
UNCERTAINTY-AWARE QUERY 

EXECUTION TIME PREDICTION

Wentao Wu1,2, Xi Wu2, Hakan Hacigumus3, Jeff Naughton2

1Microsoft Research
2University of Wisconsin-Madison

3Google

1



Query Execution Time Estimation
2

 Problem Definition

Given a query, estimate its running time before it runs.

 Focus on OLAP style, long-running queries.

 Applications

 Traditionally, cost-based query optimization.

 Recently, database as a service (DaaS): admission 

control, query scheduling, system sizing, …



Previous Work
3

 Single-Query Workload

 [Ganapathi ICDE’09], [Xiong SoCC’11], [Akdere

ICDE’12], [Li VLDB’12], [Wu ICDE’13]

 Multi-Query Workload

 [Ahmad EDBT’11], [Duggan SIGMOD’11], [Wu 

VLDB’13]

None of them is perfect, but none of them tried to quantify 

the uncertainty in the estimated query execution time.



Motivation
4

 Estimates are more useful with confidence intervals.

Measure Uncertainty: point estimate => distribution



Caveat
5

 What do we mean by “distribution of likely query 

execution times”?

Interpretation 1: If we run the query 100 times, what 

will be the distribution of its running times?

Interpretation 2: If we run the query now, what is the 

likelihood that it can finish between 100s and 200s? 



Applications
6

 Query optimization

 Least-Expected-Cost query optimization [Chu PODS’99]

 Robust Query Optimization [Babcock SIGMOD’05]

 Query progress monitoring

 Provide error bars for the “remaining” query running time.

 Database as a service

 Distribution-based query scheduling [Chi VLDB’13].



Our Idea
7

 PostgreSQL’s cost model

 c’s: cost units

 n’s: functions of cardinality estimates

Cost Unit Value

cs: seq_page_cost 1.0

cr: rand_page_cost 4.0

ct: cpu_tuple_cost 0.01

ci: cpu_index_tuple_cost 0.005

co: cpu_operator_cost 0.0025

𝐶 = 𝑛𝑠𝑐𝑠 + 𝑛𝑟𝑐𝑟 + 𝑛𝑡𝑐𝑡 + 𝑛𝑖𝑐𝑖 + 𝑛𝑜𝑐𝑜

In our previous work [Wu ICDE’13], we proposed a 

framework that calibrates the c’s and refines the n’s to get 

better query execution time estimates.



Our Idea (Cont.)
8

Pr (c)

Pr (n)

t = n · c

Pr (t)

View the c’s and the n’s as random variables rather than constants!

𝑡 = 𝑛𝑠𝑐𝑠 + 𝑛𝑟𝑐𝑟 + 𝑛𝑡𝑐𝑡 + 𝑛𝑖𝑐𝑖 + 𝑛𝑜𝑐𝑜



Outlines
9

 The calibration framework

 Distributions of the c’s

 Distributions of the n’s

 Summary



The Calibration Framework
10

Sampling is used 

only once for the 

final chosen plan!

 Calibrate the c’s: use calibration queries.

 Refine the n’s: refine cardinality estimates.



Outlines
11

 The calibration framework

 Distributions of the c’s

 Distributions of the n’s

 Summary



Calibrate The c’s
12

 Basic idea (an example)

 Want to know the true values of

ct and co via calibration queries.

 General case

 k cost units (i.e., k unknowns) => k queries (i.e., k equations)

 k = 5 in the case of PostgreSQL

Cost Unit

cs: seq_page_cost

cr: rand_page_cost

ct: cpu_tuple_cost

ci: cpu_index_tuple_cost

co: cpu_operator_cost

q1: select * from R
q2: select count(*)

from R

R in memory
𝑡1 = 𝑐𝑡 ∙ 𝑛𝑡

𝑡2 = 𝑐𝑡 ∙ 𝑛𝑡 + 𝑐𝑜 ∙ 𝑛𝑜



Calibration Queries For PostgreSQL
13

Isolate the unknowns and solve them one per equation!

For each c, use multiple queries and take the average.

