## UNCERTAINTY-AWARE QUERY EXECUTION TIME PREDICTION

Wentao Wu<sup>1,2</sup>, Xi Wu<sup>2</sup>, Hakan Hacigumus<sup>3</sup>, Jeff Naughton<sup>2</sup> <sup>1</sup>Microsoft Research <sup>2</sup>University of Wisconsin-Madison <sup>3</sup>Google

### **Query Execution Time Estimation**

- Problem Definition
  - Given a query, estimate its running time before it runs. Focus on OLAP style, long-running queries.
- Applications
  - Traditionally, cost-based query optimization.
  - Recently, database as a service (DaaS): admission control, query scheduling, system sizing, ...

### Previous Work

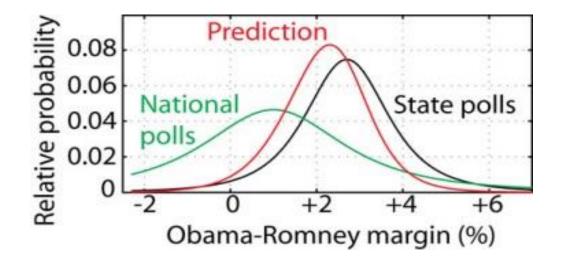
- Single-Query Workload
  - Ganapathi ICDE'09], [Xiong SoCC'11], [Akdere ICDE'12], [Li VLDB'12], [Wu ICDE'13]
- Multi-Query Workload
  - [Ahmad EDBT'11], [Duggan SIGMOD'11], [Wu VLDB'13]

None of them is perfect, but none of them tried to quantify the *uncertainty* in the estimated query execution time.

### Motivation

4

Estimates are more useful with confidence intervals.



**Measure Uncertainty:** point estimate => distribution



What do we mean by "distribution of likely query execution times"?

**Interpretation 1:** If we run the query 100 times, what will be the distribution of its running times?



**Interpretation 2:** If we run the query now, what is the likelihood that it can finish between 100s and 200s?



### **Applications**

#### Query optimization

- Least-Expected-Cost query optimization [Chu PODS'99]
- Robust Query Optimization [Babcock SIGMOD'05]

### Query progress monitoring

Provide error bars for the "remaining" query running time.

#### Database as a service

Distribution-based query scheduling [Chi VLDB'13].

### Our Idea

7

|  | Postgre | SQL's | cost | model |
|--|---------|-------|------|-------|
|--|---------|-------|------|-------|

 $C = n_s c_s + n_r c_r + n_t c_t + n_i c_i + n_o c_o$ 

c's: cost units

| Cost Unit                             | Value  |
|---------------------------------------|--------|
| c <sub>s</sub> : seq_page_cost        | 1.0    |
| c <sub>r</sub> : rand_page_cost       | 4.0    |
| c <sub>t</sub> : cpu_tuple_cost       | 0.01   |
| c <sub>i</sub> : cpu_index_tuple_cost | 0.005  |
| c <sub>o</sub> : cpu_operator_cost    | 0.0025 |

n's: functions of cardinality estimates

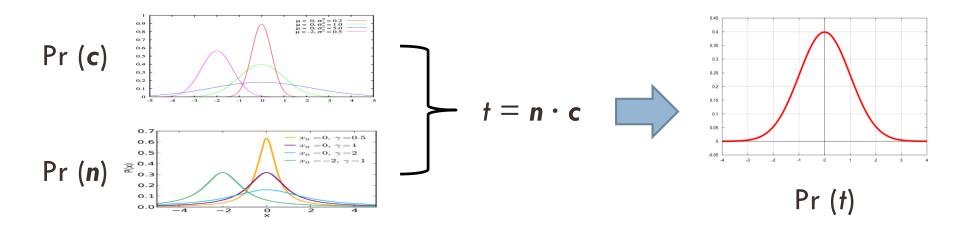
In our previous work [Wu ICDE'13], we proposed a framework that calibrates the c's and refines the n's to get better query execution time estimates.

### Our Idea (Cont.)

8

$$t = n_s c_s + n_r c_r + n_t c_t + n_i c_i + n_o c_o$$

View the c's and the n's as random variables rather than constants!





