UNCERTAINTY-AWARE QUERY
EXECUTION TIME PREDICTION

Wentao Wu'?, Xi Wu?, Hakan Hacigumus3, Jeff Naughton?
!Microsoft Research
2University of Wisconsin-Madison
3Google

Query Execution Time Estimation
N

0 Problem Definition
o Given a query, estimate its running time before it runs.

0 Focus on OLAP style, long-running queries.

0 Applications
o Traditionally, cost-based query optimization.

o Recently, database as a service (DaaS): admission
control, query scheduling, system sizing, ...

Previous Work
B

0 Single-Query Workload

0 [Ganapathi ICDE'09], [Xiong SoCC’11], [Akdere
ICDE’12], [Li VLDB’12], [Wu ICDE’1 3]

0 Multi-Query Workload

o [Ahmad EDBT’11], [Duggan SIGMOD’11], [Wu
VLDB’1 3]

None of them is perfect, but none of them tried to quantify
the uncertainty in the estimated query execution time.

Motivation
B

1 Estimates are more useful with confidence intervals.

> ” ST P
= Prediction
:,50 0.08}

0.06} '
'g National State polls
< 0.02}
=8 0 : . .

K -2 0 +2 +4 +6

Obama-Romney margin (%)

Measure Uncertainty: point estimate => distribution

Caveat
.

0 What do we mean by “distribution of likely query
execution times”?

Interpretation 1: If we run the query 100 times, what
will be the distribution of its running times?

Interpretation 2: If we run the query now, what is the
likelihood that it can finish between 100s and 200s?

X
v

Applications
N

0 Query optimization
0 Least-Expected-Cost query optimization [Chu PODS’99]
0 Robust Query Optimization [Babcock SIGMOD’05]

0 Query progress monitoring

0 Provide error bars for the “remaining” query running time.

0 Database as a service
o Distribution-based query scheduling [Chi VLDB’1 3].

Ouvur ldea

I I ———————

Cost Unit
(0.0

C = ngcs + nycp +nicy +nic; + 1,y c,: rand_page_cost 4.0
¢ cpu_tuple_cost 0.01

0 PostgreSQL’s cost model

c: seq_page_cost

c: cpu_index_tuple_cost 0.005

I ¢’s: cost units

c.: Cpu_operator_cost 0.0025
0 n’s: functions of cardinality estimates

In our previous work [Wu ICDE’1 3], we proposed a
framework that calibrates the ¢’s and refines the n’s to get

better query execution time estimates.

Our Idea (Cont.)

t =ngcg +n,.c +nece +nic; +nyCy

View the c¢’s and the n’s as random variables rather than constants!

.

0o nzgg

o w28z

0.7 4

oe . —
Pr (c) = |

0.4 — i

0.3 h B

oz . 4

o1 - 1

' -

— t=n-c »

Pr ()

Qutlines
B

0 The calibration framework
1 Distributions of the c’s
1 Distributions of the n’s

0 Summary

The Calibration Framework

e Calibrate the c’s: use calibration queries.

(——
I calibration
I queries

offline
profiling

calibrated
cost units

Sampling is used
only once for the
final chosen plan!

I [final query
| plan

online
sampling

optimizer's estimated
cost model running time

refined
cardinality
estimates

e Refine the n’s: refine cardinality estimates.

Qutlines
I

0 The calibration framework
0 Distributions of the c’s
1 Distributions of the n’s

0 Summary

Calibrate The c¢’s
T

0 Basic idea (an example) Costunit

c;: seq_page_cost

o Want to know the true values of
c,: rand_page_cost

c, and c_ via calibration queries. ¢ cpu_tuple_cost

c: cpu_index_tuple_cost

c_: cpu_operator_cost

. select * from R R in memory
1

g,: select count (*) ‘ t; = cp - Ny
from R t2=Ct’nt+C0-n0

1 General case

0 k cost units (i.e., k unknowns) => k queries (i.e., k equations)
0k = 5 in the case of PostgreSQL

Calibration Queries For PostgreSQL
s

Isolate the unknowns and solve them one per equation!

R in memory
q,: select * from R

l

b1 =\Ct N1

R in memory

l

ty = Ct Ny +®n02

q,: select count(*) from R

qs: select * from R where R.A| R in memory
< a (R.A with an Index)

l

L3 = C¢ *Ny3 HC; JNi3 + Cp * Np3

R on disk

q,: select * from R Ly R C) Nog + Cp * Ny

l

qs: select * from R where R.B R on disk tc = C5 * Ngs +@ Nys
< b (R.B unclustered Index) +Cp *Nys + C; - Nys + C, * Nys

l

For each c, use multiple queries and take the average.

Distributions of the c¢’s
e

m calibration
————————————————— queries for each ¢

(
| |calibration offline calibrated 2
I queries ili cost units (“m ’)

ICHETE [__,

optimizer’'s estimated
cost model running time

(g rioe 1 f o
plan sampling T

Qutlines
S

0 The calibration framework
1 Distributions of the c’s
0 Distributions of the n’s

0 Summary

Refine The n’s

The n’s are functions of N’s (i.e., input cardinalities).