𝑡5 = 𝑐𝑠 ∙ 𝑛𝑠5 + 𝑐𝑟 ∙ 𝑛𝑟5

+𝑐𝑡 ∙ 𝑛𝑡5 + 𝑐𝑖 ∙ 𝑛𝑖5 + 𝑐𝑜 ∙ 𝑛𝑜5

q1: select * from R
R in memory

q2: select count(*) from R
R in memory

q3: select * from R where R.A 
< a (R.A with an Index)

R in memory

q4: select * from R
R on disk

q5: select * from R where R.B 
< b (R.B unclustered Index)

R on disk

𝑡1 = 𝑐𝑡 ∙ 𝑛𝑡1

𝑡2 = 𝑐𝑡 ∙ 𝑛𝑡2 + 𝑐𝑜 ∙ 𝑛𝑜2

𝑡3 = 𝑐𝑡 ∙ 𝑛𝑡3 + 𝑐𝑖 ∙ 𝑛𝑖3 + 𝑐𝑜 ∙ 𝑛𝑜3

𝑡4 = 𝑐𝑠 ∙ 𝑛𝑠4 + 𝑐𝑡 ∙ 𝑛𝑡4



Distributions of the c’s
14

 Assumption: c ~ N(μ, σ2)

(μm , σm
2)

m calibration 

queries for each c



Outlines
15

 The calibration framework

 Distributions of the c’s

 Distributions of the n’s

 Summary



Refine The n’s
16

 The n’s are functions of N’s (i.e., input cardinalities).

Example 1 (In-Memory Sort)
𝑠𝑐 = [2 ∙ 𝑁𝑡 ∙ log 𝑁𝑡] ∙ 𝑐𝑜 + 𝑡𝑐 𝑜𝑓 𝑐ℎ𝑖𝑙𝑑

𝑟𝑐 = 𝑐𝑡 ⋅ 𝑁𝑡

no

Example 2 (Nested-Loop Join)
𝑠𝑐 = 𝑠𝑐 𝑜𝑓 𝑜𝑢𝑡𝑒𝑟 𝑐ℎ𝑖𝑙𝑑 + 𝑠𝑐 𝑜𝑓 𝑖𝑛𝑛𝑒𝑟 𝑐ℎ𝑖𝑙𝑑

𝑟𝑐 = 𝑐𝑡 ⋅ 𝑁𝑡
𝑜 ⋅ 𝑁𝑡

𝑖 + 𝑁𝑡
𝑜 ⋅ 𝑟𝑐 𝑜𝑓 𝑖𝑛𝑛𝑒𝑟 𝑐ℎ𝑖𝑙𝑑

nt

sc: start-cost   rc: run-cost   tc: total-cost   Nt: # of input tuples  



Distributions of the n’s
17

 We need to model two quantities:

 The selectivities;

 The cost functions for different physical operators.

 Using mathematics we get distributions of the n’s.



A Sampling-Based Selectivity Estimator
18

 Estimate the selectivity 𝜌𝑞 of a join query 𝑞 = 𝑅1 ⋈ 𝑅2.
[Haas et al., J. Comput. Syst. Sci. 1996]

𝑟11

𝑟12

……

𝑟1𝑁1

𝑟21

𝑟22

……

𝑟2𝑁2

Rs
2Rs

1

The 𝜌’s are not independent, but the estimator ො𝜌𝑞 is still 
unbiased and strongly consistent. 

Do a “cross product” over the samples: 𝜌 𝑖, 𝑗 = 0 𝑜𝑟 1.

𝑟11 𝑟21

……

𝑟2𝑁
2

𝑟11

𝑟1𝑁
1

𝑟21

……

𝑟2𝑁
2

𝑟1𝑁
1

…

…

⋈

⋈

⋈

⋈

𝜌(1, 1)

𝜌(1, 𝑁2)

𝜌(𝑁1, 1)

𝜌(𝑁1, 𝑁2)

ො𝜌𝑞 =
σ𝑖,𝑗 𝜌(𝑖, 𝑗)

𝑁1𝑁2

|𝑅𝑠
1 ⋈ 𝑅𝑠

2|

|𝑅𝑠
1| × |𝑅𝑠

2|



(μn , S
2
n)

Distributions of Selectivities
19

 Selectivity ~ N(μn, S
2

n): by the Central Limit Theorem.

𝑆2
𝑛 = 

𝑘=1

𝐾
1

𝑛 − 1


𝑗=1

𝑛

(𝑄𝑘,𝑗,𝑛 / 𝑛𝐾−1−𝜇𝑛)2



Modeling Cost Functions
20

(Different Implementations)

Nested-Loop Join

Nl and Nr are the left and right input cardinality of the operator.