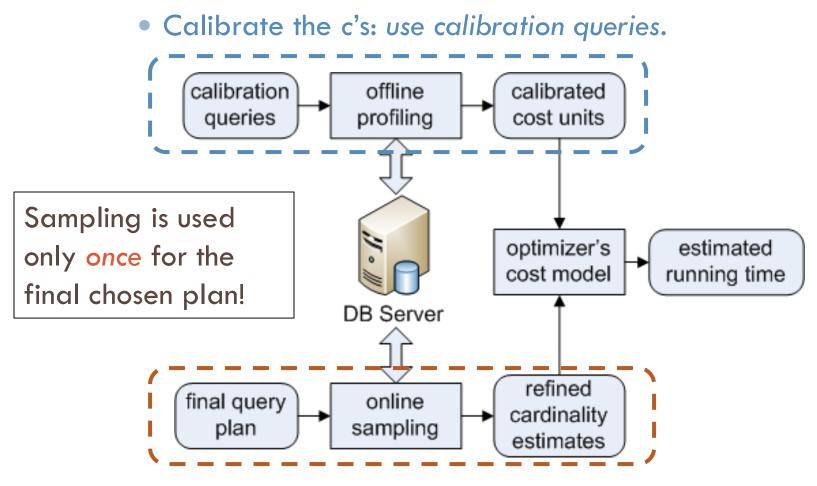
The calibration framework

Distributions of the c's

Distributions of the *n*'s

□ Summary

### The Calibration Framework



• Refine the n's: refine cardinality estimates.



The calibration framework

- □ Distributions of the c's
- Distributions of the *n*'s

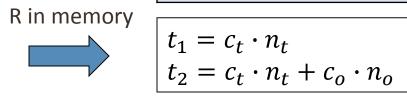
□ Summary

# Calibrate The c's

12

Basic idea (an example)
 Want to know the true values of c<sub>t</sub> and c<sub>o</sub> via calibration queries.

| <b>q<sub>1</sub>:</b> select | * from R |  |  |
|------------------------------|----------|--|--|
| <b>q<sub>2</sub>:</b> select | count(*) |  |  |
| from R                       |          |  |  |



$$c_{s}: seq_page_cost$$

$$c_{r}: rand_page_cost$$

$$c_{t}: cpu\_tuple\_cost$$

$$c_{t}: cpu\_index\_tuple\_cost$$

$$c_{o}: cpu\_operator\_cost$$

$$t_{1} = c_{t} \cdot n_{t}$$

Cast Unit

General case

k cost units (i.e., k unknowns) => k queries (i.e., k equations)
 k = 5 in the case of PostgreSQL