Example 1 (In-Memory Sort) n,
SC = + tc of child

’I‘C:Ct'Nt

Example 2 (Nested-Loop Join)
sc = sc of outer child + sc of inner child

rc = ¢ @4— NP - rc of inner child

n;

sc: start-cost rc: run-cost tc: total-cost N,: # of input tuples

Distributions of the n’s
L2
1 We need to model two quantities:

o0 The selectivities;

0 The cost functions for different physical operators.

0 Using mathematics we get distributions of the n’s.

A Sampling-Based Selectivity Estimator
s

0 Estimate the selectivity p, of a join query q = R; x R;.
[Haas et al., J. Comput. Syst. Sci. 1996]

Do a “cross product” over the samples: p(i,j) = 0 or 1.
T | X |1y, | = p(1L,1) T

|R®; X R*,|

712 22 rp | X oy, | = p(LN2)
............ - — Dq = Ci’j
rlNl rZNZ T1N1 X 21 ‘ p(Nli 1)

|R®1| X |R*,|

T'lN ey TZN? ‘ p(NliNZ) -

The p’s are not independent, but the estimator p, is still
unbiased and strongly consistent.

Distributions of Selectivities
S

0 Selectivity ~ N(u, S?): by the Central Limit Theorem.

calibration offline calibrated
queries profiling cost units i
i E DDA

k=1
? optimizer's estimated
s cost model running time

I [final query online reﬁned
I lan samplin sl ‘ (K, §? o)
P piing estimates

Modeling Cost Functions
oo

ORACLE

® — @

S LSGI’VGI’ PostgreSQL

@ (Different Implementations)

Nested-Loop Join
Generic Cost Function: f = agN;N, + a{N; + a,N,- + a;

N, and N_are the left and right input cardinality of the operator.

Distributions of the n’s and 1
=

0 The n’s are asymptotically Gaussian.

1 More samples => more close to Gaussian

01 The running time t is also asymptotically Gaussian.

Example: Nested Loop Join

t = n.c, +npcy I t ~ N(E[t],)

n, = agN;N,- + a;N; + a, N, + a5 .
- n_and n, are not independent!
{Tlt = bONlNT' + blNl + bZNT + b3 r t p

Should consider covariances when computing Var[f]!

Qutlines
N

0 The calibration framework
1 Distributions of the c’s
1 Distributions of the n’s

O Summary

Put It Together (Review)
B

Pr (SeIeCﬁViTY) » Generic Cost
(Gaussian) Functions

' Convergence Theorems

Pr(n)
(Asymptotically Gaussian)

‘ Convergence

] Theorems Pr(#)

Pr (c)

Cost Model .
(Gaussian) ‘{ (t=c-n) ‘ (Asymptotically

Gaussian)

Experimental Evaluation
i

0 The idea: larger variances => larger estimation errors

We thus measure the correlation between the two.

[B z e [EE popm
é pe | EEEED T, ﬁg os | EEER T, E oo | EEEE T,
§ 0.6 f E 08 § o0& f
-E 04 f é 04 -.E 04 f
o @2 =
£ oaf £ o2 2 g2l
S S S 32 B B
o Pl e o P L0 e S o roaien H et wheet D0
0.0 0.05 0.1 001 0.05 0.1 0.0 0.05 0.1
Sampling Ratio Sampling Ratio Sampling Ratio
(a) MICRO, Uniform 1GB, PC2 (b) SELJOIN, Uniform 1GB, PC1 (c) TPCH, Skewed 10GB, PC1

We observed sfrong correlations (i.e., correlation coefficient > 0.7)

on almost all the queries tested in our experiments.

Q& A

o2 4
0 Thank you®©

The Cardinality Refinement Algorithm (Example)

26|
_ J1i=Ry ¥R,
Plan of g: J, =R, M R, ™ R,
agg agg . (Ri{=R;
. P, = Y
| Rewrite J, Run Ju RS| X |RY|

2 2
' R; > R3 ™ |R3|

p =
2RI CHRS | X (IR

SN
VAN

R, R, Rf RS Reuse

R:, R3, R3 are samples (as tables) of R, R,, R;.

For agg, use PostgreSQL's estimates based on
the refined input estimates from J,.

Distributions of Selectivities (Cont.)

0 Implementation of S$2_in PostgreSQL

K

n

1

k=1

J=1

Example: K = 2 (i.e.,, R{ X R,)

Q1,jn = {r1;} @ R°; |

Qz,jn = |R°1 ™ {ry;}|

ry; and r,. are the j-th
row of R, and R*,,.

=

"1 % 121
12 22
rln an
RS‘1 F\’S2

2n joins here!

Then: ++Q, , ,

++Q2,1,n
11 21
|:> 2 |||l 722
rln T2n
S S
| R 1 R 2]
|

Only 1 join!

