query Optimization [Babcock SIGMOD’05]

0 Query progress monitoring

0 Provide error bars for the “remaining” query running time.

0 Database as a service
o Distribution-based query scheduling [Chi VLDB’1 3].
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Cost Unit
(0.0

C = ngcs + nycp +nicy +nic; + 1,y c,: rand_page_cost 4.0
¢ cpu_tuple_cost 0.01

0 PostgreSQL’s cost model

c: seq_page_cost

c: cpu_index_tuple_cost 0.005

I ¢’s: cost units

c.: Cpu_operator_cost 0.0025
0 n’s: functions of cardinality estimates

In our previous work [Wu ICDE’1 3], we proposed a
framework that calibrates the ¢’s and refines the n’s to get

better query execution time estimates.




Our Idea (Cont.)

t =ngcg +n,.c +nece +nic; +nyCy

View the c¢’s and the n’s as random variables rather than constants!
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The Calibration Framework

e Calibrate the c’s: use calibration queries.
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I calibration
I queries

offline
profiling

calibrated
cost units

Sampling is used
only once for the
final chosen plan!

I [ final query
| plan
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cost model running time
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e Refine the n’s: refine cardinality estimates.
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Calibrate The c¢’s
T

0 Basic idea (an example) Costunit

c;: seq_page_cost

o Want to know the true values of
c,: rand_page_cost

c, and c_ via calibration queries. ¢ cpu_tuple_cost

c: cpu_index_tuple_cost

c_: cpu_operator_cost

. select * from R R in memory
1

g,: select count (*) ‘ t; = cp - Ny
from R t2=Ct’nt+C0-n0

1 General case

0 k cost units (i.e., k unknowns) => k queries (i.e., k equations)
0k = 5 in the case of PostgreSQL



Calibration Queries For PostgreSQL
s

Isolate the unknowns and solve them one per equation!

R in memory
q,: select * from R

l

b1 =\Ct N1

R in memory

l

ty = Ct Ny +®n02

q,: select count(*) from R

qs: select * from R where R.A| R in memory
< a (R.A with an Index)

l

L3 = C¢ *Ny3 HC; JNi3 + Cp * Np3

R on disk

q,: select * from R Ly R C) Nog + Cp * Ny

l

qs: select * from R where R.B R on disk tc = C5 * Ngs +@ Nys
< b (R.B unclustered Index) +Cp *Nys + C; - Nys + C, * Nys

l

For each c, use multiple queries and take the average.




Distributions of the c¢’s
e
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Refine The n’s

The n’s are functions of N’s (i.e., input cardinalities).

Example 1 (In-Memory Sort) n,
SC = + tc of child

’I‘C:Ct'Nt

Example 2 (Nested-Loop Join)
sc = sc of outer child + sc of inner child

rc = ¢ @4— NP - rc of inner child

n;

sc: start-cost rc: run-cost tc: total-cost N,: # of input tuples



Distributions of the n’s
L2
1 We need to model two quantities:

o0 The selectivities;

0 The cost functions for different physical operators.

0 Using mathematics we get distributions of the n’s.



A Sampling-Based Selectivity Estimator
s

0 Estimate the selectivity p, of a join query q = R; x R;.
[Haas et al., J. Comput. Syst. Sci. 1996]

Do a “cross product” over the samples: p(i,j) = 0 or 1.
T | X |1y, | = p(1L,1) T

|R®; X R*,|

712 22 rp | X oy, | = p(LN2)
............ - — Dq = Ci’j
rlNl rZNZ T1N1 X 21 ‘ p(Nli 1)

|R®1| X |R*,|

T'lN ey TZN? ‘ p(NliNZ) -

The p’s are not independent, but the estimator p, is still
unbiased and strongly consistent.




Distributions of Selectivities
S

0 Selectivity ~ N(u, S? ): by the Central Limit Theorem.
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Modeling Cost Functions
oo

ORACLE

® — @

S LSGI’VGI’ PostgreSQL

@ (Different Implementations)

Nested-Loop Join
Generic Cost Function: f = agN;N, + a{N; + a,N,- + a;

N, and N_are the left and right input cardinality of the operator.




Distributions of the n’s and 1
=

0 The n’s are asymptotically Gaussian.

1 More samples => more close to Gaussian

01 The running time t is also asymptotically Gaussian.

Example: Nested Loop Join

t = n.c, +npcy I t ~ N(E[t],)

n, = agN;N,- + a;N; + a, N, + a5 .
- n_and n, are not independent!
{Tlt = bONlNT' + blNl + bZNT + b3 r t p

Should consider covariances when computing Var[f]!




Qutlines
N

0 The calibration framework
1 Distributions of the c’s
1 Distributions of the n’s

O Summary



Put It Together (Review)
B

Pr (SeIeCﬁViTY) » Generic Cost
(Gaussian) Functions

' Convergence Theorems

Pr(n)
(Asymptotically Gaussian)

‘ Convergence

] Theorems Pr(#)

Pr (c)

Cost Model .
(Gaussian) ‘{ (t=c-n) ‘ (Asymptotically

Gaussian)




Experimental Evaluation
i

0 The idea: larger variances => larger estimation errors

We thus measure the correlation between the two.
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We observed sfrong correlations (i.e., correlation coefficient > 0.7)

on almost all the queries tested in our experiments.
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The Cardinality Refinement Algorithm (Example)

26|
_ J1i=Ry ¥R,
Plan of g: J, =R, M R, ™ R,
agg agg . (Ri{=R;
. P, = Y
| Rewrite J, Run Ju RS| X |RY|

2 2
' R; > R3 ™ |R3|

p =
2RI CHRS | X (IR

SN
VAN

R, R, Rf RS Reuse

R:, R3, R3 are samples (as tables) of R, R,, R;.

For agg, use PostgreSQL's estimates based on
the refined input estimates from J,.




Distributions of Selectivities (Cont.)

0 Implementation of S$2_in PostgreSQL

K

n

1

k=1

J=1

Example: K = 2 (i.e.,, R{ X R,)

Q1,jn = {r1;} @ R°; |

Qz,jn = |R°1 ™ {ry;}|

ry; and r,. are the j-th
row of R, and R*,,.

=

"1 % 121
12 22
rln an
RS‘1 F\’S2

2n joins here!

Then: ++Q, , ,

++Q2,1,n
11 21
|:> 2 |||l 722
rln T2n
S S
| R 1 R 2 ]
|

Only 1 join!