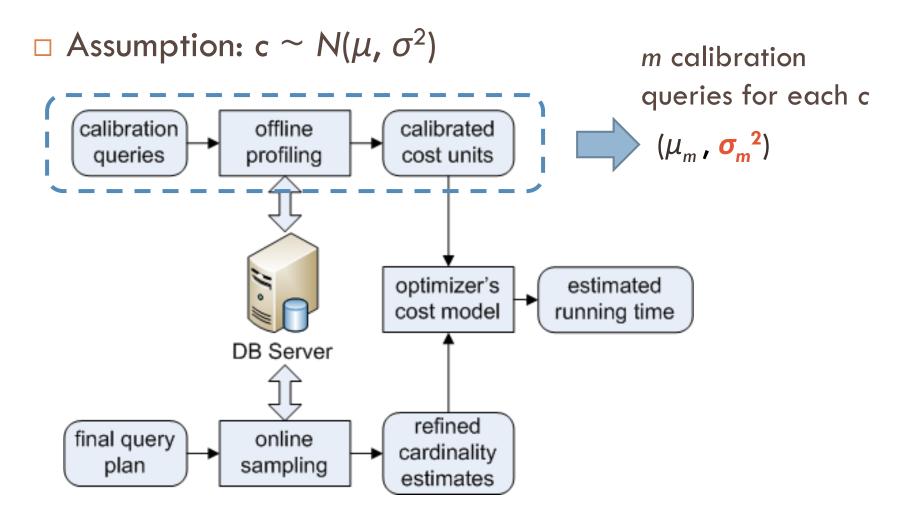
# Calibration Queries For PostgreSQL

*Isolate* the unknowns and solve them *one per equation*! R in memory  $t_1 = c_t \cdot n_{t1}$ **q**<sub>1</sub>: select \* from R R in memory  $t_2 = c_t \cdot n_{t2} + c_o \cdot n_{o2}$ **q**<sub>2</sub>: select count(\*) from R R in memory **q**<sub>3</sub>: select \* from R where R.A  $t_3 = c_t \cdot n_{t3} + c_i \cdot n_{i3} + c_o \cdot n_{o3}$ < a (R.A with an Index) R on disk  $t_4 = (c_s) \cdot n_{s4} + c_t \cdot n_{t4}$ **q**<sub>₄</sub>: select \* from R R on disk  $\begin{vmatrix} t_5 = c_s \cdot n_{s5} + c_r \cdot n_{r5} \\ + c_t \cdot n_{t5} + c_i \cdot n_{i5} + c_o \cdot n_{o5} \end{vmatrix}$ **q**<sub>5</sub>: select \* from R where R.B < b (R.B *unclustered* Index)

For each c, use *multiple* queries and take the *average*.

### Distributions of the c's







The calibration framework

Distributions of the c's

 $\Box$  Distributions of the *n*'s

□ Summary

### Refine The n's

16

### $\Box$ The *n*'s are *functions* of *N*'s (i.e., input cardinalities).

**Example 1** (In-Memory Sort)  

$$sc = 2 \cdot N_t \cdot \log N_t \cdot c_o + tc \ of \ child$$
  
 $rc = c_t \cdot N_t$ 

**Example 2** (Nested-Loop Join)  $sc = sc \ of \ outer \ child + sc \ of \ inner \ child$  $rc = c_t \cdot N_t^o \cdot N_t^1 + N_t^o \cdot rc \ of \ inner \ child$ 

sc: start-cost rc: run-cost tc: total-cost  $N_t$ : # of input tuples

### Distributions of the n's

□ We need to model two quantities:

- The selectivities;
- The cost functions for different physical operators.
- □ Using mathematics we get distributions of the *n*'s.

### A Sampling-Based Selectivity Estimator

18

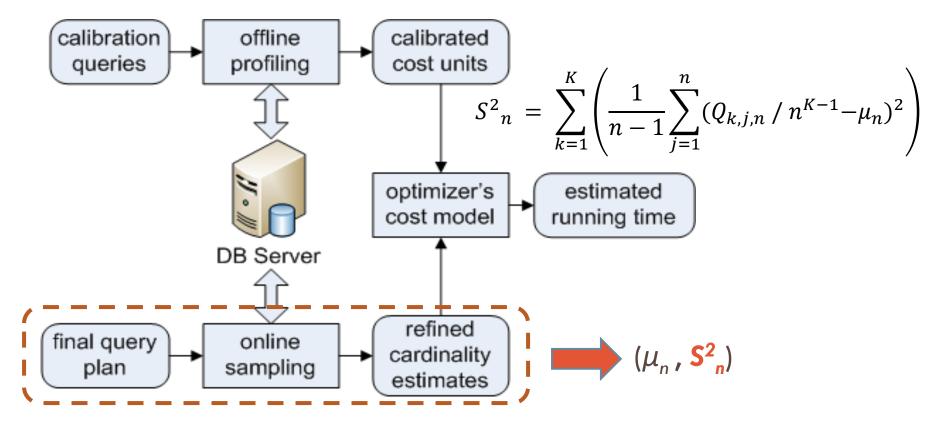
#### Estimate the selectivity $\rho_q$ of a join query $q = R_1 \bowtie R_2$ . [Haas et al., J. Comput. Syst. Sci. 1996] Do a "cross product" over the samples: $\rho(i, j) = 0 \text{ or } 1$ . $\bowtie$ $r_{21}$ $r_{11}$ $|R^{s}_{1} \bowtie R^{s}_{2}|$ $r_{11}$ $r_{21}$ $\rho(1, N_2)$ $r_{2N_2}$ $r_{11}$ $\bowtie$ $r_{12}$ $r_{22}$ $\rho(N_1, 1)$ $r_{2N_{2}}$ $r_{1N_{1}}$ $\bowtie$ $r_{21}$ $r_{1N_{1}}$ $|R_1^s| \times |R_2^s|$ $R^{s}_{1}$ $R^{s}$ $\rho(N_1, N_2)$ $r_{2N_2}$ $\bowtie$