Generic Cost Function: 𝑓 = 𝑎0𝑁𝑙𝑁𝑟 + 𝑎1𝑁𝑙 + 𝑎2𝑁𝑟 + 𝑎3



Distributions of the n’s and t
21

 The n’s are asymptotically Gaussian.

 More samples => more close to Gaussian

 The running time t is also asymptotically Gaussian.

Example: Nested Loop Join

𝑡 = 𝑛𝑟𝑐𝑟 + 𝑛𝑡𝑐𝑡 𝑡 ∼ 𝑁(𝐸 𝑡 , 𝑉𝑎𝑟 𝑡 )

nr and nt are not independent!ቊ
𝑛𝑟 = 𝑎0𝑁𝑙𝑁𝑟 + 𝑎1𝑁𝑙 + 𝑎2𝑁𝑟 + 𝑎3

𝑛𝑡 = 𝑏0𝑁𝑙𝑁𝑟 + 𝑏1𝑁𝑙 + 𝑏2𝑁𝑟 + 𝑏3

Should consider covariances when computing Var[t]!



Outlines
22

 The calibration framework

 Distributions of the c’s

 Distributions of the n’s

 Summary



Put It Together (Review)
23

Pr (selectivity)

(Gaussian)

Generic Cost 

Functions

Pr(n)

(Asymptotically Gaussian)

Convergence Theorems

Pr (c)

(Gaussian)
Cost Model

(t = c · n)

Convergence 

Theorems Pr(t)

(Asymptotically 

Gaussian)



Experimental Evaluation
24

 The idea: larger variances => larger estimation errors

We observed strong correlations (i.e., correlation coefficient > 0.7) 

on almost all the queries tested in our experiments.

We thus measure the correlation between the two.



Q & A
25

 Thank you



The Cardinality Refinement Algorithm (Example)

26

𝑅2

𝑅3

𝑅1

⋈

⋈

agg

Plan of q:

For agg, use PostgreSQL’s estimates based on 
the refined input estimates from J2.

Run ෞ𝜌𝐽1
=

|𝑅1
𝑠 ⋈ 𝑅2

𝑠|

|𝑅1
𝑠| × |𝑅2

𝑠|

ෞ𝜌𝐽2
=

|𝑅1
𝑠 ⋈ 𝑅2

𝑠 ⋈ 𝑅3
𝑠|

|𝑅1
𝑠| × |𝑅2

𝑠| × |𝑅3
𝑠|

Reuse 𝑅2
𝑠

𝑅3
𝑠

𝑅1
𝑠

⋈

⋈

agg

Rewrite

𝑅1
𝑠, 𝑅2

𝑠, 𝑅3
𝑠 are samples (as tables) of 𝑅1, 𝑅2, 𝑅3.

J1

J2

𝐽1 = 𝑅1 ⋈ 𝑅2

𝐽2 = 𝑅1 ⋈ 𝑅2 ⋈ 𝑅3



Distributions of Selectivities (Cont.)
27

 Implementation of S2
n in PostgreSQL

𝑆2
𝑛 = 

𝑘=1

𝐾
1

𝑛 − 1


𝑗=1

𝑛

(𝑄𝑘,𝑗,𝑛 / 𝑛𝐾−1−𝜇𝑛)2

Example: K = 2 (i.e., 𝑅1 ⋈ 𝑅2)

ቐ
𝑄1,𝑗,𝑛 = |{𝑟1𝑗} ⋈ 𝑅𝑠

2 |

𝑄2,𝑗,𝑛 = |𝑅𝑠
1 ⋈ {𝑟2𝑗}|

r1j and r2j are the j-th

row of Rs
1 and Rs

2.

𝑟11

𝑟12

……

𝑟1𝑛

𝑟21

𝑟22

……

𝑟2𝑛

Rs
2Rs

1

⋈

2n joins here!

𝑟11

𝑟12

……

𝑟1𝑛

𝑟21

𝑟22

……

𝑟2𝑛

⋈

Rs
2Rs

1

Only 1 join!

If:  r11 ⋈ r21 ∊ R s1 ⋈ R s2

Then: ++Q1, 1, n

++Q2, 1, n