The  $\rho$ 's are not independent, but the estimator  $\hat{\rho}_q$  is still *unbiased* and *strongly consistent*.

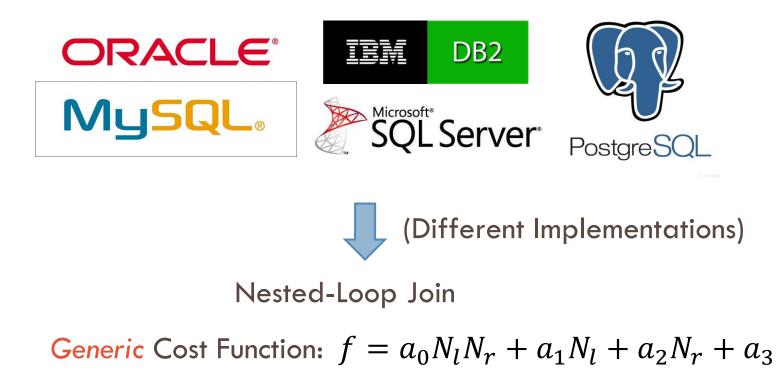
### **Distributions of Selectivities**

19

□ Selectivity ~  $N(\mu_n, S^2_n)$ : by the Central Limit Theorem.



### **Modeling Cost Functions**



 $N_1$  and  $N_r$  are the left and right input cardinality of the operator.

### Distributions of the n's and t

The n's are asymptotically Gaussian.

More samples => more close to Gaussian

The running time t is also asymptotically Gaussian.

**Example:** Nested Loop Join

$$t = n_r c_r + n_t c_t \implies t \sim N(E[t], Var[t])$$

 $\begin{cases} n_r = a_0 N_l N_r + a_1 N_l + a_2 N_r + a_3 \\ n_t = b_0 N_l N_r + b_1 N_l + b_2 N_r + b_3 \end{cases}$ 

 $n_r$  and  $n_t$  are **not** independent!

Should consider covariances when computing Var[t]!

### Outlines

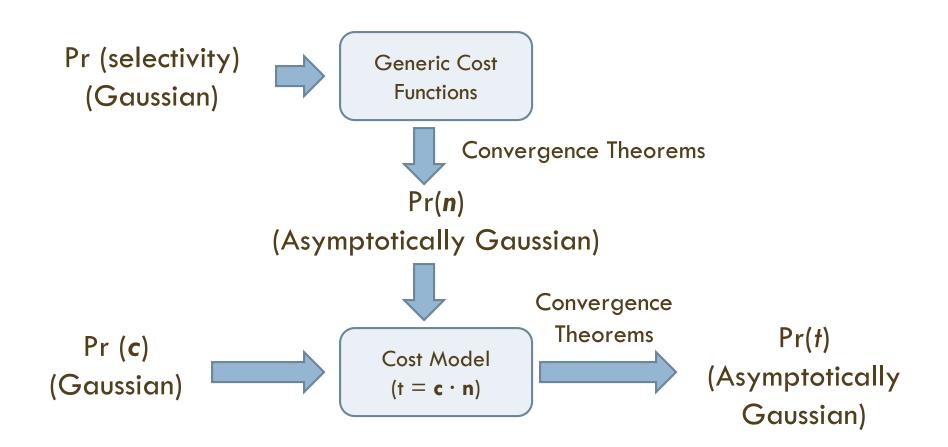
The calibration framework

Distributions of the c's

Distributions of the *n*'s

□ Summary

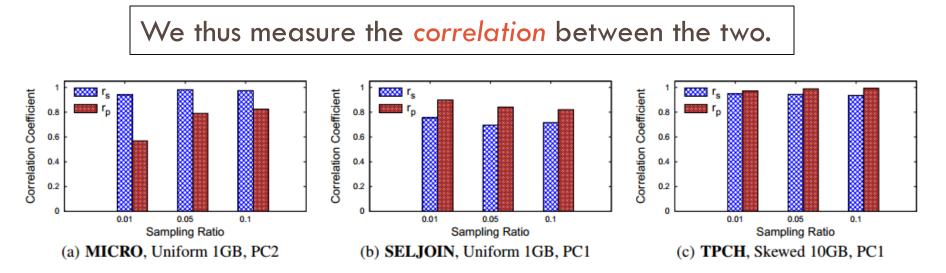
### Put It Together (Review)



### **Experimental Evaluation**

24

□ The idea: larger variances => larger estimation errors

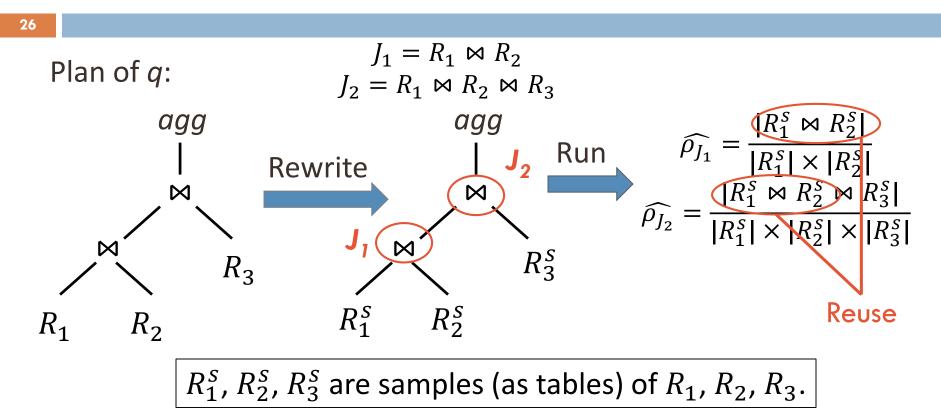


We observed strong correlations (i.e., correlation coefficient > 0.7) on almost all the queries tested in our experiments.

### Q & A

□ Thank you☺

### The Cardinality Refinement Algorithm (Example)

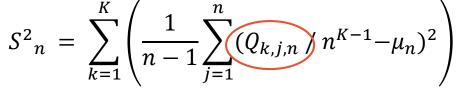


For *agg*, use PostgreSQL's estimates based on the *refined* input estimates from  $J_2$ .

## Distributions of Selectivities (Cont.)

27

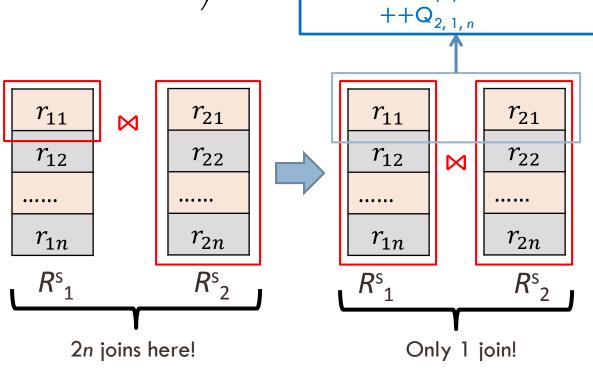
 $\square$  Implementation of  $S_n^2$  in PostgreSQL





$$\begin{cases} Q_{1,j,n} = |\{r_{1j}\} \bowtie R^{s}{}_{2} | \\ Q_{2,j,n} = |R^{s}{}_{1} \bowtie \{r_{2j}\}| \end{cases}$$

 $r_{1j}$  and  $r_{2j}$  are the *j*-th row of  $R_1^s$  and  $R_2^s$ .



**If:**  $r_{11} \bowtie r_{21} \in R^{s_1} \bowtie R^{s_2}$ **Then:**  $++Q_{1,1,n}$